Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sunil Goutham | 7663 | 54.54% | 22 | 40.00% |
Geetha Sowjanya | 2284 | 16.26% | 9 | 16.36% |
Naveen Mamindlapalli | 1446 | 10.29% | 3 | 5.45% |
Hariprasad Kelam | 972 | 6.92% | 7 | 12.73% |
Aleksey Makarov | 742 | 5.28% | 1 | 1.82% |
Tomasz Duszynski | 352 | 2.51% | 2 | 3.64% |
Linu Cherian | 320 | 2.28% | 1 | 1.82% |
Subbaraya Sundeep | 172 | 1.22% | 5 | 9.09% |
Christina Jacob | 82 | 0.58% | 2 | 3.64% |
Wei Yongjun | 14 | 0.10% | 1 | 1.82% |
Colin Ian King | 3 | 0.02% | 1 | 1.82% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.82% |
Total | 14051 | 55 |
// SPDX-License-Identifier: GPL-2.0 /* Marvell RVU Physical Function ethernet driver * * Copyright (C) 2020 Marvell. * */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/etherdevice.h> #include <linux/of.h> #include <linux/if_vlan.h> #include <linux/iommu.h> #include <net/ip.h> #include "otx2_reg.h" #include "otx2_common.h" #include "otx2_txrx.h" #include "otx2_struct.h" #include "otx2_ptp.h" #include "cn10k.h" #include <rvu_trace.h> #define DRV_NAME "rvu_nicpf" #define DRV_STRING "Marvell RVU NIC Physical Function Driver" /* Supported devices */ static const struct pci_device_id otx2_pf_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_PF) }, { 0, } /* end of table */ }; MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>"); MODULE_DESCRIPTION(DRV_STRING); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, otx2_pf_id_table); static void otx2_vf_link_event_task(struct work_struct *work); enum { TYPE_PFAF, TYPE_PFVF, }; static int otx2_config_hw_tx_tstamp(struct otx2_nic *pfvf, bool enable); static int otx2_config_hw_rx_tstamp(struct otx2_nic *pfvf, bool enable); static int otx2_change_mtu(struct net_device *netdev, int new_mtu) { bool if_up = netif_running(netdev); int err = 0; if (if_up) otx2_stop(netdev); netdev_info(netdev, "Changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (if_up) err = otx2_open(netdev); return err; } static void otx2_disable_flr_me_intr(struct otx2_nic *pf) { int irq, vfs = pf->total_vfs; /* Disable VFs ME interrupts */ otx2_write64(pf, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs)); irq = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFME0); free_irq(irq, pf); /* Disable VFs FLR interrupts */ otx2_write64(pf, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs)); irq = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFFLR0); free_irq(irq, pf); if (vfs <= 64) return; otx2_write64(pf, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); irq = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFME1); free_irq(irq, pf); otx2_write64(pf, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); irq = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFFLR1); free_irq(irq, pf); } static void otx2_flr_wq_destroy(struct otx2_nic *pf) { if (!pf->flr_wq) return; destroy_workqueue(pf->flr_wq); pf->flr_wq = NULL; devm_kfree(pf->dev, pf->flr_wrk); } static void otx2_flr_handler(struct work_struct *work) { struct flr_work *flrwork = container_of(work, struct flr_work, work); struct otx2_nic *pf = flrwork->pf; struct mbox *mbox = &pf->mbox; struct msg_req *req; int vf, reg = 0; vf = flrwork - pf->flr_wrk; mutex_lock(&mbox->lock); req = otx2_mbox_alloc_msg_vf_flr(mbox); if (!req) { mutex_unlock(&mbox->lock); return; } req->hdr.pcifunc &= RVU_PFVF_FUNC_MASK; req->hdr.pcifunc |= (vf + 1) & RVU_PFVF_FUNC_MASK; if (!otx2_sync_mbox_msg(&pf->mbox)) { if (vf >= 64) { reg = 1; vf = vf - 64; } /* clear transcation pending bit */ otx2_write64(pf, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf)); otx2_write64(pf, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf)); } mutex_unlock(&mbox->lock); } static irqreturn_t otx2_pf_flr_intr_handler(int irq, void *pf_irq) { struct otx2_nic *pf = (struct otx2_nic *)pf_irq; int reg, dev, vf, start_vf, num_reg = 1; u64 intr; if (pf->total_vfs > 64) num_reg = 2; for (reg = 0; reg < num_reg; reg++) { intr = otx2_read64(pf, RVU_PF_VFFLR_INTX(reg)); if (!intr) continue; start_vf = 64 * reg; for (vf = 0; vf < 64; vf++) { if (!(intr & BIT_ULL(vf))) continue; dev = vf + start_vf; queue_work(pf->flr_wq, &pf->flr_wrk[dev].work); /* Clear interrupt */ otx2_write64(pf, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf)); /* Disable the interrupt */ otx2_write64(pf, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf)); } } return IRQ_HANDLED; } static irqreturn_t otx2_pf_me_intr_handler(int irq, void *pf_irq) { struct otx2_nic *pf = (struct otx2_nic *)pf_irq; int vf, reg, num_reg = 1; u64 intr; if (pf->total_vfs > 64) num_reg = 2; for (reg = 0; reg < num_reg; reg++) { intr = otx2_read64(pf, RVU_PF_VFME_INTX(reg)); if (!intr) continue; for (vf = 0; vf < 64; vf++) { if (!(intr & BIT_ULL(vf))) continue; /* clear trpend bit */ otx2_write64(pf, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf)); /* clear interrupt */ otx2_write64(pf, RVU_PF_VFME_INTX(reg), BIT_ULL(vf)); } } return IRQ_HANDLED; } static int otx2_register_flr_me_intr(struct otx2_nic *pf, int numvfs) { struct otx2_hw *hw = &pf->hw; char *irq_name; int ret; /* Register ME interrupt handler*/ irq_name = &hw->irq_name[RVU_PF_INT_VEC_VFME0 * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "RVUPF%d_ME0", rvu_get_pf(pf->pcifunc)); ret = request_irq(pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFME0), otx2_pf_me_intr_handler, 0, irq_name, pf); if (ret) { dev_err(pf->dev, "RVUPF: IRQ registration failed for ME0\n"); } /* Register FLR interrupt handler */ irq_name = &hw->irq_name[RVU_PF_INT_VEC_VFFLR0 * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "RVUPF%d_FLR0", rvu_get_pf(pf->pcifunc)); ret = request_irq(pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFFLR0), otx2_pf_flr_intr_handler, 0, irq_name, pf); if (ret) { dev_err(pf->dev, "RVUPF: IRQ registration failed for FLR0\n"); return ret; } if (numvfs > 64) { irq_name = &hw->irq_name[RVU_PF_INT_VEC_VFME1 * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "RVUPF%d_ME1", rvu_get_pf(pf->pcifunc)); ret = request_irq(pci_irq_vector (pf->pdev, RVU_PF_INT_VEC_VFME1), otx2_pf_me_intr_handler, 0, irq_name, pf); if (ret) { dev_err(pf->dev, "RVUPF: IRQ registration failed for ME1\n"); } irq_name = &hw->irq_name[RVU_PF_INT_VEC_VFFLR1 * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "RVUPF%d_FLR1", rvu_get_pf(pf->pcifunc)); ret = request_irq(pci_irq_vector (pf->pdev, RVU_PF_INT_VEC_VFFLR1), otx2_pf_flr_intr_handler, 0, irq_name, pf); if (ret) { dev_err(pf->dev, "RVUPF: IRQ registration failed for FLR1\n"); return ret; } } /* Enable ME interrupt for all VFs*/ otx2_write64(pf, RVU_PF_VFME_INTX(0), INTR_MASK(numvfs)); otx2_write64(pf, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(numvfs)); /* Enable FLR interrupt for all VFs*/ otx2_write64(pf, RVU_PF_VFFLR_INTX(0), INTR_MASK(numvfs)); otx2_write64(pf, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(numvfs)); if (numvfs > 64) { numvfs -= 64; otx2_write64(pf, RVU_PF_VFME_INTX(1), INTR_MASK(numvfs)); otx2_write64(pf, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(numvfs)); otx2_write64(pf, RVU_PF_VFFLR_INTX(1), INTR_MASK(numvfs)); otx2_write64(pf, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(numvfs)); } return 0; } static int otx2_pf_flr_init(struct otx2_nic *pf, int num_vfs) { int vf; pf->flr_wq = alloc_workqueue("otx2_pf_flr_wq", WQ_UNBOUND | WQ_HIGHPRI, 1); if (!pf->flr_wq) return -ENOMEM; pf->flr_wrk = devm_kcalloc(pf->dev, num_vfs, sizeof(struct flr_work), GFP_KERNEL); if (!pf->flr_wrk) { destroy_workqueue(pf->flr_wq); return -ENOMEM; } for (vf = 0; vf < num_vfs; vf++) { pf->flr_wrk[vf].pf = pf; INIT_WORK(&pf->flr_wrk[vf].work, otx2_flr_handler); } return 0; } static void otx2_queue_work(struct mbox *mw, struct workqueue_struct *mbox_wq, int first, int mdevs, u64 intr, int type) { struct otx2_mbox_dev *mdev; struct otx2_mbox *mbox; struct mbox_hdr *hdr; int i; for (i = first; i < mdevs; i++) { /* start from 0 */ if (!