Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stanislaw Gruszka | 15585 | 66.57% | 70 | 62.50% |
Wey-Yi Guy | 7487 | 31.98% | 1 | 0.89% |
Johannes Berg | 93 | 0.40% | 7 | 6.25% |
Kees Cook | 35 | 0.15% | 2 | 1.79% |
Lee Jones | 33 | 0.14% | 1 | 0.89% |
Jia-Ju Bai | 28 | 0.12% | 1 | 0.89% |
Christophe Jaillet | 24 | 0.10% | 1 | 0.89% |
Björn Helgaas | 20 | 0.09% | 2 | 1.79% |
Paul Bolle | 15 | 0.06% | 1 | 0.89% |
Avraham Stern | 13 | 0.06% | 1 | 0.89% |
David Spinadel | 12 | 0.05% | 1 | 0.89% |
Eliad Peller | 10 | 0.04% | 2 | 1.79% |
Joe Perches | 8 | 0.03% | 3 | 2.68% |
Bolarinwa Olayemi Saheed | 7 | 0.03% | 1 | 0.89% |
Dan Carpenter | 6 | 0.03% | 1 | 0.89% |
Emmanuel Grumbach | 5 | 0.02% | 1 | 0.89% |
Julia Lawall | 4 | 0.02% | 2 | 1.79% |
Gustavo A. R. Silva | 4 | 0.02% | 1 | 0.89% |
Karl Beldan | 3 | 0.01% | 1 | 0.89% |
Thomas Meyer | 3 | 0.01% | 1 | 0.89% |
SF Markus Elfring | 2 | 0.01% | 1 | 0.89% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.89% |
Jingoo Han | 2 | 0.01% | 1 | 0.89% |
Luis R. Rodriguez | 2 | 0.01% | 1 | 0.89% |
Chuhong Yuan | 2 | 0.01% | 1 | 0.89% |
Colin Ian King | 2 | 0.01% | 2 | 1.79% |
John W. Linville | 1 | 0.00% | 1 | 0.89% |
Stephen Hemminger | 1 | 0.00% | 1 | 0.89% |
Arnd Bergmann | 1 | 0.00% | 1 | 0.89% |
Lucas De Marchi | 1 | 0.00% | 1 | 0.89% |
Total | 23411 | 112 |
// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * Contact Information: * Intel Linux Wireless <ilw@linux.intel.com> * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *****************************************************************************/ #include <linux/kernel.h> #include <linux/module.h> #include <linux/etherdevice.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/lockdep.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/skbuff.h> #include <net/mac80211.h> #include "common.h" int _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout) { const int interval = 10; /* microseconds */ int t = 0; do { if ((_il_rd(il, addr) & mask) == (bits & mask)) return t; udelay(interval); t += interval; } while (t < timeout); return -ETIMEDOUT; } EXPORT_SYMBOL(_il_poll_bit); void il_set_bit(struct il_priv *p, u32 r, u32 m) { unsigned long reg_flags; spin_lock_irqsave(&p->reg_lock, reg_flags); _il_set_bit(p, r, m); spin_unlock_irqrestore(&p->reg_lock, reg_flags); } EXPORT_SYMBOL(il_set_bit); void il_clear_bit(struct il_priv *p, u32 r, u32 m) { unsigned long reg_flags; spin_lock_irqsave(&p->reg_lock, reg_flags); _il_clear_bit(p, r, m); spin_unlock_irqrestore(&p->reg_lock, reg_flags); } EXPORT_SYMBOL(il_clear_bit); bool _il_grab_nic_access(struct il_priv *il) { int ret; u32 val; /* this bit wakes up the NIC */ _il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* * These bits say the device is running, and should keep running for * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), * but they do not indicate that embedded SRAM is restored yet; * 3945 and 4965 have volatile SRAM, and must save/restore contents * to/from host DRAM when sleeping/waking for power-saving. * Each direction takes approximately 1/4 millisecond; with this * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a * series of register accesses are expected (e.g. reading Event Log), * to keep device from sleeping. * * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that * SRAM is okay/restored. We don't check that here because this call * is just for hardware register access; but GP1 MAC_SLEEP check is a * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log). * */ ret = _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); if (unlikely(ret < 0)) { val = _il_rd(il, CSR_GP_CNTRL); WARN_ONCE(1, "Timeout waiting for ucode processor access " "(CSR_GP_CNTRL 0x%08x)\n", val); _il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); return false; } return true; } EXPORT_SYMBOL_GPL(_il_grab_nic_access); int il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout) { const int interval = 10; /* microseconds */ int t = 0; do { if ((il_rd(il, addr) & mask) == mask) return t; udelay(interval); t += interval; } while (t < timeout); return -ETIMEDOUT; } EXPORT_SYMBOL(il_poll_bit); u32 il_rd_prph(struct il_priv *il, u32 reg) { unsigned long reg_flags; u32 val; spin_lock_irqsave(&il->reg_lock, reg_flags); _il_grab_nic_access(il); val = _il_rd_prph(il, reg); _il_release_nic_access(il); spin_unlock_irqrestore(&il->reg_lock, reg_flags); return val; } EXPORT_SYMBOL(il_rd_prph); void il_wr_prph(struct il_priv *il, u32 addr, u32 val) { unsigned long reg_flags; spin_lock_irqsave(&il->reg_lock, reg_flags); if (likely(_il_grab_nic_access(il))) { _il_wr_prph(il, addr, val); _il_release_nic_access(il); } spin_unlock_irqrestore(&il->reg_lock, reg_flags); } EXPORT_SYMBOL(il_wr_prph); u32 il_read_targ_mem(struct il_priv *il, u32 addr) { unsigned long reg_flags; u32 value; spin_lock_irqsave(&il->reg_lock, reg_flags); _il_grab_nic_access(il); _il_wr(il, HBUS_TARG_MEM_RADDR, addr); value = _il_rd(il, HBUS_TARG_MEM_RDAT); _il_release_nic_access(il); spin_unlock_irqrestore(&il->reg_lock, reg_flags); return value; } EXPORT_SYMBOL(il_read_targ_mem); void il_write_targ_mem(struct il_priv *il, u32 addr, u32 val) { unsigned long reg_flags; spin_lock_irqsave(&il->reg_lock, reg_flags); if (likely(_il_grab_nic_access(il))) { _il_wr(il, HBUS_TARG_MEM_WADDR, addr); _il_wr(il, HBUS_TARG_MEM_WDAT, val); _il_release_nic_access(il); } spin_unlock_irqrestore(&il->reg_lock, reg_flags); } EXPORT_SYMBOL(il_write_targ_mem); const char * il_get_cmd_string(u8 cmd) { switch (cmd) { IL_CMD(N_ALIVE); IL_CMD(N_ERROR); IL_CMD(C_RXON); IL_CMD(C_RXON_ASSOC); IL_CMD(C_QOS_PARAM); IL_CMD(C_RXON_TIMING); IL_CMD(C_ADD_STA); IL_CMD(C_REM_STA); IL_CMD(C_WEPKEY); IL_CMD(N_3945_RX); IL_CMD(C_TX); IL_CMD(C_RATE_SCALE); IL_CMD(C_LEDS); IL_CMD(C_TX_LINK_QUALITY_CMD); IL_CMD(C_CHANNEL_SWITCH); IL_CMD(N_CHANNEL_SWITCH); IL_CMD(C_SPECTRUM_MEASUREMENT); IL_CMD(N_SPECTRUM_MEASUREMENT); IL_CMD(C_POWER_TBL); IL_CMD(N_PM_SLEEP); IL_CMD(N_PM_DEBUG_STATS); IL_CMD(C_SCAN); IL_CMD(C_SCAN_ABORT); IL_CMD(N_SCAN_START); IL_CMD(N_SCAN_RESULTS); IL_CMD(N_SCAN_COMPLETE); IL_CMD(N_BEACON); IL_CMD(C_TX_BEACON); IL_CMD(C_TX_PWR_TBL); IL_CMD(C_BT_CONFIG); IL_CMD(C_STATS); IL_CMD(N_STATS); IL_CMD(N_CARD_STATE); IL_CMD(N_MISSED_BEACONS); IL_CMD(C_CT_KILL_CONFIG); IL_CMD(C_SENSITIVITY); IL_CMD(C_PHY_CALIBRATION); IL_CMD(N_RX_PHY); IL_CMD(N_RX_MPDU); IL_CMD(N_RX); IL_CMD(N_COMPRESSED_BA); default: