Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aleksey Makarov | 879 | 91.95% | 1 | 25.00% |
Subbaraya Sundeep | 76 | 7.95% | 2 | 50.00% |
Sunil Goutham | 1 | 0.10% | 1 | 25.00% |
Total | 956 | 4 |
// SPDX-License-Identifier: GPL-2.0 /* Marvell PTP driver * * Copyright (C) 2020 Marvell. * */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/module.h> #include <linux/pci.h> #include "ptp.h" #include "mbox.h" #include "rvu.h" #define DRV_NAME "Marvell PTP Driver" #define PCI_DEVID_OCTEONTX2_PTP 0xA00C #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 #define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 #define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 #define PCI_DEVID_OCTEONTX2_RST 0xA085 #define PCI_DEVID_CN10K_PTP 0xA09E #define PCI_PTP_BAR_NO 0 #define PCI_RST_BAR_NO 0 #define PTP_CLOCK_CFG 0xF00ULL #define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) #define PTP_CLOCK_LO 0xF08ULL #define PTP_CLOCK_HI 0xF10ULL #define PTP_CLOCK_COMP 0xF18ULL #define RST_BOOT 0x1600ULL #define RST_MUL_BITS GENMASK_ULL(38, 33) #define CLOCK_BASE_RATE 50000000ULL static struct ptp *first_ptp_block; static const struct pci_device_id ptp_id_table[]; static u64 get_clock_rate(void) { u64 cfg, ret = CLOCK_BASE_RATE * 16; struct pci_dev *pdev; void __iomem *base; /* To get the input clock frequency with which PTP co-processor * block is running the base frequency(50 MHz) needs to be multiplied * with multiplier bits present in RST_BOOT register of RESET block. * Hence below code gets the multiplier bits from the RESET PCI * device present in the system. */ pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RST, NULL); if (!pdev) goto error; base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO); if (!base) goto error_put_pdev; cfg = readq(base + RST_BOOT); ret = CLOCK_BASE_RATE * FIELD_GET(RST_MUL_BITS, cfg); iounmap(base); error_put_pdev: pci_dev_put(pdev); error: return ret; } struct ptp *ptp_get(void) { struct ptp *ptp = first_ptp_block; /* Check PTP block is present in hardware */ if (!pci_dev_present(ptp_id_table)) return ERR_PTR(-ENODEV); /* Check driver is bound to PTP block */ if (!ptp) ptp = ERR_PTR(-EPROBE_DEFER); return ptp; } void ptp_put(struct ptp *ptp) { if (!ptp) return; pci_dev_put(ptp->pdev); } static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) { bool neg_adj = false; u64 comp; u64 adj; s64 ppb; if (scaled_ppm < 0) { neg_adj = true; scaled_ppm = -scaled_ppm; } /* The hardware adds the clock compensation value to the PTP clock * on every coprocessor clock cycle. Typical convention is that it * represent number of nanosecond betwen each cycle. In this * convention compensation value is in 64 bit fixed-point * representation where upper 32 bits are number of nanoseconds * and lower is fractions of nanosecond. * The scaled_ppm represent the ratio in "parts per million" by which * the compensation value should be corrected. * To calculate new compenstation value we use 64bit fixed point * arithmetic on following formula * comp = tbase + tbase * scaled_ppm / (1M * 2^16) * where tbase is the basic compensation value calculated * initialy in the probe function. */ comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* convert scaled_ppm to ppb */ ppb = 1 + scaled_ppm; ppb *= 125; ppb >>= 13; adj = comp * ppb; adj = div_u64(adj, 1000000000ull); comp = neg_adj ? comp - adj : comp + adj; writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); return 0; } static int ptp_get_clock(struct ptp *ptp, u64 *clk) { /* Return the current PTP clock */ *clk = readq(ptp->reg_base + PTP_CLOCK_HI); return 0; } static int ptp_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct ptp *ptp; u64 clock_comp; u64 clock_cfg; int err; ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL); if (!ptp) { err = -ENOMEM; goto error; } ptp->pdev = pdev; err = pcim_enable_device(pdev); if (err) goto error_free; err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); if (err) goto error_free; ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; ptp->clock_rate = get_clock_rate(); /* Enable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); clock_cfg |= PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* Initial compensation value to start the nanosecs counter */ writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); pci_set_drvdata(pdev, ptp); if (!first_ptp_block) first_ptp_block = ptp; return 0; error_free: devm_kfree(dev, ptp); error: /* For `ptp_get()` we need to differentiate between the case * when the core has not tried to probe this device and the case when * the probe failed. In the later case we pretend that the * initialization was successful and keep the error in * `dev->driver_data`. */ pci_set_drvdata(pdev, ERR_PTR(err)); if (!first_ptp_block) first_ptp_block = ERR_PTR(err); return 0; } static void ptp_remove(struct pci_dev *pdev) { struct ptp *ptp = pci_get_drvdata(pdev); u64 clock_cfg; if (IS_ERR_OR_NULL(ptp)) return; /* Disable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); } static const struct pci_device_id ptp_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, { 0, } }; struct pci_driver ptp_driver = { .name = DRV_NAME, .id_table = ptp_id_table, .probe = ptp_probe, .remove = ptp_remove, }; int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, struct ptp_rsp *rsp) { int err = 0; /* This function is the PTP mailbox handler invoked when * called by AF consumers/netdev drivers via mailbox mechanism. * It is used by netdev driver to get the PTP clock and to set * frequency adjustments. Since mailbox can be called without * notion of whether the driver is bound to ptp device below * validation is needed as first step. */ if (!rvu->ptp) return -ENODEV; switch (req->op) { case PTP_OP_ADJFINE: err = ptp_adjfine(rvu->ptp, req->scaled_ppm); break; case PTP_OP_GET_CLOCK: err = ptp_get_clock(rvu->ptp, &rsp->clk); break; default: err = -EINVAL; break; } return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1