(intr & BIT_ULL(i - first))) continue; mbox = &mw->mbox; mdev = &mbox->dev[i]; if (type == TYPE_PFAF) otx2_sync_mbox_bbuf(mbox, i); hdr = mdev->mbase + mbox->rx_start; /* The hdr->num_msgs is set to zero immediately in the interrupt * handler to ensure that it holds a correct value next time * when the interrupt handler is called. * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler * pf>mbox.up_num_msgs holds the data for use in * pfaf_mbox_up_handler. */ if (hdr->num_msgs) { mw[i].num_msgs = hdr->num_msgs; hdr->num_msgs = 0; if (type == TYPE_PFAF) memset(mbox->hwbase + mbox->rx_start, 0, ALIGN(sizeof(struct mbox_hdr), sizeof(u64))); queue_work(mbox_wq, &mw[i].mbox_wrk); } mbox = &mw->mbox_up; mdev = &mbox->dev[i]; if (type == TYPE_PFAF) otx2_sync_mbox_bbuf(mbox, i); hdr = mdev->mbase + mbox->rx_start; if (hdr->num_msgs) { mw[i].up_num_msgs = hdr->num_msgs; hdr->num_msgs = 0; if (type == TYPE_PFAF) memset(mbox->hwbase + mbox->rx_start, 0, ALIGN(sizeof(struct mbox_hdr), sizeof(u64))); queue_work(mbox_wq, &mw[i].mbox_up_wrk); } } } static void otx2_forward_msg_pfvf(struct otx2_mbox_dev *mdev, struct otx2_mbox *pfvf_mbox, void *bbuf_base, int devid) { struct otx2_mbox_dev *src_mdev = mdev; int offset; /* Msgs are already copied, trigger VF's mbox irq */ smp_wmb(); offset = pfvf_mbox->trigger | (devid << pfvf_mbox->tr_shift); writeq(1, (void __iomem *)pfvf_mbox->reg_base + offset); /* Restore VF's mbox bounce buffer region address */ src_mdev->mbase = bbuf_base; } static int otx2_forward_vf_mbox_msgs(struct otx2_nic *pf, struct otx2_mbox *src_mbox, int dir, int vf, int num_msgs) { struct otx2_mbox_dev *src_mdev, *dst_mdev; struct mbox_hdr *mbox_hdr; struct mbox_hdr *req_hdr; struct mbox *dst_mbox; int dst_size, err; if (dir == MBOX_DIR_PFAF) { /* Set VF's mailbox memory as PF's bounce buffer memory, so * that explicit copying of VF's msgs to PF=>AF mbox region * and AF=>PF responses to VF's mbox region can be avoided. */ src_mdev = &src_mbox->dev[vf]; mbox_hdr = src_mbox->hwbase + src_mbox->rx_start + (vf * MBOX_SIZE); dst_mbox = &pf->mbox; dst_size = dst_mbox->mbox.tx_size - ALIGN(sizeof(*mbox_hdr), MBOX_MSG_ALIGN); /* Check if msgs fit into destination area and has valid size */ if (mbox_hdr->msg_size > dst_size || !mbox_hdr->msg_size) return -EINVAL; dst_mdev = &dst_mbox->mbox.dev[0]; mutex_lock(&pf->mbox.lock); dst_mdev->mbase = src_mdev->mbase; dst_mdev->msg_size = mbox_hdr->msg_size; dst_mdev->num_msgs = num_msgs; err = otx2_sync_mbox_msg(dst_mbox); if (err) { dev_warn(pf->dev, "AF not responding to VF%d messages\n", vf); /* restore PF mbase and exit */ dst_mdev->mbase = pf->mbox.bbuf_base; mutex_unlock(&pf->mbox.lock); return err; } /* At this point, all the VF messages sent to AF are acked * with proper responses and responses are copied to VF * mailbox hence raise interrupt to VF. */ req_hdr = (struct mbox_hdr *)(dst_mdev->mbase + dst_mbox->mbox.rx_start); req_hdr->num_msgs = num_msgs; otx2_forward_msg_pfvf(dst_mdev, &pf->mbox_pfvf[0].mbox, pf->mbox.bbuf_base, vf); mutex_unlock(&pf->mbox.lock); } else if (dir == MBOX_DIR_PFVF_UP) { src_mdev = &src_mbox->dev[0]; mbox_hdr = src_mbox->hwbase + src_mbox->rx_start; req_hdr = (struct mbox_hdr *)(src_mdev->mbase + src_mbox->rx_start); req_hdr->num_msgs = num_msgs; dst_mbox = &pf->mbox_pfvf[0]; dst_size = dst_mbox->mbox_up.tx_size - ALIGN(sizeof(*mbox_hdr), MBOX_MSG_ALIGN); /* Check if msgs fit into destination area */ if (mbox_hdr->msg_size > dst_size) return -EINVAL; dst_mdev = &dst_mbox->mbox_up.dev[vf]; dst_mdev->mbase = src_mdev->mbase; dst_mdev->msg_size = mbox_hdr->msg_size; dst_mdev->num_msgs = mbox_hdr->num_msgs; err = otx2_sync_mbox_up_msg(dst_mbox, vf); if (err) { dev_warn(pf->dev, "VF%d is not responding to mailbox\n", vf); return err; } } else if (dir == MBOX_DIR_VFPF_UP) { req_hdr = (struct mbox_hdr *)(src_mbox->dev[0].mbase + src_mbox->rx_start); req_hdr->num_msgs = num_msgs; otx2_forward_msg_pfvf(&pf->mbox_pfvf->mbox_up.dev[vf], &pf->mbox.mbox_up, pf->mbox_pfvf[vf].bbuf_base, 0); } return 0; } static void otx2_pfvf_mbox_handler(struct work_struct *work) { struct mbox_msghdr *msg = NULL; int offset, vf_idx, id, err; struct otx2_mbox_dev *mdev; struct mbox_hdr *req_hdr; struct otx2_mbox *mbox; struct mbox *vf_mbox; struct otx2_nic *pf; vf_mbox = container_of(work, struct mbox, mbox_wrk); pf = vf_mbox->pfvf; vf_idx = vf_mbox - pf->mbox_pfvf; mbox = &pf->mbox_pfvf[0].mbox; mdev = &mbox->dev[vf_idx]; req_hdr = (struct mbox_hdr *)(mdev->mbase + mbox->rx_start); offset = ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN); for (id = 0; id < vf_mbox->num_msgs; id++) { msg = (struct mbox_msghdr *)(mdev->mbase + mbox->rx_start + offset); if (msg->sig != OTX2_MBOX_REQ_SIG) goto inval_msg; /* Set VF's number in each of the msg */ msg->pcifunc &= RVU_PFVF_FUNC_MASK; msg->pcifunc |= (vf_idx + 1) & RVU_PFVF_FUNC_MASK; offset = msg->next_msgoff; } err = otx2_forward_vf_mbox_msgs(pf, mbox, MBOX_DIR_PFAF, vf_idx, vf_mbox->num_msgs); if (err) goto inval_msg; return; inval_msg: otx2_reply_invalid_msg(mbox, vf_idx, 0, msg->id); otx2_mbox_msg_send(mbox, vf_idx); } static void otx2_pfvf_mbox_up_handler(struct work_struct *work) { struct mbox *vf_mbox = container_of(work, struct mbox, mbox_up_wrk); struct otx2_nic *pf = vf_mbox->pfvf; struct otx2_mbox_dev *mdev; int offset, id, vf_idx = 0; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; struct otx2_mbox *mbox; vf_idx = vf_mbox - pf->mbox_pfvf; mbox = &pf->mbox_pfvf[0].mbox_up; mdev = &mbox->dev[vf_idx]; rsp_hdr = (struct mbox_hdr *)(mdev->mbase + mbox->rx_start); offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); for (id = 0; id < vf_mbox->up_num_msgs; id++) { msg = mdev->mbase + offset; if (msg->id >= MBOX_MSG_MAX) { dev_err(pf->dev, "Mbox msg with unknown ID 0x%x\n", msg->id); goto end; } if (msg->sig != OTX2_MBOX_RSP_SIG) { dev_err(pf->dev, "Mbox msg with wrong signature %x, ID 0x%x\n", msg->sig, msg->id); goto end; } switch (msg->id) { case MBOX_MSG_CGX_LINK_EVENT: break; default: if (msg->rc) dev_err(pf->dev, "Mbox msg response has err %d, ID 0x%x\n", msg->rc, msg->id); break; } end: offset = mbox->rx_start + msg->next_msgoff; if (mdev->msgs_acked == (vf_mbox->up_num_msgs - 1)) __otx2_mbox_reset(mbox, 0); mdev->msgs_acked++; } } static irqreturn_t otx2_pfvf_mbox_intr_handler(int irq, void *pf_irq) { struct otx2_nic *pf = (struct otx2_nic *)(pf_irq); int vfs = pf->total_vfs; struct mbox *mbox; u64 intr; mbox = pf->mbox_pfvf; /* Handle VF interrupts */ if (vfs > 64) { intr = otx2_read64(pf, RVU_PF_VFPF_MBOX_INTX(1)); otx2_write64(pf, RVU_PF_VFPF_MBOX_INTX(1), intr); otx2_queue_work(mbox, pf->mbox_pfvf_wq, 64, vfs, intr, TYPE_PFVF); vfs -= 64; } intr = otx2_read64(pf, RVU_PF_VFPF_MBOX_INTX(0)); otx2_write64(pf, RVU_PF_VFPF_MBOX_INTX(0), intr); otx2_queue_work(mbox, pf->mbox_pfvf_wq, 0, vfs, intr, TYPE_PFVF); trace_otx2_msg_interrupt(mbox->mbox.pdev, "VF(s) to PF", intr); return IRQ_HANDLED; } static int otx2_pfvf_mbox_init(struct otx2_nic *pf, int numvfs) { void __iomem *hwbase; struct mbox *mbox; int err, vf; u64 base; if (!numvfs) return -EINVAL; pf->mbox_pfvf = devm_kcalloc(&pf->pdev->dev, numvfs, sizeof(struct mbox), GFP_KERNEL); if (!pf->mbox_pfvf) return -ENOMEM; pf->mbox_pfvf_wq = alloc_workqueue("otx2_pfvf_mailbox", WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, 1); if (!pf->mbox_pfvf_wq) return -ENOMEM; /* On CN10K platform, PF <-> VF mailbox region follows after * PF <-> AF mailbox region. */ if (test_bit(CN10K_MBOX, &pf->hw.cap_flag)) base = pci_resource_start(pf->pdev, PCI_MBOX_BAR_NUM) + MBOX_SIZE; else base = readq((void __iomem *)((u64)pf->reg_base + RVU_PF_VF_BAR4_ADDR)); hwbase = ioremap_wc(base, MBOX_SIZE * pf->total_vfs); if (!hwbase) { err = -ENOMEM; goto free_wq; } mbox = &pf->mbox_pfvf[0]; err = otx2_mbox_init(&mbox->mbox, hwbase, pf->pdev, pf->reg_base, MBOX_DIR_PFVF, numvfs); if (err) goto free_iomem; err = otx2_mbox_init(&mbox->mbox_up, hwbase, pf->pdev, pf->reg_base, MBOX_DIR_PFVF_UP, numvfs); if (err) goto free_iomem; for (vf = 0; vf < numvfs; vf++) { mbox->pfvf = pf; INIT_WORK(&mbox->mbox_wrk, otx2_pfvf_mbox_handler); INIT_WORK(&mbox->mbox_up_wrk, otx2_pfvf_mbox_up_handler); mbox++; } return 0; free_iomem: if (hwbase) iounmap(hwbase); free_wq: destroy_workqueue(pf->mbox_pfvf_wq); return err; } static void otx2_pfvf_mbox_destroy(struct otx2_nic *pf) { struct mbox *mbox = &pf->mbox_pfvf[0]; if (!mbox) return; if (pf->mbox_pfvf_wq) { destroy_workqueue(pf->mbox_pfvf_wq); pf->mbox_pfvf_wq = NULL; } if (mbox->mbox.hwbase) iounmap(mbox->mbox.hwbase); otx2_mbox_destroy(&mbox->mbox); } static void otx2_enable_pfvf_mbox_intr(struct otx2_nic *pf, int numvfs) { /* Clear PF <=> VF mailbox IRQ */ otx2_write64(pf, RVU_PF_VFPF_MBOX_INTX(0), ~0ull); otx2_write64(pf, RVU_PF_VFPF_MBOX_INTX(1), ~0ull); /* Enable PF <=> VF mailbox IRQ */ otx2_write64(pf, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(numvfs)); if (numvfs > 64) { numvfs -= 