return "UNKNOWN"; } } EXPORT_SYMBOL(il_get_cmd_string); #define HOST_COMPLETE_TIMEOUT (HZ / 2) static void il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd, struct il_rx_pkt *pkt) { if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { IL_ERR("Bad return from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags); return; } #ifdef CONFIG_IWLEGACY_DEBUG switch (cmd->hdr.cmd) { case C_TX_LINK_QUALITY_CMD: case C_SENSITIVITY: D_HC_DUMP("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags); break; default: D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags); } #endif } static int il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd) { int ret; BUG_ON(!(cmd->flags & CMD_ASYNC)); /* An asynchronous command can not expect an SKB to be set. */ BUG_ON(cmd->flags & CMD_WANT_SKB); /* Assign a generic callback if one is not provided */ if (!cmd->callback) cmd->callback = il_generic_cmd_callback; if (test_bit(S_EXIT_PENDING, &il->status)) return -EBUSY; ret = il_enqueue_hcmd(il, cmd); if (ret < 0) { IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n", il_get_cmd_string(cmd->id), ret); return ret; } return 0; } int il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd) { int cmd_idx; int ret; lockdep_assert_held(&il->mutex); BUG_ON(cmd->flags & CMD_ASYNC); /* A synchronous command can not have a callback set. */ BUG_ON(cmd->callback); D_INFO("Attempting to send sync command %s\n", il_get_cmd_string(cmd->id)); set_bit(S_HCMD_ACTIVE, &il->status); D_INFO("Setting HCMD_ACTIVE for command %s\n", il_get_cmd_string(cmd->id)); cmd_idx = il_enqueue_hcmd(il, cmd); if (cmd_idx < 0) { ret = cmd_idx; IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n", il_get_cmd_string(cmd->id), ret); goto out; } ret = wait_event_timeout(il->wait_command_queue, !test_bit(S_HCMD_ACTIVE, &il->status), HOST_COMPLETE_TIMEOUT); if (!ret) { if (test_bit(S_HCMD_ACTIVE, &il->status)) { IL_ERR("Error sending %s: time out after %dms.\n", il_get_cmd_string(cmd->id), jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); clear_bit(S_HCMD_ACTIVE, &il->status); D_INFO("Clearing HCMD_ACTIVE for command %s\n", il_get_cmd_string(cmd->id)); ret = -ETIMEDOUT; goto cancel; } } if (test_bit(S_RFKILL, &il->status)) { IL_ERR("Command %s aborted: RF KILL Switch\n", il_get_cmd_string(cmd->id)); ret = -ECANCELED; goto fail; } if (test_bit(S_FW_ERROR, &il->status)) { IL_ERR("Command %s failed: FW Error\n", il_get_cmd_string(cmd->id)); ret = -EIO; goto fail; } if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) { IL_ERR("Error: Response NULL in '%s'\n", il_get_cmd_string(cmd->id)); ret = -EIO; goto cancel; } ret = 0; goto out; cancel: if (cmd->flags & CMD_WANT_SKB) { /* * Cancel the CMD_WANT_SKB flag for the cmd in the * TX cmd queue. Otherwise in case the cmd comes * in later, it will possibly set an invalid * address (cmd->meta.source). */ il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB; } fail: if (cmd->reply_page) { il_free_pages(il, cmd->reply_page); cmd->reply_page = 0; } out: return ret; } EXPORT_SYMBOL(il_send_cmd_sync); int il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd) { if (cmd->flags & CMD_ASYNC) return il_send_cmd_async(il, cmd); return il_send_cmd_sync(il, cmd); } EXPORT_SYMBOL(il_send_cmd); int il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data) { struct il_host_cmd cmd = { .id = id, .len = len, .data = data, }; return il_send_cmd_sync(il, &cmd); } EXPORT_SYMBOL(il_send_cmd_pdu); int il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data, void (*callback) (struct il_priv *il, struct il_device_cmd *cmd, struct il_rx_pkt *pkt)) { struct il_host_cmd cmd = { .id = id, .len = len, .data = data, }; cmd.flags |= CMD_ASYNC; cmd.callback = callback; return il_send_cmd_async(il, &cmd); } EXPORT_SYMBOL(il_send_cmd_pdu_async); /* default: IL_LED_BLINK(0) using blinking idx table */ static int led_mode; module_param(led_mode, int, 0444); MODULE_PARM_DESC(led_mode, "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking"); /* Throughput OFF time(ms) ON time (ms) * >300 25 25 * >200 to 300 40 40 * >100 to 200 55 55 * >70 to 100 65 65 * >50 to 70 75 75 * >20 to 50 85 85 * >10 to 20 95 95 * >5 to 10 110 110 * >1 to 5 130 130 * >0 to 1 167 167 * <=0 SOLID ON */ static const struct ieee80211_tpt_blink il_blink[] = { {.throughput = 0, .blink_time = 334}, {.throughput = 1 * 1024 - 1, .blink_time = 260}, {.throughput = 5 * 1024 - 1, .blink_time = 220}, {.throughput = 10 * 1024 - 1, .blink_time = 190}, {.throughput = 20 * 1024 - 1, .blink_time = 170}, {.throughput = 50 * 1024 - 1, .blink_time = 150}, {.throughput = 70 * 1024 - 1, .blink_time = 130}, {.throughput = 100 * 1024 - 1, .blink_time = 110}, {.throughput = 200 * 1024 - 1, .blink_time = 80}, {.throughput = 300 * 1024 - 1, .blink_time = 50}, }; /* * Adjust led blink rate to compensate on a MAC Clock difference on every HW * Led blink rate analysis showed an average deviation of 0% on 3945, * 5% on 4965 HW. * Need to compensate on the led on/off time per HW according to the deviation * to achieve the desired led frequency * The calculation is: (100-averageDeviation)/100 * blinkTime * For code efficiency the calculation will be: * compensation = (100 - averageDeviation) * 64 / 100 * NewBlinkTime = (compensation * BlinkTime) / 64 */ static inline u8 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation) { if (!compensation) { IL_ERR("undefined blink compensation: " "use pre-defined blinking time\n"); return time; } return (u8) ((time * compensation) >> 6); } /* Set led pattern command */ static int il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off) { struct il_led_cmd led_cmd = { .id = IL_LED_LINK, .interval = IL_DEF_LED_INTRVL }; int ret; if (!test_bit(S_READY, &il->status)) return -EBUSY; if (il->blink_on == on && il->blink_off == off) return 0; if (off == 0) { /* led is SOLID_ON */ on = IL_LED_SOLID; } D_LED("Led blink time compensation=%u\n", il->cfg->led_compensation); led_cmd.on = il_blink_compensation(il, on, il->cfg->led_compensation); led_cmd.off = il_blink_compensation(il, off, il->cfg->led_compensation); ret = il->ops->send_led_cmd(il, &led_cmd); if (!ret) { il->blink_on = on; il->blink_off = off; } return ret; } static void il_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct il_priv *il = container_of(led_cdev, struct il_priv, led); unsigned long on = 0; if (brightness > 0) on = IL_LED_SOLID; il_led_cmd(il, on, 0); } static int il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct il_priv *il = container_of(led_cdev, struct il_priv, led); return il_led_cmd(il, *delay_on, *delay_off); } void il_leds_init(struct il_priv *il) { int mode = led_mode; int ret; if (mode == IL_LED_DEFAULT) mode = il->cfg->led_mode; il->led.name = kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy)); il->led.brightness_set = il_led_brightness_set; il->led.blink_set = il_led_blink_set; il->led.max_brightness = 1; switch (mode) { case IL_LED_DEFAULT: WARN_ON(1); break; case IL_LED_BLINK: il->led.default_trigger = ieee80211_create_tpt_led_trigger(il->hw, IEEE80211_TPT_LEDTRIG_FL_CONNECTED, il_blink, ARRAY_SIZE(il_blink)); break; case IL_LED_RF_STATE: il->led.default_trigger = ieee80211_get_radio_led_name(il->hw); break; } ret = led_classdev_register(&il->pci_dev->dev, &il->led); if (ret) { kfree(il->led.name); return; } il->led_registered = true; } EXPORT_SYMBOL(il_leds_init); void il_leds_exit(struct il_priv *il) { if (!il->led_registered) return; led_classdev_unregister(&il->led); kfree(il->led.name); } EXPORT_SYMBOL(il_leds_exit); /************************** EEPROM BANDS **************************** * * The il_eeprom_band definitions below provide the mapping from the * EEPROM contents to the specific channel number supported for each * band. * * For example, il_priv->eeprom.band_3_channels[4] from the band_3 * definition below maps to physical channel 42 in the 5.2GHz spectrum. * The specific geography and calibration information for that channel * is contained in the eeprom map itself. * * During init, we copy the eeprom information and channel map * information into il->channel_info_24/52 and il->channel_map_24/52 * * channel_map_24/52 provides the idx in the channel_info array for a * given channel. We have to have two separate maps as there is channel * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and * band_2 * * A value of 0xff stored in the channel_map indicates that the channel * is not supported by the hardware at all. * * A value of 0xfe in the channel_map indicates that the channel is not * valid for Tx with the current hardware. This means that * while the system can tune and receive on a given channel, it may not * be able to associate or transmit any frames on that * channel. There is no corresponding channel information for that * entry. * *********************************************************************/ /* 2.4 GHz */ const u8 il_eeprom_band_1[14] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; /* 5.2 GHz bands */ static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 }; static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 }; static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */ 145, 149, 153, 157, 161, 165 }; static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */ 1, 2, 3, 4, 5, 6, 7 }; static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 }; /****************************************************************************** * * EEPROM related functions * ******************************************************************************/ static int il_eeprom_verify_signature(struct il_priv *il) { u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; int ret = 0; D_EEPROM("EEPROM signature=0x%08x\n", gp); switch (gp) { case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: break; default: IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp); ret = -ENOENT; break; } return ret; } const u8 * il_eeprom_query_addr(const struct il_priv *il, size_t offset) { BUG_ON(offset >= il->cfg->eeprom_size); return &il->eeprom[offset]; } EXPORT_SYMBOL(il_eeprom_query_addr); u16 il_eeprom_query16(const struct il_priv *il, size_t offset) { if (!il->eeprom) return 0; return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8); } EXPORT_SYMBOL(il_eeprom_query16); /* * il_eeprom_init - read EEPROM contents * * Load the EEPROM contents from adapter into il->eeprom * * NOTE: This routine uses the non-debug IO access functions. */ int il_eeprom_init(struct il_priv *il) { __le16 *e; u32 gp = _il_rd(il, CSR_EEPROM_GP); int sz; int ret; int addr; /* allocate eeprom */ sz = il->cfg->eeprom_size; D_EEPROM("NVM size = %d\n", sz); il->eeprom = kzalloc(sz, GFP_KERNEL); if (!il->eeprom) return -ENOMEM; e = (__le16 *) il->eeprom; il->ops->apm_init(il); ret = il_eeprom_verify_signature(il); if (ret < 0) { IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp); ret = -ENOENT; goto err; } /* Make sure driver (instead of uCode) is allowed to read EEPROM */ ret = il->ops->eeprom_acquire_semaphore(il); if (ret < 0) { IL_ERR("Failed to acquire EEPROM semaphore.