Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Giuseppe Cavallaro | 1107 | 88.42% | 9 | 40.91% |
Jose Abreu | 68 | 5.43% | 1 | 4.55% |
Corentin Labbe | 27 | 2.16% | 4 | 18.18% |
Ong Boon Leong | 24 | 1.92% | 1 | 4.55% |
Joao Pinto | 21 | 1.68% | 3 | 13.64% |
Thomas Gleixner | 2 | 0.16% | 1 | 4.55% |
JiSheng Zhang | 1 | 0.08% | 1 | 4.55% |
Emiliano Ingrassia | 1 | 0.08% | 1 | 4.55% |
Dejin Zheng | 1 | 0.08% | 1 | 4.55% |
Total | 1252 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* Copyright (C) 2007-2009 STMicroelectronics Ltd Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> *******************************************************************************/ #include <linux/io.h> #include <linux/iopoll.h> #include "common.h" #include "dwmac_dma.h" #define GMAC_HI_REG_AE 0x80000000 int dwmac_dma_reset(void __iomem *ioaddr) { u32 value = readl(ioaddr + DMA_BUS_MODE); /* DMA SW reset */ value |= DMA_BUS_MODE_SFT_RESET; writel(value, ioaddr + DMA_BUS_MODE); return readl_poll_timeout(ioaddr + DMA_BUS_MODE, value, !(value & DMA_BUS_MODE_SFT_RESET), 10000, 200000); } /* CSR1 enables the transmit DMA to check for new descriptor */ void dwmac_enable_dma_transmission(void __iomem *ioaddr) { writel(1, ioaddr + DMA_XMT_POLL_DEMAND); } void dwmac_enable_dma_irq(void __iomem *ioaddr, u32 chan, bool rx, bool tx) { u32 value = readl(ioaddr + DMA_INTR_ENA); if (rx) value |= DMA_INTR_DEFAULT_RX; if (tx) value |= DMA_INTR_DEFAULT_TX; writel(value, ioaddr + DMA_INTR_ENA); } void dwmac_disable_dma_irq(void __iomem *ioaddr, u32 chan, bool rx, bool tx) { u32 value = readl(ioaddr + DMA_INTR_ENA); if (rx) value &= ~DMA_INTR_DEFAULT_RX; if (tx) value &= ~DMA_INTR_DEFAULT_TX; writel(value, ioaddr + DMA_INTR_ENA); } void dwmac_dma_start_tx(void __iomem *ioaddr, u32 chan) { u32 value = readl(ioaddr + DMA_CONTROL); value |= DMA_CONTROL_ST; writel(value, ioaddr + DMA_CONTROL); } void dwmac_dma_stop_tx(void __iomem *ioaddr, u32 chan) { u32 value = readl(ioaddr + DMA_CONTROL); value &= ~DMA_CONTROL_ST; writel(value, ioaddr + DMA_CONTROL); } void dwmac_dma_start_rx(void __iomem *ioaddr, u32 chan) { u32 value = readl(ioaddr + DMA_CONTROL); value |= DMA_CONTROL_SR; writel(value, ioaddr + DMA_CONTROL); } void dwmac_dma_stop_rx(void __iomem *ioaddr, u32 chan) { u32 value = readl(ioaddr + DMA_CONTROL); value &= ~DMA_CONTROL_SR; writel(value, ioaddr + DMA_CONTROL); } #ifdef DWMAC_DMA_DEBUG static void show_tx_process_state(unsigned int status) { unsigned int state; state = (status & DMA_STATUS_TS_MASK) >> DMA_STATUS_TS_SHIFT; switch (state) { case 0: pr_debug("- TX (Stopped): Reset or Stop command\n"); break; case 1: pr_debug("- TX (Running): Fetching the Tx desc\n"); break; case 2: pr_debug("- TX (Running): Waiting for end of tx\n"); break; case 3: pr_debug("- TX (Running): Reading the data " "and queuing the data into the Tx buf\n"); break; case 6: pr_debug("- TX (Suspended): Tx Buff Underflow " "or an unavailable Transmit descriptor\n"); break; case 7: pr_debug("- TX (Running): Closing Tx descriptor\n"); break; default: break; } } static void show_rx_process_state(unsigned int status) { unsigned int state; state = (status & DMA_STATUS_RS_MASK) >> DMA_STATUS_RS_SHIFT; switch (state) { case 0: pr_debug("- RX (Stopped): Reset or Stop command\n"); break; case 1: pr_debug("- RX (Running): Fetching the Rx desc\n"); break; case 2: pr_debug("- RX (Running): Checking for end of pkt\n"); break; case 3: pr_debug("- RX (Running): Waiting for Rx pkt\n"); break; case 4: pr_debug("- RX (Suspended): Unavailable Rx buf\n"); break; case 5: pr_debug("- RX (Running): Closing Rx descriptor\n"); break; case 6: pr_debug("- RX(Running): Flushing the current frame" " from the Rx buf\n"); break; case 7: pr_debug("- RX (Running): Queuing the Rx frame" " from the Rx buf into memory\n"); break; default: break; } } #endif int dwmac_dma_interrupt(void __iomem *ioaddr, struct stmmac_extra_stats *x, u32 chan, u32 dir) { int ret = 0; /* read the status register (CSR5) */ u32 intr_status = readl(ioaddr + DMA_STATUS); #ifdef DWMAC_DMA_DEBUG /* Enable it to monitor DMA rx/tx status in case of critical problems */ pr_debug("%s: [CSR5: 0x%08x]\n", __func__, intr_status); show_tx_process_state(intr_status); show_rx_process_state(intr_status); #endif if (dir == DMA_DIR_RX) intr_status &= DMA_STATUS_MSK_RX; else if (dir == DMA_DIR_TX) intr_status &= DMA_STATUS_MSK_TX; /* ABNORMAL interrupts */ if (unlikely(intr_status & DMA_STATUS_AIS)) { if (unlikely(intr_status & DMA_STATUS_UNF)) { ret = tx_hard_error_bump_tc; x->tx_undeflow_irq++; } if (unlikely(intr_status & DMA_STATUS_TJT)) x->tx_jabber_irq++; if (unlikely(intr_status & DMA_STATUS_OVF)) x->rx_overflow_irq++; if (unlikely(intr_status & DMA_STATUS_RU)) x->rx_buf_unav_irq++; if (unlikely(intr_status & DMA_STATUS_RPS)) x->rx_process_stopped_irq++; if (unlikely(intr_status & DMA_STATUS_RWT)) x->rx_watchdog_irq++; if (unlikely(intr_status & DMA_STATUS_ETI)) x->tx_early_irq++; if (unlikely(intr_status & DMA_STATUS_TPS)) { x->tx_process_stopped_irq++; ret = tx_hard_error; } if (unlikely(intr_status & DMA_STATUS_FBI)) { x->fatal_bus_error_irq++; ret = tx_hard_error; } } /* TX/RX NORMAL interrupts */ if (likely(intr_status & DMA_STATUS_NIS)) { x->normal_irq_n++; if (likely(intr_status & DMA_STATUS_RI)) { u32 value = readl(ioaddr + DMA_INTR_ENA); /* to schedule NAPI on real RIE event. */ if (likely(value & DMA_INTR_ENA_RIE)) { x->rx_normal_irq_n++; ret |= handle_rx; } } if (likely(intr_status & DMA_STATUS_TI)) { x->tx_normal_irq_n++; ret |= handle_tx; } if (unlikely(intr_status & DMA_STATUS_ERI)) x->rx_early_irq++; } /* Optional hardware blocks, interrupts should be disabled */ if (unlikely(intr_status & (DMA_STATUS_GPI | DMA_STATUS_GMI | DMA_STATUS_GLI))) pr_warn("%s: unexpected status %08x\n", __func__, intr_status); /* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */ writel((intr_status & 0x1ffff), ioaddr + DMA_STATUS); return ret; } void dwmac_dma_flush_tx_fifo(void __iomem *ioaddr) { u32 csr6 = readl(ioaddr + DMA_CONTROL); writel((csr6 | DMA_CONTROL_FTF), ioaddr + DMA_CONTROL); do {} while ((readl(ioaddr + DMA_CONTROL) & DMA_CONTROL_FTF)); } void stmmac_set_mac_addr(void __iomem *ioaddr, u8 addr[6], unsigned int high, unsigned int low) { unsigned long data; data = (addr[5] << 8) | addr[4]; /* For MAC Addr registers we have to set the Address Enable (AE) * bit that has no effect on the High Reg 0 where the bit 31 (MO) * is RO. */ writel(data | GMAC_HI_REG_AE, ioaddr + high); data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; writel(data, ioaddr + low); } EXPORT_SYMBOL_GPL(stmmac_set_mac_addr); /* Enable disable MAC RX/TX */ void stmmac_set_mac(void __iomem *ioaddr, bool enable) { u32 value = readl(ioaddr + MAC_CTRL_REG); if (enable) value |= MAC_ENABLE_RX | MAC_ENABLE_TX; else value &= ~(MAC_ENABLE_TX | MAC_ENABLE_RX); writel(value, ioaddr + MAC_CTRL_REG); } void stmmac_get_mac_addr(void __iomem *ioaddr, unsigned char *addr, unsigned int high, unsigned int low) { unsigned int hi_addr, lo_addr; /* Read the MAC address from the hardware */ hi_addr = readl(ioaddr + high); lo_addr = readl(ioaddr + low); /* Extract the MAC address from the high and low words */ addr[0] = lo_addr & 0xff; addr[1] = (lo_addr >> 8) & 0xff; addr[2] = (lo_addr >> 16) & 0xff; addr[3] = (lo_addr >> 24) & 0xff; addr[4] = hi_addr & 0xff; addr[5] = (hi_addr >> 8) & 0xff; } EXPORT_SYMBOL_GPL(stmmac_get_mac_addr);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1