64; otx2_write64(pf, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1), INTR_MASK(numvfs)); } } static void otx2_disable_pfvf_mbox_intr(struct otx2_nic *pf, int numvfs) { int vector; /* Disable PF <=> VF mailbox IRQ */ otx2_write64(pf, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), ~0ull); otx2_write64(pf, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1), ~0ull); otx2_write64(pf, RVU_PF_VFPF_MBOX_INTX(0), ~0ull); vector = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFPF_MBOX0); free_irq(vector, pf); if (numvfs > 64) { otx2_write64(pf, RVU_PF_VFPF_MBOX_INTX(1), ~0ull); vector = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFPF_MBOX1); free_irq(vector, pf); } } static int otx2_register_pfvf_mbox_intr(struct otx2_nic *pf, int numvfs) { struct otx2_hw *hw = &pf->hw; char *irq_name; int err; /* Register MBOX0 interrupt handler */ irq_name = &hw->irq_name[RVU_PF_INT_VEC_VFPF_MBOX0 * NAME_SIZE]; if (pf->pcifunc) snprintf(irq_name, NAME_SIZE, "RVUPF%d_VF Mbox0", rvu_get_pf(pf->pcifunc)); else snprintf(irq_name, NAME_SIZE, "RVUPF_VF Mbox0"); err = request_irq(pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFPF_MBOX0), otx2_pfvf_mbox_intr_handler, 0, irq_name, pf); if (err) { dev_err(pf->dev, "RVUPF: IRQ registration failed for PFVF mbox0 irq\n"); return err; } if (numvfs > 64) { /* Register MBOX1 interrupt handler */ irq_name = &hw->irq_name[RVU_PF_INT_VEC_VFPF_MBOX1 * NAME_SIZE]; if (pf->pcifunc) snprintf(irq_name, NAME_SIZE, "RVUPF%d_VF Mbox1", rvu_get_pf(pf->pcifunc)); else snprintf(irq_name, NAME_SIZE, "RVUPF_VF Mbox1"); err = request_irq(pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_VFPF_MBOX1), otx2_pfvf_mbox_intr_handler, 0, irq_name, pf); if (err) { dev_err(pf->dev, "RVUPF: IRQ registration failed for PFVF mbox1 irq\n"); return err; } } otx2_enable_pfvf_mbox_intr(pf, numvfs); return 0; } static void otx2_process_pfaf_mbox_msg(struct otx2_nic *pf, struct mbox_msghdr *msg) { int devid; if (msg->id >= MBOX_MSG_MAX) { dev_err(pf->dev, "Mbox msg with unknown ID 0x%x\n", msg->id); return; } if (msg->sig != OTX2_MBOX_RSP_SIG) { dev_err(pf->dev, "Mbox msg with wrong signature %x, ID 0x%x\n", msg->sig, msg->id); return; } /* message response heading VF */ devid = msg->pcifunc & RVU_PFVF_FUNC_MASK; if (devid) { struct otx2_vf_config *config = &pf->vf_configs[devid - 1]; struct delayed_work *dwork; switch (msg->id) { case MBOX_MSG_NIX_LF_START_RX: config->intf_down = false; dwork = &config->link_event_work; schedule_delayed_work(dwork, msecs_to_jiffies(100)); break; case MBOX_MSG_NIX_LF_STOP_RX: config->intf_down = true; break; } return; } switch (msg->id) { case MBOX_MSG_READY: pf->pcifunc = msg->pcifunc; break; case MBOX_MSG_MSIX_OFFSET: mbox_handler_msix_offset(pf, (struct msix_offset_rsp *)msg); break; case MBOX_MSG_NPA_LF_ALLOC: mbox_handler_npa_lf_alloc(pf, (struct npa_lf_alloc_rsp *)msg); break; case MBOX_MSG_NIX_LF_ALLOC: mbox_handler_nix_lf_alloc(pf, (struct nix_lf_alloc_rsp *)msg); break; case MBOX_MSG_NIX_TXSCH_ALLOC: mbox_handler_nix_txsch_alloc(pf, (struct nix_txsch_alloc_rsp *)msg); break; case MBOX_MSG_NIX_BP_ENABLE: mbox_handler_nix_bp_enable(pf, (struct nix_bp_cfg_rsp *)msg); break; case MBOX_MSG_CGX_STATS: mbox_handler_cgx_stats(pf, (struct cgx_stats_rsp *)msg); break; case MBOX_MSG_CGX_FEC_STATS: mbox_handler_cgx_fec_stats(pf, (struct cgx_fec_stats_rsp *)msg); break; default: if (msg->rc) dev_err(pf->dev, "Mbox msg response has err %d, ID 0x%x\n", msg->rc, msg->id); break; } } static void otx2_pfaf_mbox_handler(struct work_struct *work) { struct otx2_mbox_dev *mdev; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; struct otx2_mbox *mbox; struct mbox *af_mbox; struct otx2_nic *pf; int offset, id; af_mbox = container_of(work, struct mbox, mbox_wrk); mbox = &af_mbox->mbox; mdev = &mbox->dev[0]; rsp_hdr = (struct mbox_hdr *)(mdev->mbase + mbox->rx_start); offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); pf = af_mbox->pfvf; for (id = 0; id < af_mbox->num_msgs; id++) { msg = (struct mbox_msghdr *)(mdev->mbase + offset); otx2_process_pfaf_mbox_msg(pf, msg); offset = mbox->rx_start + msg->next_msgoff; if (mdev->msgs_acked == (af_mbox->num_msgs - 1)) __otx2_mbox_reset(mbox, 0); mdev->msgs_acked++; } } static void otx2_handle_link_event(struct otx2_nic *pf) { struct cgx_link_user_info *linfo = &pf->linfo; struct net_device *netdev = pf->netdev; pr_info("%s NIC Link is %s %d Mbps %s duplex\n", netdev->name, linfo->link_up ? "UP" : "DOWN", linfo->speed, linfo->full_duplex ? "Full" : "Half"); if (linfo->link_up) { netif_carrier_on(netdev); netif_tx_start_all_queues(netdev); } else { netif_tx_stop_all_queues(netdev); netif_carrier_off(netdev); } } int otx2_mbox_up_handler_cgx_link_event(struct otx2_nic *pf, struct cgx_link_info_msg *msg, struct msg_rsp *rsp) { int i; /* Copy the link info sent by AF */ pf->linfo = msg->link_info; /* notify VFs about link event */ for (i = 0; i < pci_num_vf(pf->pdev); i++) { struct otx2_vf_config *config = &pf->vf_configs[i]; struct delayed_work *dwork = &config->link_event_work; if (config->intf_down) continue; schedule_delayed_work(dwork, msecs_to_jiffies(100)); } /* interface has not been fully configured yet */ if (pf->flags & OTX2_FLAG_INTF_DOWN) return 0; otx2_handle_link_event(pf); return 0; } static int otx2_process_mbox_msg_up(struct otx2_nic *pf, struct mbox_msghdr *req) { /* Check if valid, if not reply with a invalid msg */ if (req->sig != OTX2_MBOX_REQ_SIG) { otx2_reply_invalid_msg(&pf->mbox.mbox_up, 0, 0, req->id); return -ENODEV; } switch (req->id) { #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ case _id: { \ struct _rsp_type *rsp; \ int err; \ \ rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \ &pf->mbox.mbox_up, 0, \ sizeof(struct _rsp_type)); \ if (!rsp) \ return -ENOMEM; \ \ rsp->hdr.id = _id; \ rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \ rsp->hdr.pcifunc = 0; \ rsp->hdr.rc = 0; \ \ err = otx2_mbox_up_handler_ ## _fn_name( \ pf, (struct _req_type *)req, rsp); \ return err; \ } MBOX_UP_CGX_MESSAGES #undef M break; default: otx2_reply_invalid_msg(&pf->mbox.mbox_up, 0, 0, req->id); return -ENODEV; } return 0; } static void otx2_pfaf_mbox_up_handler(struct work_struct *work) { struct mbox *af_mbox = container_of(work, struct mbox, mbox_up_wrk); struct otx2_mbox *mbox = &af_mbox->mbox_up; struct otx2_mbox_dev *mdev = &mbox->dev[0]; struct otx2_nic *pf = af_mbox->pfvf; int offset, id, devid = 0; struct mbox_hdr *rsp_hdr; struct mbox_msghdr *msg; rsp_hdr = (struct mbox_hdr *)(mdev->mbase + mbox->rx_start); offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); for (id = 0; id < af_mbox->up_num_msgs; id++) { msg = (struct mbox_msghdr *)(mdev->mbase + offset); devid = msg->pcifunc & RVU_PFVF_FUNC_MASK; /* Skip processing VF's messages */ if (!devid) otx2_process_mbox_msg_up(pf, msg); offset = mbox->rx_start + msg->next_msgoff; } if (devid) { otx2_forward_vf_mbox_msgs(pf, &pf->mbox.mbox_up, MBOX_DIR_PFVF_UP, devid - 1, af_mbox->up_num_msgs); return; } otx2_mbox_msg_send(mbox, 0); } static irqreturn_t otx2_pfaf_mbox_intr_handler(int irq, void *pf_irq) { struct otx2_nic *pf = (struct otx2_nic *)pf_irq; struct mbox *mbox; /* Clear the IRQ */ otx2_write64(pf, RVU_PF_INT, BIT_ULL(0)); mbox = &pf->mbox; trace_otx2_msg_interrupt(mbox->mbox.pdev, "AF to PF", BIT_ULL(0)); otx2_queue_work(mbox, pf->mbox_wq, 0, 1, 1, TYPE_PFAF); return IRQ_HANDLED; } static void otx2_disable_mbox_intr(struct otx2_nic *pf) { int vector = pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_AFPF_MBOX); /* Disable AF => PF mailbox IRQ */ otx2_write64(pf, RVU_PF_INT_ENA_W1C, BIT_ULL(0)); free_irq(vector, pf); } static int otx2_register_mbox_intr(struct otx2_nic *pf, bool probe_af) { struct otx2_hw *hw = &pf->hw; struct msg_req *req; char *irq_name; int err; /* Register mailbox interrupt handler */ irq_name = &hw->irq_name[RVU_PF_INT_VEC_AFPF_MBOX * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "RVUPFAF Mbox"); err = request_irq(pci_irq_vector(pf->pdev, RVU_PF_INT_VEC_AFPF_MBOX), otx2_pfaf_mbox_intr_handler, 0, irq_name, pf); if (err) { dev_err(pf->dev, "RVUPF: IRQ registration failed for PFAF mbox irq\n"); return err; } /* Enable mailbox interrupt for msgs coming from AF. * First clear to avoid spurious interrupts, if any. */ otx2_write64(pf, RVU_PF_INT, BIT_ULL(0)); otx2_write64(pf, RVU_PF_INT_ENA_W1S, BIT_ULL(0)); if (!probe_af) return 0; /* Check mailbox communication with AF */ req = otx2_mbox_alloc_msg_ready(&pf->mbox); if (!req) { otx2_disable_mbox_intr(pf); return -ENOMEM; } err = otx2_sync_mbox_msg(&pf->mbox); if (err) { dev_warn(pf->dev, "AF not responding to mailbox, deferring probe\n"); otx2_disable_mbox_intr(pf); return -EPROBE_DEFER; } return 0; } static void otx2_pfaf_mbox_destroy(struct otx2_nic *pf) { struct mbox *mbox = &pf->mbox; if (pf->mbox_wq) { destroy_workqueue(pf->mbox_wq); pf->mbox_wq = NULL; } if (mbox->mbox.hwbase) iounmap((void __iomem *)mbox->mbox.hwbase); otx2_mbox_destroy(&mbox->mbox); otx2_mbox_destroy(&mbox->mbox_up); } static int otx2_pfaf_mbox_init(struct otx2_nic *pf) { struct mbox *mbox = &pf->mbox; void __iomem *hwbase; int err; mbox->pfvf = pf; pf->mbox_wq = alloc_workqueue("otx2_pfaf_mailbox", WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, 1); if (!pf->mbox_wq) return -ENOMEM; /* Mailbox is a reserved memory (in RAM) region shared between * admin function (i.e AF) and this PF, shouldn't be mapped as * device memory to allow unaligned accesses. */ hwbase = ioremap_wc(pci_resource_start(pf->pdev, PCI_MBOX_BAR_NUM), MBOX_SIZE); if (!hwbase) { dev_err(pf->dev, "Unable to map PFAF mailbox region\n"); err = -ENOMEM; goto exit; } err = otx2_mbox_init(&mbox->mbox, hwbase, pf->pdev, pf->reg_base, MBOX_DIR_PFAF, 1); if (err) goto exit; err = otx2_mbox_init(&mbox->mbox_up, hwbase, pf->pdev, pf->reg_base, MBOX_DIR_PFAF_UP, 1); if (err) goto exit; err = otx2_mbox_bbuf_init(mbox, pf->pdev); if (err) goto exit; INIT_WORK(&mbox->mbox_wrk, otx2_pfaf_mbox_handler); INIT_WORK(&mbox->mbox_up_wrk, otx2_pfaf_mbox_up_handler); mutex_init(&mbox->lock); return 0; exit: otx2_pfaf_mbox_destroy(pf); return err; } static int otx2_cgx_config_linkevents(struct otx2_nic *pf, bool enable) { struct msg_req *msg; int err; mutex_lock(&pf->mbox.lock); if (enable) msg = otx2_mbox_alloc_msg_cgx_start_linkevents(&pf->mbox); else msg = otx2_mbox_alloc_msg_cgx_stop_linkevents(&pf->mbox); if (!msg) { mutex_unlock(&pf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pf->mbox); mutex_unlock(&pf->mbox.lock); return err; } static int otx2_cgx_config_loopback(struct otx2_nic *pf, bool enable) { struct msg_req *msg; int err; if (enable && bitmap_weight(&pf->flow_cfg->dmacflt_bmap, pf->flow_cfg->dmacflt_max_flows)) netdev_warn(pf->netdev, "CGX/RPM internal loopback might not work as DMAC filters are active\n"); mutex_lock(&pf->mbox.lock); if (enable) msg = otx2_mbox_alloc_msg_cgx_intlbk_enable(&pf->mbox); else msg = otx2_mbox_alloc_msg_cgx_intlbk_disable(&pf->mbox); if (!msg) { mutex_unlock(&pf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pf->mbox); mutex_unlock(&pf->mbox.lock); return err; } int otx2_set_real_num_queues(struct net_device *netdev, int tx_queues, int rx_queues) { int err; err = netif_set_real_num_tx_queues(netdev, tx_queues); if (err) { netdev_err(netdev, "Failed to set no of Tx queues: %d\n", tx_queues); return err; } err = netif_set_real_num_rx_queues(netdev, rx_queues); if (err) netdev_err(netdev, "Failed to set no of Rx queues: %d\n", rx_queues); return err; } EXPORT_SYMBOL(otx2_set_real_num_queues); static irqreturn_t otx2_q_intr_handler(int irq, void *data) { struct otx2_nic *pf = data; u64 val, *ptr; u64 qidx = 0; /* CQ */ for (qidx = 0; qidx < pf->qset.cq_cnt; qidx++) { ptr = otx2_get_regaddr(pf, NIX_LF_CQ_OP_INT); val = otx2_atomic64_add((qidx << 44), ptr); otx2_write64(pf, NIX_LF_CQ_OP_INT, (qidx << 44) | (val & NIX_CQERRINT_BITS)); if (!(val & (NIX_CQERRINT_BITS | BIT_ULL(42)))) continue; if (val & BIT_ULL(42)) { netdev_err(pf->netdev, "CQ%lld: error reading NIX_LF_CQ_OP_INT, NIX_LF_ERR_INT 0x%llx\n", qidx, otx2_read64(pf, NIX_LF_ERR_INT)); } else { if (val & BIT_ULL(NIX_CQERRINT_DOOR_ERR)) netdev_err(pf->netdev, "CQ%lld: Doorbell error", qidx); if (val & BIT_ULL(NIX_CQERRINT_CQE_FAULT)) netdev_err(pf->netdev, "CQ%lld: Memory fault on CQE write to LLC/DRAM", qidx); } schedule_work(&pf->reset_task); } /* SQ */ for (qidx = 0; qidx < pf->hw.tx_queues; qidx++) { ptr = otx2_get_regaddr(pf, NIX_LF_SQ_OP_INT); val = otx2_atomic64_add((qidx << 44), ptr); otx2_write64(pf, NIX_LF_SQ_OP_INT, (qidx << 44) | (val & NIX_SQINT_BITS)); if (!(val & (NIX_SQINT_BITS | BIT_ULL(42)))) continue; if (val & BIT_ULL(42)) { netdev_err(pf->netdev, "SQ%lld: error reading NIX_LF_SQ_OP_INT, NIX_LF_ERR_INT 0x%llx\n", qidx, otx2_read64(pf, NIX_LF_ERR_INT)); } else { if (val & BIT_ULL(NIX_SQINT_LMT_ERR)) { netdev_err(pf->netdev, "SQ%lld: LMT store error NIX_LF_SQ_OP_ERR_DBG:0x%llx", qidx, otx2_read64(pf, NIX_LF_SQ_OP_ERR_DBG)); otx2_write64(pf, NIX_LF_SQ_OP_ERR_DBG, BIT_ULL(44)); } if (val & BIT_ULL(NIX_SQINT_MNQ_ERR)) { netdev_err(pf->netdev, "SQ%lld: Meta-descriptor enqueue error NIX_LF_MNQ_ERR_DGB:0x%llx\n", qidx, otx2_read64(pf, NIX_LF_MNQ_ERR_DBG)); otx2_write64(pf, NIX_LF_MNQ_ERR_DBG, BIT_ULL(44)); } if (val & BIT_ULL(NIX_SQINT_SEND_ERR)) { netdev_err(pf->netdev, "SQ%lld: Send error, NIX_LF_SEND_ERR_DBG 0x%llx", qidx, otx2_read64(pf, NIX_LF_SEND_ERR_DBG)); otx2_write64(pf, NIX_LF_SEND_ERR_DBG, BIT_ULL(44)); } if (val & BIT_ULL(NIX_SQINT_SQB_ALLOC_FAIL)) netdev_err(pf->netdev, "SQ%lld: SQB allocation failed", qidx); } schedule_work(&pf->reset_task); } return IRQ_HANDLED; } static irqreturn_t otx2_cq_intr_handler(int irq, void *cq_irq) { struct otx2_cq_poll *cq_poll = (struct otx2_cq_poll *)cq_irq; struct otx2_nic *pf = (struct otx2_nic *)cq_poll->dev; int qidx = cq_poll->cint_idx; /* Disable interrupts. * * Completion interrupts behave in a level-triggered interrupt * fashion, and hence have to be cleared only after it is serviced. */ otx2_write64(pf, NIX_LF_CINTX_ENA_W1C(qidx), BIT_ULL(0)); /* Schedule NAPI */ napi_schedule_irqoff(&cq_poll->napi); return IRQ_HANDLED; } static void otx2_disable_napi(struct otx2_nic *pf) { struct otx2_qset *qset = &pf->qset; struct otx2_cq_poll *cq_poll; int qidx; for (qidx = 0; qidx < pf->hw.cint_cnt; qidx++) { cq_poll = &qset->napi[qidx]; napi_disable(&cq_poll->napi); netif_napi_del(&cq_poll->napi); } } static void otx2_free_cq_res(struct otx2_nic *pf) { struct otx2_qset *qset = &pf->qset; struct otx2_cq_queue *cq; int qidx; /* Disable CQs */ otx2_ctx_disable(&pf->mbox, NIX_AQ_CTYPE_CQ, false); for (qidx = 0; qidx < qset->cq_cnt; qidx++) { cq = &qset->cq[qidx]; qmem_free(pf->dev, cq->cqe); } } static void otx2_free_sq_res(struct otx2_nic *pf) { struct otx2_qset *qset = &pf->qset; struct otx2_snd_queue *sq; int qidx; /* Disable SQs */ otx2_ctx_disable(&pf->mbox, NIX_AQ_CTYPE_SQ, false); /* Free SQB pointers */ otx2_sq_free_sqbs(pf); for (qidx = 0; qidx < pf->hw.tx_queues; qidx++) { sq = &qset->sq[qidx]; qmem_free(pf->dev, sq->sqe); qmem_free(pf->dev, sq->tso_hdrs); kfree(sq->sg); kfree(sq->sqb_ptrs); } } static int otx2_get_rbuf_size(struct otx2_nic *pf, int mtu) { int frame_size; int total_size; int rbuf_size; /* The data transferred by NIX to memory consists of actual packet * plus additional data which has timestamp and/or EDSA/HIGIG2 * headers if interface is configured in corresponding modes. * NIX transfers entire data using 6 segments/buffers and writes * a CQE_RX descriptor with those segment addresses. First segment * has additional data prepended to packet. Also software omits a * headroom of 128 bytes and sizeof(struct skb_shared_info) in * each segment. Hence the total size of memory needed * to receive a packet with 'mtu' is: * frame size = mtu + additional data; * memory = frame_size + (headroom + struct skb_shared_info size) * 6; * each receive buffer size = memory / 6; */ frame_size = mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN; total_size = frame_size + (OTX2_HEAD_ROOM + OTX2_DATA_ALIGN(sizeof(struct skb_shared_info))) * 6; rbuf_size = total_size / 6; return ALIGN(rbuf_size, 2048); } static int otx2_init_hw_resources(struct otx2_nic *pf) { struct nix_lf_free_req *free_req; struct mbox *mbox = &pf->mbox; struct otx2_hw *hw = &pf->hw; struct msg_req *req; int err = 0, lvl; /* Set required NPA LF's pool counts * Auras and Pools are used in a 1:1 mapping, * so, aura count = pool count. */ hw->rqpool_cnt = hw->rx_queues; hw->sqpool_cnt = hw->tx_queues; hw->pool_cnt = hw->rqpool_cnt + hw->sqpool_cnt; pf->max_frs = pf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN; pf->rbsize = otx2_get_rbuf_size(pf, pf->netdev->mtu); mutex_lock(&mbox->lock); /* NPA init */ err = otx2_config_npa(pf); if (err) goto exit; /* NIX init */ err = otx2_config_nix(pf); if (err) goto err_free_npa_lf; /* Enable backpressure */ otx2_nix_config_bp(pf, true); /* Init Auras and pools used by NIX RQ, for free buffer