\n"); ret = -ENOENT; goto err; } /* eeprom is an array of 16bit values */ for (addr = 0; addr < sz; addr += sizeof(u16)) { u32 r; _il_wr(il, CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = _il_poll_bit(il, CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IL_ERR("Time out reading EEPROM[%d]\n", addr); goto done; } r = _il_rd(il, CSR_EEPROM_REG); e[addr / 2] = cpu_to_le16(r >> 16); } D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM", il_eeprom_query16(il, EEPROM_VERSION)); ret = 0; done: il->ops->eeprom_release_semaphore(il); err: if (ret) il_eeprom_free(il); /* Reset chip to save power until we load uCode during "up". */ il_apm_stop(il); return ret; } EXPORT_SYMBOL(il_eeprom_init); void il_eeprom_free(struct il_priv *il) { kfree(il->eeprom); il->eeprom = NULL; } EXPORT_SYMBOL(il_eeprom_free); static void il_init_band_reference(const struct il_priv *il, int eep_band, int *eeprom_ch_count, const struct il_eeprom_channel **eeprom_ch_info, const u8 **eeprom_ch_idx) { u32 offset = il->cfg->regulatory_bands[eep_band - 1]; switch (eep_band) { case 1: /* 2.4GHz band */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_1; break; case 2: /* 4.9GHz band */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_2; break; case 3: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_3; break; case 4: /* 5.5GHz band */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_4; break; case 5: /* 5.7GHz band */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_5; break; case 6: /* 2.4GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_6; break; case 7: /* 5 GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7); *eeprom_ch_info = (struct il_eeprom_channel *)il_eeprom_query_addr(il, offset); *eeprom_ch_idx = il_eeprom_band_7; break; default: BUG(); } } #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") /* * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il. * * Does not set up a command, or touch hardware. */ static int il_mod_ht40_chan_info(struct il_priv *il, enum nl80211_band band, u16 channel, const struct il_eeprom_channel *eeprom_ch, u8 clear_ht40_extension_channel) { struct il_channel_info *ch_info; ch_info = (struct il_channel_info *)il_get_channel_info(il, band, channel); if (!il_is_channel_valid(ch_info)) return -1; D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):" " Ad-Hoc %ssupported\n", ch_info->channel, il_is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE), CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), CHECK_AND_PRINT(DFS), eeprom_ch->flags, eeprom_ch->max_power_avg, ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); ch_info->ht40_eeprom = *eeprom_ch; ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg; ch_info->ht40_flags = eeprom_ch->flags; if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel; return 0; } #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") /* * il_init_channel_map - Set up driver's info for all possible channels */ int il_init_channel_map(struct il_priv *il) { int eeprom_ch_count = 0; const u8 *eeprom_ch_idx = NULL; const struct il_eeprom_channel *eeprom_ch_info = NULL; int band, ch; struct il_channel_info *ch_info; if (il->channel_count) { D_EEPROM("Channel map already initialized.\n"); return 0; } D_EEPROM("Initializing regulatory info from EEPROM\n"); il->channel_count = ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) + ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) + ARRAY_SIZE(il_eeprom_band_5); D_EEPROM("Parsing data for %d channels.\n", il->channel_count); il->channel_info = kcalloc(il->channel_count, sizeof(struct il_channel_info), GFP_KERNEL); if (!il->channel_info) { IL_ERR("Could not allocate channel_info\n"); il->channel_count = 0; return -ENOMEM; } ch_info = il->channel_info; /* Loop through the 5 EEPROM bands adding them in order to the * channel map we maintain (that contains additional information than * what just in the EEPROM) */ for (band = 1; band <= 5; band++) { il_init_band_reference(il, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_idx); /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { ch_info->channel = eeprom_ch_idx[ch]; ch_info->band = (band == 1) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; /* permanently store EEPROM's channel regulatory flags * and max power in channel info database. */ ch_info->eeprom = eeprom_ch_info[ch]; /* Copy the run-time flags so they are there even on * invalid channels */ ch_info->flags = eeprom_ch_info[ch].flags; /* First write that ht40 is not enabled, and then enable * one by one */ ch_info->ht40_extension_channel = IEEE80211_CHAN_NO_HT40; if (!(il_is_channel_valid(ch_info))) { D_EEPROM("Ch. %d Flags %x [%sGHz] - " "No traffic\n", ch_info->channel, ch_info->flags, il_is_channel_a_band(ch_info) ? "5.2" : "2.4"); ch_info++; continue; } /* Initialize regulatory-based run-time data */ ch_info->max_power_avg = ch_info->curr_txpow = eeprom_ch_info[ch].max_power_avg; ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; ch_info->min_power = 0; D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):" " Ad-Hoc %ssupported\n", ch_info->channel, il_is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(DFS), eeprom_ch_info[ch].flags, eeprom_ch_info[ch].max_power_avg, ((eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); ch_info++; } } /* Check if we do have HT40 channels */ if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 && il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40) return 0; /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ for (band = 6; band <= 7; band++) { enum nl80211_band ieeeband; il_init_band_reference(il, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_idx); /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ ieeeband = (band == 6) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { /* Set up driver's info for lower half */ il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch], &eeprom_ch_info[ch], IEEE80211_CHAN_NO_HT40PLUS); /* Set up driver's info for upper half */ il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch] + 4, &eeprom_ch_info[ch], IEEE80211_CHAN_NO_HT40MINUS); } } return 0; } EXPORT_SYMBOL(il_init_channel_map); /* * il_free_channel_map - undo allocations in il_init_channel_map */ void il_free_channel_map(struct il_priv *il) { kfree(il->channel_info); il->channel_count = 0; } EXPORT_SYMBOL(il_free_channel_map); /* * il_get_channel_info - Find driver's ilate channel info * * Based on band and channel number. */ const struct il_channel_info * il_get_channel_info(const struct il_priv *il, enum nl80211_band band, u16 channel) { int i; switch (band) { case NL80211_BAND_5GHZ: for (i = 14; i < il->channel_count; i++) { if (il->channel_info[i].channel == channel) return &il->channel_info[i]; } break; case NL80211_BAND_2GHZ: if (channel >= 1 && channel <= 14) return &il->channel_info[channel - 1]; break; default: BUG(); } return NULL; } EXPORT_SYMBOL(il_get_channel_info); /* * Setting power level allows the card to go to sleep when not busy. * * We calculate a sleep command based on the required latency, which * we get from mac80211. */ #define SLP_VEC(X0, X1, X2, X3, X4) { \ cpu_to_le32(X0), \ cpu_to_le32(X1), \ cpu_to_le32(X2), \ cpu_to_le32(X3), \ cpu_to_le32(X4) \ } static void il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd) { static const __le32 interval[3][IL_POWER_VEC_SIZE] = { SLP_VEC(2, 2, 4, 6, 0xFF), SLP_VEC(2, 4, 7, 10, 10), SLP_VEC(4, 7, 10, 10, 0xFF) }; int i, dtim_period, no_dtim; u32 max_sleep; bool skip; memset(cmd, 0, sizeof(*cmd)); if (il->power_data.pci_pm) cmd->flags |= IL_POWER_PCI_PM_MSK; /* if no Power Save, we are done */ if (il->power_data.ps_disabled) return; cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK; cmd->keep_alive_seconds = 0; cmd->debug_flags = 0; cmd->rx_data_timeout = cpu_to_le32(25 * 1024); cmd->tx_data_timeout = cpu_to_le32(25 * 1024); cmd->keep_alive_beacons = 0; dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0; if (dtim_period <= 2) { memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0])); no_dtim = 2; } else if (dtim_period <= 10) { memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1])); no_dtim = 2; } else { memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2])); no_dtim = 0; } if (dtim_period == 0) { dtim_period = 1; skip = false; } else { skip = !!no_dtim; } if (skip) { __le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1]; max_sleep = le32_to_cpu(tmp); if (max_sleep == 0xFF) max_sleep = dtim_period * (skip + 1); else if (max_sleep > dtim_period) max_sleep = (max_sleep / dtim_period) * dtim_period; cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK; } else { max_sleep = dtim_period; cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK; } for (i = 0; i < IL_POWER_VEC_SIZE; i++) if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep) cmd->sleep_interval[i] = cpu_to_le32(max_sleep); } static int il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd) { D_POWER("Sending power/sleep command\n"); D_POWER("Flags value = 0x%08X\n", cmd->flags); D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout)); D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout)); D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n", le32_to_cpu(cmd->sleep_interval[0]), le32_to_cpu(cmd->sleep_interval[1]), le32_to_cpu(cmd->sleep_interval[2]), le32_to_cpu(cmd->sleep_interval[3]), le32_to_cpu(cmd->sleep_interval[4])); return il_send_cmd_pdu(il, C_POWER_TBL, sizeof(struct il_powertable_cmd), cmd); } static int il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force) { int ret; bool update_chains; lockdep_assert_held(&il->mutex); /* Don't update the RX chain when chain noise calibration is running */ update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE || il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE; if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force) return 0; if (!il_is_ready_rf(il)) return -EIO; /* scan complete use sleep_power_next, need to be updated */ memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd)); if (test_bit(S_SCANNING, &il->status) && !force) { D_INFO("Defer power set mode while scanning\n"); return 0; } if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK) set_bit(S_POWER_PMI, &il->status); ret = il_set_power(il, cmd); if (!ret) { if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)) clear_bit(S_POWER_PMI, &il->status); if (il->ops->update_chain_flags && update_chains) il->ops->update_chain_flags(il); else if (il->ops->update_chain_flags) D_POWER("Cannot update the power, chain noise " "calibration running: %d\n", il->chain_noise_data.state); memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)); } else IL_ERR("set power fail, ret = %d", ret); return ret; } int il_power_update_mode(struct il_priv *il, bool force) { struct il_powertable_cmd cmd; il_build_powertable_cmd(il, &cmd); return il_power_set_mode(il, &cmd, force); } EXPORT_SYMBOL(il_power_update_mode); /* initialize to default */ void il_power_initialize(struct il_priv *il) { u16 lctl; pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl); il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); il->power_data.debug_sleep_level_override = -1; memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd)); } EXPORT_SYMBOL(il_power_initialize); /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after * sending probe req. This should be set long enough to hear probe responses * from more than one AP. */ #define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */ #define IL_ACTIVE_DWELL_TIME_52 (20) #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3) #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2) /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel. * Must be set longer than active dwell time. * For the most reliable scan, set > AP beacon interval (typically 100msec). */ #define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */ #define IL_PASSIVE_DWELL_TIME_52 (10) #define IL_PASSIVE_DWELL_BASE (100) #define IL_CHANNEL_TUNE_TIME 5 static int il_send_scan_abort(struct il_priv *il) { int ret; struct il_rx_pkt *pkt; struct il_host_cmd cmd = { .id = C_SCAN_ABORT, .flags = CMD_WANT_SKB, }; /* Exit instantly with error when device is not ready * to receive scan abort command or it does not perform * hardware scan currently */ if (!test_bit(S_READY, &il->status) || !test_bit(S_GEO_CONFIGURED, &il->status) || !test_bit(S_SCAN_HW, &il->status) || test_bit(S_FW_ERROR, &il->status) || test_bit(S_EXIT_PENDING, &il->status)) return -EIO; ret = il_send_cmd_sync(il, &cmd); if (ret) return ret; pkt = (struct il_rx_pkt *)cmd.reply_page; if (pkt->u.status != CAN_ABORT_STATUS) { /* The scan abort will return 1 for success or * 2 for "failure". A failure condition can be * due to simply not being in an active scan which * can occur if we send the scan abort before we * the microcode has notified us that a scan is * completed. */ D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status); ret = -EIO; } il_free_pages(il, cmd.reply_page); return ret; } static void il_complete_scan(struct il_priv *il, bool aborted) { struct cfg80211_scan_info info = { .aborted = aborted, }; /* check if scan was requested from mac80211 */ if (il->scan_request) { D_SCAN("Complete scan in mac80211\n"); ieee80211_scan_completed(il->hw, &info); } il->scan_vif = NULL; il->scan_request = NULL; } void il_force_scan_end(struct il_priv *il) { lockdep_assert_held(&il->mutex); if (!test_bit(S_SCANNING, &il->status)) { D_SCAN("Forcing scan end while not scanning\n"); return; } D_SCAN("Forcing scan end\n"); clear_bit(S_SCANNING, &il->status); clear_bit(S_SCAN_HW, &il->status); clear_bit(S_SCAN_ABORTING, &il->status); il_complete_scan(il, true); } static void il_do_scan_abort(struct il_priv *il) { int ret; lockdep_assert_held(&il->mutex); if (!test_bit(S_SCANNING, &il->status)) { D_SCAN("Not performing scan to abort\n"); return; } if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) { D_SCAN("Scan abort in progress\n"); return; } ret = il_send_scan_abort(il); if (ret) { D_SCAN("Send scan abort failed %d\n", ret); il_force_scan_end(il); } else D_SCAN("Successfully send scan abort\n"); } /* * il_scan_cancel - Cancel any currently executing HW scan */ int il_scan_cancel(struct il_priv *il) { D_SCAN("Queuing abort scan\n"); queue_work(il->workqueue, &il->abort_scan); return 0; } EXPORT_SYMBOL(il_scan_cancel); /* * il_scan_cancel_timeout - Cancel any currently executing HW scan * @ms: amount of time to wait (in milliseconds) for scan to abort * */ int il_scan_cancel_timeout(struct il_priv *il, unsigned long ms) { unsigned long timeout = jiffies + msecs_to_jiffies(ms); lockdep_assert_held(&il->mutex); D_SCAN("Scan cancel timeout\n"); il_do_scan_abort(il); while (time_before_eq(jiffies, timeout)) { if (!test_bit(S_SCAN_HW, &il->status)) break; msleep(20); } return test_bit(S_SCAN_HW, &il->status); } EXPORT_SYMBOL(il_scan_cancel_timeout); /* Service response to C_SCAN (0x80) */ static void il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb) { #ifdef CONFIG_IWLEGACY_DEBUG struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_scanreq_notification *notif = (struct il_scanreq_notification *)pkt->u.raw; D_SCAN("Scan request status = 0x%x\n", notif->status); #endif } /* Service N_SCAN_START (0x82) */ static void il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_scanstart_notification *notif = (struct il_scanstart_notification *)pkt->u.raw; il->scan_start_tsf = le32_to_cpu(notif->tsf_low); D_SCAN("Scan start: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel, notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer); } /* Service N_SCAN_RESULTS (0x83) */ static void il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb) { #ifdef CONFIG_IWLEGACY_DEBUG struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_scanresults_notification *notif = (struct il_scanresults_notification *)pkt->u.raw; D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d " "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low), le32_to_cpu(notif->stats[0]), le32_to_cpu(notif->tsf_low) - il->scan_start_tsf); #endif } /* Service N_SCAN_COMPLETE (0x84) */ static void il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw; D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n", scan_notif->scanned_channels, scan_notif->tsf_low, scan_notif->tsf_high, scan_notif->status); /* The HW is no longer scanning */ clear_bit(S_SCAN_HW, &il->status); D_SCAN("Scan on %sGHz took %dms\n", (il->scan_band == NL80211_BAND_2GHZ) ? "2.4" : "5.2", jiffies_to_msecs(jiffies - il->scan_start)); queue_work(il->workqueue, &il->scan_completed); } void il_setup_rx_scan_handlers(struct il_priv *il) { /* scan handlers */ il->handlers[C_SCAN] = il_hdl_scan; il->handlers[N_SCAN_START] = il_hdl_scan_start; il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results; il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete; } EXPORT_SYMBOL(il_setup_rx_scan_handlers); u16 il_get_active_dwell_time(struct il_priv *il, enum nl80211_band band, u8 n_probes) { if (band == NL80211_BAND_5GHZ) return IL_ACTIVE_DWELL_TIME_52 + IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1); else return IL_ACTIVE_DWELL_TIME_24 + IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1); } EXPORT_SYMBOL(il_get_active_dwell_time); u16 il_get_passive_dwell_time(struct il_priv *il, enum nl80211_band band, struct ieee80211_vif *vif) { u16 value; u16 passive = (band == NL80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE + IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE + IL_PASSIVE_DWELL_TIME_52; if (il_is_any_associated(il)) { /* * If we're associated, we clamp the maximum passive * dwell time to be 98% of the smallest beacon interval * (minus 2 * channel tune time) */ value = il->vif ? il->vif->bss_conf.beacon_int : 0; if (value > IL_PASSIVE_DWELL_BASE || !value) value = IL_PASSIVE_DWELL_BASE; value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2; passive = min(value, passive); } return passive; } EXPORT_SYMBOL(il_get_passive_dwell_time); void il_init_scan_params(struct il_priv *il) { u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1; if (!il->scan_tx_ant[NL80211_BAND_5GHZ]) il->scan_tx_ant[NL80211_BAND_5GHZ] = ant_idx; if (!il->scan_tx_ant[NL80211_BAND_2GHZ]) il->scan_tx_ant[NL80211_BAND_2GHZ] = ant_idx; } EXPORT_SYMBOL(il_init_scan_params); static int il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif) { int ret; lockdep_assert_held(&il->mutex); cancel_delayed_work(&il->scan_check); if (!il_is_ready_rf(il)) { IL_WARN("Request scan called when driver not ready.