ptrs */ err = otx2_rq_aura_pool_init(pf); if (err) { mutex_unlock(&mbox->lock); goto err_free_nix_lf; } /* Init Auras and pools used by NIX SQ, for queueing SQEs */ err = otx2_sq_aura_pool_init(pf); if (err) { mutex_unlock(&mbox->lock); goto err_free_rq_ptrs; } err = otx2_txsch_alloc(pf); if (err) { mutex_unlock(&mbox->lock); goto err_free_sq_ptrs; } err = otx2_config_nix_queues(pf); if (err) { mutex_unlock(&mbox->lock); goto err_free_txsch; } for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { err = otx2_txschq_config(pf, lvl); if (err) { mutex_unlock(&mbox->lock); goto err_free_nix_queues; } } mutex_unlock(&mbox->lock); return err; err_free_nix_queues: otx2_free_sq_res(pf); otx2_free_cq_res(pf); otx2_ctx_disable(mbox, NIX_AQ_CTYPE_RQ, false); err_free_txsch: if (otx2_txschq_stop(pf)) dev_err(pf->dev, "%s failed to stop TX schedulers\n", __func__); err_free_sq_ptrs: otx2_sq_free_sqbs(pf); err_free_rq_ptrs: otx2_free_aura_ptr(pf, AURA_NIX_RQ); otx2_ctx_disable(mbox, NPA_AQ_CTYPE_POOL, true); otx2_ctx_disable(mbox, NPA_AQ_CTYPE_AURA, true); otx2_aura_pool_free(pf); err_free_nix_lf: mutex_lock(&mbox->lock); free_req = otx2_mbox_alloc_msg_nix_lf_free(mbox); if (free_req) { free_req->flags = NIX_LF_DISABLE_FLOWS; if (otx2_sync_mbox_msg(mbox)) dev_err(pf->dev, "%s failed to free nixlf\n", __func__); } err_free_npa_lf: /* Reset NPA LF */ req = otx2_mbox_alloc_msg_npa_lf_free(mbox); if (req) { if (otx2_sync_mbox_msg(mbox)) dev_err(pf->dev, "%s failed to free npalf\n", __func__); } exit: mutex_unlock(&mbox->lock); return err; } static void otx2_free_hw_resources(struct otx2_nic *pf) { struct otx2_qset *qset = &pf->qset; struct nix_lf_free_req *free_req; struct mbox *mbox = &pf->mbox; struct otx2_cq_queue *cq; struct msg_req *req; int qidx, err; /* Ensure all SQE are processed */ otx2_sqb_flush(pf); /* Stop transmission */ err = otx2_txschq_stop(pf); if (err) dev_err(pf->dev, "RVUPF: Failed to stop/free TX schedulers\n"); mutex_lock(&mbox->lock); /* Disable backpressure */ if (!(pf->pcifunc & RVU_PFVF_FUNC_MASK)) otx2_nix_config_bp(pf, false); mutex_unlock(&mbox->lock); /* Disable RQs */ otx2_ctx_disable(mbox, NIX_AQ_CTYPE_RQ, false); /*Dequeue all CQEs */ for (qidx = 0; qidx < qset->cq_cnt; qidx++) { cq = &qset->cq[qidx]; if (cq->cq_type == CQ_RX) otx2_cleanup_rx_cqes(pf, cq); else otx2_cleanup_tx_cqes(pf, cq); } otx2_free_sq_res(pf); /* Free RQ buffer pointers*/ otx2_free_aura_ptr(pf, AURA_NIX_RQ); otx2_free_cq_res(pf); /* Free all ingress bandwidth profiles allocated */ cn10k_free_all_ipolicers(pf); mutex_lock(&mbox->lock); /* Reset NIX LF */ free_req = otx2_mbox_alloc_msg_nix_lf_free(mbox); if (free_req) { free_req->flags = NIX_LF_DISABLE_FLOWS; if (!(pf->flags & OTX2_FLAG_PF_SHUTDOWN)) free_req->flags |= NIX_LF_DONT_FREE_TX_VTAG; if (otx2_sync_mbox_msg(mbox)) dev_err(pf->dev, "%s failed to free nixlf\n", __func__); } mutex_unlock(&mbox->lock); /* Disable NPA Pool and Aura hw context */ otx2_ctx_disable(mbox, NPA_AQ_CTYPE_POOL, true); otx2_ctx_disable(mbox, NPA_AQ_CTYPE_AURA, true); otx2_aura_pool_free(pf); mutex_lock(&mbox->lock); /* Reset NPA LF */ req = otx2_mbox_alloc_msg_npa_lf_free(mbox); if (req) { if (otx2_sync_mbox_msg(mbox)) dev_err(pf->dev, "%s failed to free npalf\n", __func__); } mutex_unlock(&mbox->lock); } int otx2_open(struct net_device *netdev) { struct otx2_nic *pf = netdev_priv(netdev); struct otx2_cq_poll *cq_poll = NULL; struct otx2_qset *qset = &pf->qset; int err = 0, qidx, vec; char *irq_name; netif_carrier_off(netdev); pf->qset.cq_cnt = pf->hw.rx_queues + pf->hw.tx_queues; /* RQ and SQs are mapped to different CQs, * so find out max CQ IRQs (i.e CINTs) needed. */ pf->hw.cint_cnt = max(pf->hw.rx_queues, pf->hw.tx_queues); qset->napi = kcalloc(pf->hw.cint_cnt, sizeof(*cq_poll), GFP_KERNEL); if (!qset->napi) return -ENOMEM; /* CQ size of RQ */ qset->rqe_cnt = qset->rqe_cnt ? qset->rqe_cnt : Q_COUNT(Q_SIZE_256); /* CQ size of SQ */ qset->sqe_cnt = qset->sqe_cnt ? qset->sqe_cnt : Q_COUNT(Q_SIZE_4K); err = -ENOMEM; qset->cq = kcalloc(pf->qset.cq_cnt, sizeof(struct otx2_cq_queue), GFP_KERNEL); if (!qset->cq) goto err_free_mem; qset->sq = kcalloc(pf->hw.tx_queues, sizeof(struct otx2_snd_queue), GFP_KERNEL); if (!qset->sq) goto err_free_mem; qset->rq = kcalloc(pf->hw.rx_queues, sizeof(struct otx2_rcv_queue), GFP_KERNEL); if (!qset->rq) goto err_free_mem; err = otx2_init_hw_resources(pf); if (err) goto err_free_mem; /* Register NAPI handler */ for (qidx = 0; qidx < pf->hw.cint_cnt; qidx++) { cq_poll = &qset->napi[qidx]; cq_poll->cint_idx = qidx; /* RQ0 & SQ0 are mapped to CINT0 and so on.. * 'cq_ids[0]' points to RQ's CQ and * 'cq_ids[1]' points to SQ's CQ and */ cq_poll->cq_ids[CQ_RX] = (qidx < pf->hw.rx_queues) ? qidx : CINT_INVALID_CQ; cq_poll->cq_ids[CQ_TX] = (qidx < pf->hw.tx_queues) ? qidx + pf->hw.rx_queues : CINT_INVALID_CQ; cq_poll->dev = (void *)pf; netif_napi_add(netdev, &cq_poll->napi, otx2_napi_handler, NAPI_POLL_WEIGHT); napi_enable(&cq_poll->napi); } /* Set maximum frame size allowed in HW */ err = otx2_hw_set_mtu(pf, netdev->mtu); if (err) goto err_disable_napi; /* Setup segmentation algorithms, if failed, clear offload capability */ otx2_setup_segmentation(pf); /* Initialize RSS */ err = otx2_rss_init(pf); if (err) goto err_disable_napi; /* Register Queue IRQ handlers */ vec = pf->hw.nix_msixoff + NIX_LF_QINT_VEC_START; irq_name = &pf->hw.irq_name[vec * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "%s-qerr", pf->netdev->name); err = request_irq(pci_irq_vector(pf->pdev, vec), otx2_q_intr_handler, 0, irq_name, pf); if (err) { dev_err(pf->dev, "RVUPF%d: IRQ registration failed for QERR\n", rvu_get_pf(pf->pcifunc)); goto err_disable_napi; } /* Enable QINT IRQ */ otx2_write64(pf, NIX_LF_QINTX_ENA_W1S(0), BIT_ULL(0)); /* Register CQ IRQ handlers */ vec = pf->hw.nix_msixoff + NIX_LF_CINT_VEC_START; for (qidx = 0; qidx < pf->hw.cint_cnt; qidx++) { irq_name = &pf->hw.irq_name[vec * NAME_SIZE]; snprintf(irq_name, NAME_SIZE, "%s-rxtx-%d", pf->netdev->name, qidx); err = request_irq(pci_irq_vector(pf->pdev, vec), otx2_cq_intr_handler, 0, irq_name, &qset->napi[qidx]); if (err) { dev_err(pf->dev, "RVUPF%d: IRQ registration failed for CQ%d\n", rvu_get_pf(pf->pcifunc), qidx); goto err_free_cints; } vec++; otx2_config_irq_coalescing(pf, qidx); /* Enable CQ IRQ */ otx2_write64(pf, NIX_LF_CINTX_INT(qidx), BIT_ULL(0)); otx2_write64(pf, NIX_LF_CINTX_ENA_W1S(qidx), BIT_ULL(0)); } otx2_set_cints_affinity(pf); if (pf->flags & OTX2_FLAG_RX_VLAN_SUPPORT) otx2_enable_rxvlan(pf, true); /* When reinitializing enable time stamping if it is enabled before */ if (pf->flags & OTX2_FLAG_TX_TSTAMP_ENABLED) { pf->flags &= ~OTX2_FLAG_TX_TSTAMP_ENABLED; otx2_config_hw_tx_tstamp(pf, true); } if (pf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED) { pf->flags &= ~OTX2_FLAG_RX_TSTAMP_ENABLED; otx2_config_hw_rx_tstamp(pf, true); } pf->flags &= ~OTX2_FLAG_INTF_DOWN; /* 'intf_down' may be checked on any cpu */ smp_wmb(); /* we have already received link status notification */ if (pf->linfo.link_up && !(pf->pcifunc & RVU_PFVF_FUNC_MASK)) otx2_handle_link_event(pf); /* Restore pause frame settings */ otx2_config_pause_frm(pf); /* Install DMAC Filters */ if (pf->flags & OTX2_FLAG_DMACFLTR_SUPPORT) otx2_dmacflt_reinstall_flows(pf); err = otx2_rxtx_enable(pf, true); if (err) goto err_tx_stop_queues; return 0; err_tx_stop_queues: netif_tx_stop_all_queues(netdev); netif_carrier_off(netdev); pf->flags |= OTX2_FLAG_INTF_DOWN; err_free_cints: otx2_free_cints(pf, qidx); vec = pci_irq_vector(pf->pdev, pf->hw.nix_msixoff + NIX_LF_QINT_VEC_START); otx2_write64(pf, NIX_LF_QINTX_ENA_W1C(0), BIT_ULL(0)); synchronize_irq(vec); free_irq(vec, pf); err_disable_napi: otx2_disable_napi(pf); otx2_free_hw_resources(pf); err_free_mem: kfree(qset->sq); kfree(qset->cq); kfree(qset->rq); kfree(qset->napi); return err; } EXPORT_SYMBOL(otx2_open); int otx2_stop(struct net_device *netdev) { struct otx2_nic *pf = netdev_priv(netdev); struct otx2_cq_poll *cq_poll = NULL; struct otx2_qset *qset = &pf->qset; struct otx2_rss_info *rss; int qidx, vec, wrk; /* If the DOWN flag is set resources are already freed */ if (pf->flags & OTX2_FLAG_INTF_DOWN) return 0; netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); pf->flags |= OTX2_FLAG_INTF_DOWN; /* 'intf_down' may be checked on any cpu */ smp_wmb(); /* First stop packet Rx/Tx */ otx2_rxtx_enable(pf, false); /* Clear RSS enable flag */ rss = &pf->hw.rss_info; rss->enable = false; /* Cleanup Queue