\n"); return -EIO; } if (test_bit(S_SCAN_HW, &il->status)) { D_SCAN("Multiple concurrent scan requests in parallel.\n"); return -EBUSY; } if (test_bit(S_SCAN_ABORTING, &il->status)) { D_SCAN("Scan request while abort pending.\n"); return -EBUSY; } D_SCAN("Starting scan...\n"); set_bit(S_SCANNING, &il->status); il->scan_start = jiffies; ret = il->ops->request_scan(il, vif); if (ret) { clear_bit(S_SCANNING, &il->status); return ret; } queue_delayed_work(il->workqueue, &il->scan_check, IL_SCAN_CHECK_WATCHDOG); return 0; } int il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *hw_req) { struct cfg80211_scan_request *req = &hw_req->req; struct il_priv *il = hw->priv; int ret; if (req->n_channels == 0) { IL_ERR("Can not scan on no channels.\n"); return -EINVAL; } mutex_lock(&il->mutex); D_MAC80211("enter\n"); if (test_bit(S_SCANNING, &il->status)) { D_SCAN("Scan already in progress.\n"); ret = -EAGAIN; goto out_unlock; } /* mac80211 will only ask for one band at a time */ il->scan_request = req; il->scan_vif = vif; il->scan_band = req->channels[0]->band; ret = il_scan_initiate(il, vif); out_unlock: D_MAC80211("leave ret %d\n", ret); mutex_unlock(&il->mutex); return ret; } EXPORT_SYMBOL(il_mac_hw_scan); static void il_bg_scan_check(struct work_struct *data) { struct il_priv *il = container_of(data, struct il_priv, scan_check.work); D_SCAN("Scan check work\n"); /* Since we are here firmware does not finish scan and * most likely is in bad shape, so we don't bother to * send abort command, just force scan complete to mac80211 */ mutex_lock(&il->mutex); il_force_scan_end(il); mutex_unlock(&il->mutex); } /* * il_fill_probe_req - fill in all required fields and IE for probe request */ u16 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame, const u8 *ta, const u8 *ies, int ie_len, int left) { int len = 0; u8 *pos = NULL; /* Make sure there is enough space for the probe request, * two mandatory IEs and the data */ left -= 24; if (left < 0) return 0; frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ); eth_broadcast_addr(frame->da); memcpy(frame->sa, ta, ETH_ALEN); eth_broadcast_addr(frame->bssid); frame->seq_ctrl = 0; len += 24; /* ...next IE... */ pos = &frame->u.probe_req.variable[0]; /* fill in our indirect SSID IE */ left -= 2; if (left < 0) return 0; *pos++ = WLAN_EID_SSID; *pos++ = 0; len += 2; if (WARN_ON(left < ie_len)) return len; if (ies && ie_len) { memcpy(pos, ies, ie_len); len += ie_len; } return (u16) len; } EXPORT_SYMBOL(il_fill_probe_req); static void il_bg_abort_scan(struct work_struct *work) { struct il_priv *il = container_of(work, struct il_priv, abort_scan); D_SCAN("Abort scan work\n"); /* We keep scan_check work queued in case when firmware will not * report back scan completed notification */ mutex_lock(&il->mutex); il_scan_cancel_timeout(il, 200); mutex_unlock(&il->mutex); } static void il_bg_scan_completed(struct work_struct *work) { struct il_priv *il = container_of(work, struct il_priv, scan_completed); bool aborted; D_SCAN("Completed scan.\n"); cancel_delayed_work(&il->scan_check); mutex_lock(&il->mutex); aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status); if (aborted) D_SCAN("Aborted scan completed.\n"); if (!test_and_clear_bit(S_SCANNING, &il->status)) { D_SCAN("Scan already completed.\n"); goto out_settings; } il_complete_scan(il, aborted); out_settings: /* Can we still talk to firmware ? */ if (!il_is_ready_rf(il)) goto out; /* * We do not commit power settings while scan is pending, * do it now if the settings changed. */ il_power_set_mode(il, &il->power_data.sleep_cmd_next, false); il_set_tx_power(il, il->tx_power_next, false); il->ops->post_scan(il); out: mutex_unlock(&il->mutex); } void il_setup_scan_deferred_work(struct il_priv *il) { INIT_WORK(&il->scan_completed, il_bg_scan_completed); INIT_WORK(&il->abort_scan, il_bg_abort_scan); INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check); } EXPORT_SYMBOL(il_setup_scan_deferred_work); void il_cancel_scan_deferred_work(struct il_priv *il) { cancel_work_sync(&il->abort_scan); cancel_work_sync(&il->scan_completed); if (cancel_delayed_work_sync(&il->scan_check)) { mutex_lock(&il->mutex); il_force_scan_end(il); mutex_unlock(&il->mutex); } } EXPORT_SYMBOL(il_cancel_scan_deferred_work); /* il->sta_lock must be held */ static void il_sta_ucode_activate(struct il_priv *il, u8 sta_id) { if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n", sta_id, il->stations[sta_id].sta.sta.addr); if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) { D_ASSOC("STA id %u addr %pM already present" " in uCode (according to driver)\n", sta_id, il->stations[sta_id].sta.sta.addr); } else { il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE; D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id, il->stations[sta_id].sta.sta.addr); } } static int il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta, struct il_rx_pkt *pkt, bool sync) { u8 sta_id = addsta->sta.sta_id; unsigned long flags; int ret = -EIO; if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags); return ret; } D_INFO("Processing response for adding station %u\n", sta_id); spin_lock_irqsave(&il->sta_lock, flags); switch (pkt->u.add_sta.status) { case ADD_STA_SUCCESS_MSK: D_INFO("C_ADD_STA PASSED\n"); il_sta_ucode_activate(il, sta_id); ret = 0; break; case ADD_STA_NO_ROOM_IN_TBL: IL_ERR("Adding station %d failed, no room in table.\n", sta_id); break; case ADD_STA_NO_BLOCK_ACK_RESOURCE: IL_ERR("Adding station %d failed, no block ack resource.