IRQ */ vec = pci_irq_vector(pf->pdev, pf->hw.nix_msixoff + NIX_LF_QINT_VEC_START); otx2_write64(pf, NIX_LF_QINTX_ENA_W1C(0), BIT_ULL(0)); synchronize_irq(vec); free_irq(vec, pf); /* Cleanup CQ NAPI and IRQ */ vec = pf->hw.nix_msixoff + NIX_LF_CINT_VEC_START; for (qidx = 0; qidx < pf->hw.cint_cnt; qidx++) { /* Disable interrupt */ otx2_write64(pf, NIX_LF_CINTX_ENA_W1C(qidx), BIT_ULL(0)); synchronize_irq(pci_irq_vector(pf->pdev, vec)); cq_poll = &qset->napi[qidx]; napi_synchronize(&cq_poll->napi); vec++; } netif_tx_disable(netdev); otx2_free_hw_resources(pf); otx2_free_cints(pf, pf->hw.cint_cnt); otx2_disable_napi(pf); for (qidx = 0; qidx < netdev->num_tx_queues; qidx++) netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx)); for (wrk = 0; wrk < pf->qset.cq_cnt; wrk++) cancel_delayed_work_sync(&pf->refill_wrk[wrk].pool_refill_work); devm_kfree(pf->dev, pf->refill_wrk); kfree(qset->sq); kfree(qset->cq); kfree(qset->rq); kfree(qset->napi); /* Do not clear RQ/SQ ringsize settings */ memset((void *)qset + offsetof(struct otx2_qset, sqe_cnt), 0, sizeof(*qset) - offsetof(struct otx2_qset, sqe_cnt)); return 0; } EXPORT_SYMBOL(otx2_stop); static netdev_tx_t otx2_xmit(struct sk_buff *skb, struct net_device *netdev) { struct otx2_nic *pf = netdev_priv(netdev); int qidx = skb_get_queue_mapping(skb); struct otx2_snd_queue *sq; struct netdev_queue *txq; /* Check for minimum and maximum packet length */ if (skb->len <= ETH_HLEN || (!skb_shinfo(skb)->gso_size && skb->len > pf->max_frs)) { dev_kfree_skb(skb); return NETDEV_TX_OK; } sq = &pf->qset.sq[qidx]; txq = netdev_get_tx_queue(netdev, qidx); if (!otx2_sq_append_skb(netdev, sq, skb, qidx)) { netif_tx_stop_queue(txq); /* Check again, incase SQBs got freed up */ smp_mb(); if (((sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb) > sq->sqe_thresh) netif_tx_wake_queue(txq); return NETDEV_TX_BUSY; } return NETDEV_TX_OK; } static netdev_features_t otx2_fix_features(struct net_device *dev, netdev_features_t features) { if (features & NETIF_F_HW_VLAN_CTAG_RX) features |= NETIF_F_HW_VLAN_STAG_RX; else features &= ~NETIF_F_HW_VLAN_STAG_RX; return features; } static void otx2_set_rx_mode(struct net_device *netdev) { struct otx2_nic *pf = netdev_priv(netdev); queue_work(pf->otx2_wq, &pf->rx_mode_work); } static void otx2_do_set_rx_mode(struct work_struct *work) { struct otx2_nic *pf = container_of(work, struct otx2_nic, rx_mode_work); struct net_device *netdev = pf->netdev; struct nix_rx_mode *req; bool promisc = false; if (!(netdev->flags & IFF_UP)) return; if ((netdev->flags & IFF_PROMISC) || (netdev_uc_count(netdev) > OTX2_MAX_UNICAST_FLOWS)) { promisc = true; } /* Write unicast address to mcam entries or del from mcam */ if (!promisc && netdev->priv_flags & IFF_UNICAST_FLT) __dev_uc_sync(netdev, otx2_add_macfilter, otx2_del_macfilter); mutex_lock(&pf->mbox.lock); req = otx2_mbox_alloc_msg_nix_set_rx_mode(&pf->mbox); if (!req) { mutex_unlock(&pf->mbox.lock); return; } req->mode = NIX_RX_MODE_UCAST; if (promisc) req->mode |= NIX_RX_MODE_PROMISC; if (netdev->flags & (IFF_ALLMULTI | IFF_MULTICAST)) req->mode |= NIX_RX_MODE_ALLMULTI; req->mode |= NIX_RX_MODE_USE_MCE; otx2_sync_mbox_msg(&pf->mbox); mutex_unlock(&pf->mbox.lock); } static int otx2_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = features ^ netdev->features; bool ntuple = !!(features & NETIF_F_NTUPLE); struct otx2_nic *pf = netdev_priv(netdev); bool tc = !!(features & NETIF_F_HW_TC); if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev)) return otx2_cgx_config_loopback(pf, features & NETIF_F_LOOPBACK); if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(netdev)) return otx2_enable_rxvlan(pf, features & NETIF_F_HW_VLAN_CTAG_RX); if ((changed & NETIF_F_NTUPLE) && !ntuple) otx2_destroy_ntuple_flows(pf); if ((changed & NETIF_F_NTUPLE) && ntuple) { if (!pf->flow_cfg->max_flows) { netdev_err(netdev, "Can't enable NTUPLE, MCAM entries not allocated\n"); return -EINVAL; } } if ((changed & NETIF_F_HW_TC) && tc) { if (!pf->flow_cfg->max_flows) { netdev_err(netdev, "Can't enable TC, MCAM entries not allocated\n"); return -EINVAL; } } if ((changed & NETIF_F_HW_TC) && !tc && pf->flow_cfg && pf->flow_cfg->nr_flows) { netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n"); return -EBUSY; } if ((changed & NETIF_F_NTUPLE) && ntuple && (netdev->features & NETIF_F_HW_TC) && !(changed & NETIF_F_HW_TC)) { netdev_err(netdev, "Can't enable NTUPLE when TC is active, disable TC and retry\n"); return -EINVAL; } if ((changed & NETIF_F_HW_TC) && tc && (netdev->features & NETIF_F_NTUPLE) && !(changed & NETIF_F_NTUPLE)) { netdev_err(netdev, "Can't enable TC when NTUPLE is active, disable NTUPLE and retry\n"); return -EINVAL; } return 0; } static void otx2_reset_task(struct work_struct *work) { struct otx2_nic *pf = container_of(work, struct otx2_nic, reset_task); if (!netif_running(pf->netdev)) return; rtnl_lock(); otx2_stop(pf->netdev); pf->reset_count++; otx2_open(pf->netdev); netif_trans_update(pf->netdev); rtnl_unlock(); } static int otx2_config_hw_rx_tstamp(struct otx2_nic *pfvf, bool enable) { struct msg_req *req; int err; if (pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED && enable) return 0; mutex_lock(&pfvf->mbox.lock); if (enable) req = otx2_mbox_alloc_msg_cgx_ptp_rx_enable(&pfvf->mbox); else req = otx2_mbox_alloc_msg_cgx_ptp_rx_disable(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { mutex_unlock(&pfvf->mbox.lock); return err; } mutex_unlock(&pfvf->mbox.lock); if (enable) pfvf->flags |= OTX2_FLAG_RX_TSTAMP_ENABLED; else pfvf->flags &= ~OTX2_FLAG_RX_TSTAMP_ENABLED; return 0; } static int otx2_config_hw_tx_tstamp(struct otx2_nic *pfvf, bool enable) { struct msg_req *req; int err; if (pfvf->flags & OTX2_FLAG_TX_TSTAMP_ENABLED && enable) return 0; mutex_lock(&pfvf->mbox.lock); if (enable) req = otx2_mbox_alloc_msg_nix_lf_ptp_tx_enable(&pfvf->mbox); else req = otx2_mbox_alloc_msg_nix_lf_ptp_tx_disable(&pfvf->mbox); if (!req) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pfvf->mbox); if (err) { mutex_unlock(&pfvf->mbox.lock); return err; } mutex_unlock(&pfvf->mbox.lock); if (enable) pfvf->flags |= OTX2_FLAG_TX_TSTAMP_ENABLED; else pfvf->flags &= ~OTX2_FLAG_TX_TSTAMP_ENABLED; return 0; } static int otx2_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr) { struct otx2_nic *pfvf = netdev_priv(netdev); struct hwtstamp_config config; if (!pfvf->ptp) return -ENODEV; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; /* reserved for future extensions */ if (config.flags) return -EINVAL; switch (config.tx_type) { case HWTSTAMP_TX_OFF: otx2_config_hw_tx_tstamp(pfvf, false); break; case HWTSTAMP_TX_ON: otx2_config_hw_tx_tstamp(pfvf, true); break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: otx2_config_hw_rx_tstamp(pfvf, false); break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_SOME: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: otx2_config_hw_rx_tstamp(pfvf, true); config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } memcpy(&pfvf->tstamp, &config, sizeof(config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } static int otx2_ioctl(struct net_device *netdev, struct ifreq *req, int cmd) { struct otx2_nic *pfvf = netdev_priv(netdev); struct hwtstamp_config *cfg = &pfvf->tstamp; switch (cmd) { case SIOCSHWTSTAMP: return otx2_config_hwtstamp(netdev, req); case SIOCGHWTSTAMP: return copy_to_user(req->ifr_data, cfg, sizeof(*cfg)) ? -EFAULT : 0; default: return -EOPNOTSUPP; } } static int otx2_do_set_vf_mac(struct otx2_nic *pf, int vf, const u8 *mac) { struct npc_install_flow_req *req; int err; mutex_lock(&pf->mbox.lock); req = otx2_mbox_alloc_msg_npc_install_flow(&pf->mbox); if (!req) { err = -ENOMEM; goto out; } ether_addr_copy(req->packet.dmac, mac); eth_broadcast_addr((u8 *)&req->mask.dmac); req->features = BIT_ULL(NPC_DMAC); req->channel = pf->hw.rx_chan_base; req->intf = NIX_INTF_RX; req->default_rule = 1; req->append = 1; req->vf = vf + 1; req->op = NIX_RX_ACTION_DEFAULT; err = otx2_sync_mbox_msg(&pf->mbox); out: mutex_unlock(&pf->mbox.lock); return err; } static int otx2_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) { struct otx2_nic *pf = netdev_priv(netdev); struct pci_dev *pdev = pf->pdev; struct otx2_vf_config *config; int ret; if (!netif_running(netdev)) return -EAGAIN; if (vf >= pf->total_vfs) return -EINVAL; if (!is_valid_ether_addr(mac)) return -EINVAL; config = &pf->vf_configs[vf]; ether_addr_copy(config->mac, mac); ret = otx2_do_set_vf_mac(pf, vf, mac); if (ret == 0) dev_info(&pdev->dev, "Load/Reload VF driver\n"); return ret; } static int otx2_do_set_vf_vlan(struct otx2_nic *pf, int vf, u16 vlan, u8 qos, __be16 proto) { struct otx2_flow_config *flow_cfg = pf->flow_cfg; struct nix_vtag_config_rsp *vtag_rsp; struct npc_delete_flow_req *del_req; struct nix_vtag_config *vtag_req; struct npc_install_flow_req *req; struct otx2_vf_config *config; int err = 0; u32 idx; config = &pf->vf_configs[vf]; if (!vlan && !config->vlan) goto out; mutex_lock(&pf->mbox.lock); /* free old tx vtag entry */ if (config->vlan) { vtag_req = otx2_mbox_alloc_msg_nix_vtag_cfg(&pf->mbox); if (!vtag_req) { err = -ENOMEM; goto out; } vtag_req->cfg_type = 0; vtag_req->tx.free_vtag0 = 1; vtag_req->tx.vtag0_idx = config->tx_vtag_idx; err = otx2_sync_mbox_msg(&pf->mbox); if (err) goto out; } if (!vlan && config->vlan) { /* rx */ del_req = otx2_mbox_alloc_msg_npc_delete_flow(&pf->mbox); if (!del_req) { err = -ENOMEM; goto out; } idx = ((vf * OTX2_PER_VF_VLAN_FLOWS) + OTX2_VF_VLAN_RX_INDEX); del_req->entry = flow_cfg->def_ent[flow_cfg->vf_vlan_offset + idx]; err = otx2_sync_mbox_msg(&pf->mbox); if (err) goto out; /* tx */ del_req = otx2_mbox_alloc_msg_npc_delete_flow(&pf->mbox); if (!del_req) { err = -ENOMEM; goto out; } idx = ((vf * OTX2_PER_VF_VLAN_FLOWS) + OTX2_VF_VLAN_TX_INDEX); del_req->entry = flow_cfg->def_ent[flow_cfg->vf_vlan_offset + idx]; err = otx2_sync_mbox_msg(&pf->mbox); goto out; } /* rx */ req = otx2_mbox_alloc_msg_npc_install_flow(&pf->mbox); if (!req) { err = -ENOMEM; goto out; } idx = ((vf * OTX2_PER_VF_VLAN_FLOWS) + OTX2_VF_VLAN_RX_INDEX); req->entry = flow_cfg->def_ent[flow_cfg->vf_vlan_offset + idx]; req->packet.vlan_tci = htons(vlan); req->mask.vlan_tci = htons(VLAN_VID_MASK); /* af fills the destination mac addr */ eth_broadcast_addr((u8 *)&req->mask.dmac); req->features = BIT_ULL(NPC_OUTER_VID) | BIT_ULL(NPC_DMAC); req->channel = pf->hw.rx_chan_base; req->intf = NIX_INTF_RX; req->vf = vf + 1; req->op = NIX_RX_ACTION_DEFAULT; req->vtag0_valid = true; req->vtag0_type = NIX_AF_LFX_RX_VTAG_TYPE7; req->set_cntr = 1; err = otx2_sync_mbox_msg(&pf->mbox); if (err) goto out; /* tx */ vtag_req = otx2_mbox_alloc_msg_nix_vtag_cfg(&pf->mbox); if (!vtag_req) { err = -ENOMEM; goto out; } /* configure tx vtag params */ vtag_req->vtag_size = VTAGSIZE_T4; vtag_req->cfg_type = 0; /* tx vlan cfg */ vtag_req->tx.cfg_vtag0 = 1; vtag_req->tx.vtag0 = ((u64)ntohs(proto) << 16) | vlan; err = otx2_sync_mbox_msg(&pf->mbox); if (err) goto out; vtag_rsp = (struct nix_vtag_config_rsp *)otx2_mbox_get_rsp (&pf->mbox.mbox, 0, &vtag_req->hdr); if (IS_ERR(vtag_rsp)) { err = PTR_ERR(vtag_rsp); goto out; } config->tx_vtag_idx = vtag_rsp->vtag0_idx; req = otx2_mbox_alloc_msg_npc_install_flow(&pf->mbox); if (!req) { err = -ENOMEM; goto out; } eth_zero_addr((u8 *)&req->mask.dmac); idx = ((vf * OTX2_PER_VF_VLAN_FLOWS) + OTX2_VF_VLAN_TX_INDEX); req->entry = flow_cfg->def_ent[flow_cfg->vf_vlan_offset + idx]; req->features = BIT_ULL(NPC_DMAC); req->channel = pf->hw.tx_chan_base; req->intf = NIX_INTF_TX; req->vf = vf + 1; req->op = NIX_TX_ACTIONOP_UCAST_DEFAULT; req->vtag0_def = vtag_rsp->vtag0_idx; req->vtag0_op = VTAG_INSERT; req->set_cntr = 1; err = otx2_sync_mbox_msg(&pf->mbox); out: config->vlan = vlan; mutex_unlock(&pf->mbox.lock); return err; } static int otx2_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos, __be16 proto) { struct otx2_nic *pf = netdev_priv(netdev); struct pci_dev *pdev = pf->pdev; if (!netif_running(netdev)) return -EAGAIN; if (vf >= pci_num_vf(pdev)) return -EINVAL; /* qos is currently unsupported */ if (vlan >= VLAN_N_VID || qos) return -EINVAL; if (proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; if (!(pf->flags & OTX2_FLAG_VF_VLAN_SUPPORT)) return -EOPNOTSUPP; return otx2_do_set_vf_vlan(pf, vf, vlan, qos, proto); } static int otx2_get_vf_config(struct net_device *netdev, int vf, struct ifla_vf_info *ivi) { struct otx2_nic *pf = netdev_priv(netdev); struct pci_dev *pdev = pf->pdev; struct otx2_vf_config *config; if (!netif_running(netdev)) return -EAGAIN; if (vf >= pci_num_vf(pdev)) return -EINVAL; config = &pf->vf_configs[vf]; ivi->vf = vf; ether_addr_copy(ivi->mac, config->mac); ivi->vlan = config->vlan; ivi->trusted = config->trusted; return 0; } static int otx2_set_vf_permissions(struct otx2_nic *pf, int vf, int req_perm) { struct set_vf_perm *req; int rc; mutex_lock(&pf->mbox.lock); req = otx2_mbox_alloc_msg_set_vf_perm(&pf->mbox); if (!req) { rc = -ENOMEM; goto out; } /* Let AF reset VF permissions as sriov is disabled */ if (req_perm == OTX2_RESET_VF_PERM) { req->flags |= RESET_VF_PERM; } else if (req_perm == OTX2_TRUSTED_VF) { if (pf->vf_configs[vf].trusted) req->flags |= VF_TRUSTED; } req->vf = vf; rc = otx2_sync_mbox_msg(&pf->mbox); out: mutex_unlock(&pf->mbox.lock); return rc; } static int otx2_ndo_set_vf_trust(struct net_device *netdev, int vf, bool enable) { struct otx2_nic *pf = netdev_priv(netdev); struct pci_dev *pdev = pf->pdev; int rc; if (vf >= pci_num_vf(pdev)) return -EINVAL; if (pf->vf_configs[vf].trusted == enable) return 0; pf->vf_configs[vf].trusted = enable; rc = otx2_set_vf_permissions(pf, vf, OTX2_TRUSTED_VF); if (rc) pf->vf_configs[vf].trusted = !enable; else netdev_info(pf->netdev, "VF %d is %strusted\n", vf, enable ? "" : "not "); return rc; } static const struct net_device_ops otx2_netdev_ops = { .ndo_open = otx2_open, .ndo_stop = otx2_stop, .ndo_start_xmit = otx2_xmit, .ndo_fix_features = otx2_fix_features, .ndo_set_mac_address = otx2_set_mac_address, .ndo_change_mtu = otx2_change_mtu, .ndo_set_rx_mode = otx2_set_rx_mode, .ndo_set_features = otx2_set_features, .ndo_tx_timeout = otx2_tx_timeout, .ndo_get_stats64 = otx2_get_stats64, .ndo_eth_ioctl = otx2_ioctl, .ndo_set_vf_mac = otx2_set_vf_mac, .ndo_set_vf_vlan = otx2_set_vf_vlan, .ndo_get_vf_config = otx2_get_vf_config, .ndo_setup_tc = otx2_setup_tc, .ndo_set_vf_trust = otx2_ndo_set_vf_trust, }; static int otx2_wq_init(struct otx2_nic *pf) { pf->otx2_wq = create_singlethread_workqueue("otx2_wq"); if (!pf->otx2_wq) return -ENOMEM; INIT_WORK(&pf->rx_mode_work, otx2_do_set_rx_mode); INIT_WORK(&pf->reset_task, otx2_reset_task); return 0; } static int otx2_check_pf_usable(struct otx2_nic *nic) { u64 rev; rev = otx2_read64(nic, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_RVUM)); rev = (rev >> 12) & 0xFF; /* Check if AF has setup revision for RVUM block, * otherwise this driver probe should be deferred * until AF driver comes up. */ if (!rev) { dev_warn(nic->dev, "AF is not initialized, deferring probe\n"); return -EPROBE_DEFER; } return 0; } static int otx2_realloc_msix_vectors(struct otx2_nic *pf) { struct otx2_hw *hw = &pf->hw; int num_vec, err; /* NPA interrupts are inot registered, so alloc only * upto NIX vector offset. */ num_vec = hw->nix_msixoff; num_vec += NIX_LF_CINT_VEC_START + hw->max_queues; otx2_disable_mbox_intr(pf); pci_free_irq_vectors(hw->pdev); err = pci_alloc_irq_vectors(hw->pdev, num_vec, num_vec, PCI_IRQ_MSIX); if (err < 0) { dev_err(pf->dev, "%s: Failed to realloc %d IRQ vectors\n", __func__, num_vec); return err; } return otx2_register_mbox_intr(pf, false); } static int otx2_sriov_vfcfg_init(struct otx2_nic *pf) { int i; pf->vf_configs = devm_kcalloc(pf->dev, pf->total_vfs, sizeof(struct otx2_vf_config), GFP_KERNEL); if (!pf->vf_configs) return -ENOMEM; for (i = 0; i < pf->total_vfs; i++) { pf->vf_configs[i].pf = pf; pf->vf_configs[i].intf_down = true; pf->vf_configs[i].trusted = false; INIT_DELAYED_WORK(&pf->vf_configs[i].link_event_work, otx2_vf_link_event_task); } return 0; } static void otx2_sriov_vfcfg_cleanup(struct otx2_nic *pf) { int i; if (!pf->vf_configs) return; for (i = 0; i < pf->total_vfs; i++) { cancel_delayed_work_sync(&pf->vf_configs[i].link_event_work); otx2_set_vf_permissions(pf, i, OTX2_RESET_VF_PERM); } } static int otx2_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct net_device *netdev; struct otx2_nic *pf; struct otx2_hw *hw; int err, qcount; int num_vec; err = pcim_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); return err; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); return err; } err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "DMA mask config failed, abort\n"); goto err_release_regions; } pci_set_master(pdev); /* Set number of queues */ qcount = min_t(int, num_online_cpus(), OTX2_MAX_CQ_CNT); netdev = alloc_etherdev_mqs(sizeof(*pf), qcount, qcount); if (!netdev) { err = -ENOMEM; goto err_release_regions; } pci_set_drvdata(pdev, netdev); SET_NETDEV_DEV(netdev, &pdev->dev); pf = netdev_priv(netdev); pf->netdev = netdev; pf->pdev = pdev; pf->dev = dev; pf->total_vfs = pci_sriov_get_totalvfs(pdev); pf->flags |= OTX2_FLAG_INTF_DOWN; hw = &pf->hw; hw->pdev = pdev; hw->rx_queues = qcount; hw->tx_queues = qcount; hw->max_queues = qcount; num_vec = pci_msix_vec_count(pdev); hw->irq_name = devm_kmalloc_array(&hw->pdev->dev, num_vec, NAME_SIZE, GFP_KERNEL); if (!hw->irq_name) { err = -ENOMEM; goto err_free_netdev; } hw->affinity_mask = devm_kcalloc(&hw->pdev->dev, num_vec, sizeof(cpumask_var_t), GFP_KERNEL); if (!hw->affinity_mask) { err = -ENOMEM; goto err_free_netdev; } /* Map CSRs */ pf->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0); if (!pf->reg_base) { dev_err(dev, "Unable to map physical function CSRs, aborting\n"); err = -ENOMEM; goto err_free_netdev; } err = otx2_check_pf_usable(pf); if (err) goto err_free_netdev; err = pci_alloc_irq_vectors(hw->pdev, RVU_PF_INT_VEC_CNT, RVU_PF_INT_VEC_CNT, PCI_IRQ_MSIX); if (err < 0) { dev_err(dev, "%s: Failed to alloc %d IRQ vectors\n", __func__, num_vec); goto err_free_netdev; } otx2_setup_dev_hw_settings(pf); /* Init PF <=> AF mailbox stuff */ err = otx2_pfaf_mbox_init(pf); if (err) goto err_free_irq_vectors; /* Register mailbox interrupt */ err = otx2_register_mbox_intr(pf, true); if (err) goto err_mbox_destroy; /* Request AF to attach NPA and NIX LFs to this PF. * NIX and NPA LFs are needed for this PF to function as a NIC. */ err = otx2_attach_npa_nix(pf); if (err) goto err_disable_mbox_intr; err = otx2_realloc_msix_vectors(pf); if (err) goto err_detach_rsrc; err = otx2_set_real_num_queues(netdev, hw->tx_queues, hw->rx_queues); if (err) goto err_detach_rsrc; err = cn10k_lmtst_init(pf); if (err) goto err_detach_rsrc; /* Assign default mac address */ otx2_get_mac_from_af(netdev); /* Don't check for error. Proceed without ptp */ otx2_ptp_init(pf); /* NPA's pool is a stack to which SW frees buffer pointers via Aura. * HW allocates buffer pointer from stack and uses it for DMA'ing * ingress packet. In some scenarios HW can free back allocated buffer * pointers to pool. This makes it impossible for SW to maintain a * parallel list where physical addresses of buffer pointers (IOVAs) * given to HW can be saved for later reference. * * So the only way to convert Rx packet's buffer address is to use * IOMMU's iova_to_phys() handler which translates the address by * walking through the translation tables. */ pf->iommu_domain = iommu_get_domain_for_dev(dev); netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXHASH | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); netdev->features |= netdev->hw_features; err = otx2_mcam_flow_init(pf); if (err) goto err_ptp_destroy; if (pf->flags & OTX2_FLAG_NTUPLE_SUPPORT) netdev->hw_features |= NETIF_F_NTUPLE; if (pf->flags & OTX2_FLAG_UCAST_FLTR_SUPPORT) netdev->priv_flags |= IFF_UNICAST_FLT; /* Support TSO on tag interface */ netdev->vlan_features |= netdev->features; netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; if (pf->flags & OTX2_FLAG_RX_VLAN_SUPPORT) netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; netdev->features |= netdev->hw_features; /* HW supports tc offload but mutually exclusive with n-tuple filters */ if (pf->flags & OTX2_FLAG_TC_FLOWER_SUPPORT) netdev->hw_features |= NETIF_F_HW_TC; netdev->hw_features |= NETIF_F_LOOPBACK | NETIF_F_RXALL; netdev->gso_max_segs = OTX2_MAX_GSO_SEGS; netdev->watchdog_timeo = OTX2_TX_TIMEOUT; netdev->netdev_ops = &otx2_netdev_ops; netdev->min_mtu = OTX2_MIN_MTU; netdev->max_mtu = otx2_get_max_mtu(pf); err = register_netdev(netdev); if (err) { dev_err(dev, "Failed to register netdevice\n"); goto err_del_mcam_entries; } err = otx2_wq_init(pf); if (err) goto err_unreg_netdev; otx2_set_ethtool_ops(netdev); err = otx2_init_tc(pf); if (err) goto err_mcam_flow_del; err = otx2_register_dl(pf); if (err) goto err_mcam_flow_del; /* Initialize SR-IOV resources */ err = otx2_sriov_vfcfg_init(pf); if (err) goto err_pf_sriov_init; /* Enable link notifications */ otx2_cgx_config_linkevents(pf, true); /* Enable pause frames by default */ pf->flags |= OTX2_FLAG_RX_PAUSE_ENABLED; pf->flags |= OTX2_FLAG_TX_PAUSE_ENABLED; return 0; err_pf_sriov_init: otx2_shutdown_tc(pf); err_mcam_flow_del: otx2_mcam_flow_del(pf); err_unreg_netdev: unregister_netdev(netdev); err_del_mcam_entries: otx2_mcam_flow_del(pf); err_ptp_destroy: otx2_ptp_destroy(pf); err_detach_rsrc: if (pf->hw.lmt_info) free_percpu(pf->hw.lmt_info); if (test_bit(CN10K_LMTST, &pf->hw.cap_flag)) qmem_free(pf->dev, pf->dync_lmt); otx2_detach_resources(&pf->mbox); err_disable_mbox_intr: otx2_disable_mbox_intr(pf); err_mbox_destroy: otx2_pfaf_mbox_destroy(pf); err_free_irq_vectors: pci_free_irq_vectors(hw->pdev); err_free_netdev: pci_set_drvdata(pdev, NULL); free_netdev(netdev); err_release_regions: pci_release_regions(pdev); return err; } static void otx2_vf_link_event_task(struct work_struct *work) { struct otx2_vf_config *config; struct cgx_link_info_msg *req; struct mbox_msghdr *msghdr; struct otx2_nic *pf; int vf_idx; config = container_of(work, struct otx2_vf_config, link_event_work.work); vf_idx = config - config->pf->vf_configs; pf = config->pf; msghdr = otx2_mbox_alloc_msg_rsp(&pf->mbox_pfvf[0].mbox_up, vf_idx, sizeof(*req), sizeof(struct msg_rsp)); if (!msghdr) { dev_err(pf->dev, "Failed to create VF%d link event\n", vf_idx); return; } req = (struct cgx_link_info_msg *)msghdr; req->hdr.id = MBOX_MSG_CGX_LINK_EVENT; req->hdr.sig = OTX2_MBOX_REQ_SIG; memcpy(&req->link_info, &pf->linfo, sizeof(req->link_info)); otx2_sync_mbox_up_msg(&pf->mbox_pfvf[0], vf_idx); } static int otx2_sriov_enable(struct pci_dev *pdev, int numvfs) { struct net_device *netdev = pci_get_drvdata(pdev); struct otx2_nic *pf = netdev_priv(netdev); int ret; /* Init PF <=> VF mailbox stuff */ ret = otx2_pfvf_mbox_init(pf, numvfs); if (ret) return ret; ret = otx2_register_pfvf_mbox_intr(pf, numvfs); if (ret) goto free_mbox; ret = otx2_pf_flr_init(pf, numvfs); if (ret) goto free_intr; ret = otx2_register_flr_me_intr(pf, numvfs); if (ret) goto free_flr; ret = pci_enable_sriov(pdev, numvfs); if (ret) goto free_flr_intr; return numvfs; free_flr_intr: otx2_disable_flr_me_intr(pf); free_flr: otx2_flr_wq_destroy(pf); free_intr: otx2_disable_pfvf_mbox_intr(pf, numvfs); free_mbox: otx2_pfvf_mbox_destroy(pf); return ret; } static int otx2_sriov_disable(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct otx2_nic *pf = netdev_priv(netdev); int numvfs = pci_num_vf(pdev); if (!numvfs) return 0; pci_disable_sriov(pdev); otx2_disable_flr_me_intr(pf); otx2_flr_wq_destroy(pf); otx2_disable_pfvf_mbox_intr(pf, numvfs); otx2_pfvf_mbox_destroy(pf); return 0; } static int otx2_sriov_configure(struct pci_dev *pdev, int numvfs) { if (numvfs == 0) return otx2_sriov_disable(pdev); else return otx2_sriov_enable(pdev, numvfs); } static void otx2_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct otx2_nic *pf; if (!netdev) return; pf = netdev_priv(netdev); pf->flags |= OTX2_FLAG_PF_SHUTDOWN; if (pf->flags & OTX2_FLAG_TX_TSTAMP_ENABLED) otx2_config_hw_tx_tstamp(pf, false); if (pf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED) otx2_config_hw_rx_tstamp(pf, false); cancel_work_sync(&pf->reset_task); /* Disable link notifications */ otx2_cgx_config_linkevents(pf, false); otx2_unregister_dl(pf); unregister_netdev(netdev); otx2_sriov_disable(pf->pdev); otx2_sriov_vfcfg_cleanup(pf); if (pf->otx2_wq) destroy_workqueue(pf->otx2_wq); otx2_ptp_destroy(pf); otx2_mcam_flow_del(pf); otx2_shutdown_tc(pf); otx2_detach_resources(&pf->mbox); if (pf->hw.lmt_info) free_percpu(pf->hw.lmt_info); if (test_bit(CN10K_LMTST, &pf->hw.cap_flag)) qmem_free(pf->dev, pf->dync_lmt); otx2_disable_mbox_intr(pf); otx2_pfaf_mbox_destroy(pf); pci_free_irq_vectors(pf->pdev); pci_set_drvdata(pdev, NULL); free_netdev(netdev); pci_release_regions(pdev); } static struct pci_driver otx2_pf_driver = { .name = DRV_NAME, .id_table = otx2_pf_id_table, .probe = otx2_probe, .shutdown = otx2_remove, .remove = otx2_remove, .sriov_configure = otx2_sriov_configure }; static int __init otx2_rvupf_init_module(void) { pr_info("%s: %s\n", DRV_NAME, DRV_STRING); return pci_register_driver(&otx2_pf_driver); } static void __exit otx2_rvupf_cleanup_module(void) { pci_unregister_driver(&otx2_pf_driver); } module_init(otx2_rvupf_init_module); module_exit(otx2_rvupf_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1