\n", sta_id); break; case ADD_STA_MODIFY_NON_EXIST_STA: IL_ERR("Attempting to modify non-existing station %d\n", sta_id); break; default: D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status); break; } D_INFO("%s station id %u addr %pM\n", il->stations[sta_id].sta.mode == STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id, il->stations[sta_id].sta.sta.addr); /* * XXX: The MAC address in the command buffer is often changed from * the original sent to the device. That is, the MAC address * written to the command buffer often is not the same MAC address * read from the command buffer when the command returns. This * issue has not yet been resolved and this debugging is left to * observe the problem. */ D_INFO("%s station according to cmd buffer %pM\n", il->stations[sta_id].sta.mode == STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr); spin_unlock_irqrestore(&il->sta_lock, flags); return ret; } static void il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd, struct il_rx_pkt *pkt) { struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload; il_process_add_sta_resp(il, addsta, pkt, false); } int il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags) { struct il_rx_pkt *pkt = NULL; int ret = 0; u8 data[sizeof(*sta)]; struct il_host_cmd cmd = { .id = C_ADD_STA, .flags = flags, .data = data, }; u8 sta_id __maybe_unused = sta->sta.sta_id; D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr, flags & CMD_ASYNC ? "a" : ""); if (flags & CMD_ASYNC) cmd.callback = il_add_sta_callback; else { cmd.flags |= CMD_WANT_SKB; might_sleep(); } cmd.len = il->ops->build_addsta_hcmd(sta, data); ret = il_send_cmd(il, &cmd); if (ret) return ret; if (flags & CMD_ASYNC) return 0; pkt = (struct il_rx_pkt *)cmd.reply_page; ret = il_process_add_sta_resp(il, sta, pkt, true); il_free_pages(il, cmd.reply_page); return ret; } EXPORT_SYMBOL(il_send_add_sta); static void il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta) { struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap; __le32 sta_flags; if (!sta || !sta_ht_inf->ht_supported) goto done; D_ASSOC("spatial multiplexing power save mode: %s\n", (sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" : (sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" : "disabled"); sta_flags = il->stations[idx].sta.station_flags; sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK); switch (sta->smps_mode) { case IEEE80211_SMPS_STATIC: sta_flags |= STA_FLG_MIMO_DIS_MSK; break; case IEEE80211_SMPS_DYNAMIC: sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK; break; case IEEE80211_SMPS_OFF: break; default: IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode); break; } sta_flags |= cpu_to_le32((u32) sta_ht_inf-> ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS); sta_flags |= cpu_to_le32((u32) sta_ht_inf-> ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS); if (il_is_ht40_tx_allowed(il, &sta->ht_cap)) sta_flags |= STA_FLG_HT40_EN_MSK; else sta_flags &= ~STA_FLG_HT40_EN_MSK; il->stations[idx].sta.station_flags = sta_flags; done: return; } /* * il_prep_station - Prepare station information for addition * * should be called with sta_lock held */ u8 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap, struct ieee80211_sta *sta) { struct il_station_entry *station; int i; u8 sta_id = IL_INVALID_STATION; u16 rate; if (is_ap) sta_id = IL_AP_ID; else if (is_broadcast_ether_addr(addr)) sta_id = il->hw_params.bcast_id; else for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) { if (ether_addr_equal(il->stations[i].sta.sta.addr, addr)) { sta_id = i; break; } if (!il->stations[i].used && sta_id == IL_INVALID_STATION) sta_id = i; } /* * These two conditions have the same outcome, but keep them * separate */ if (unlikely(sta_id == IL_INVALID_STATION)) return sta_id; /* * uCode is not able to deal with multiple requests to add a * station. Keep track if one is in progress so that we do not send * another. */ if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) { D_INFO("STA %d already in process of being added.\n", sta_id); return sta_id; } if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) && (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) && ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) { D_ASSOC("STA %d (%pM) already added, not adding again.\n", sta_id, addr); return sta_id; } station = &il->stations[sta_id]; station->used = IL_STA_DRIVER_ACTIVE; D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr); il->num_stations++; /* Set up the C_ADD_STA command to send to device */ memset(&station->sta, 0, sizeof(struct il_addsta_cmd)); memcpy(station->sta.sta.addr, addr, ETH_ALEN); station->sta.mode = 0; station->sta.sta.sta_id = sta_id; station->sta.station_flags = 0; /* * OK to call unconditionally, since local stations (IBSS BSSID * STA and broadcast STA) pass in a NULL sta, and mac80211 * doesn't allow HT IBSS. */ il_set_ht_add_station(il, sta_id, sta); /* 3945 only */ rate = (il->band == NL80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP; /* Turn on both antennas for the station... */ station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK); return sta_id; } EXPORT_SYMBOL_GPL(il_prep_station); #define STA_WAIT_TIMEOUT (HZ/2) /* * il_add_station_common - */ int il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap, struct ieee80211_sta *sta, u8 *sta_id_r) { unsigned long flags_spin; int ret = 0; u8 sta_id; struct il_addsta_cmd sta_cmd; *sta_id_r = 0; spin_lock_irqsave(&il->sta_lock, flags_spin); sta_id = il_prep_station(il, addr, is_ap, sta); if (sta_id == IL_INVALID_STATION) { IL_ERR("Unable to prepare station %pM for addition\n", addr); spin_unlock_irqrestore(&il->sta_lock, flags_spin); return -EINVAL; } /* * uCode is not able to deal with multiple requests to add a * station. Keep track if one is in progress so that we do not send * another. */ if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) { D_INFO("STA %d already in process of being added.\n", sta_id); spin_unlock_irqrestore(&il->sta_lock, flags_spin); return -EEXIST; } if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) && (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) { D_ASSOC("STA %d (%pM) already added, not adding again.\n", sta_id, addr); spin_unlock_irqrestore(&il->sta_lock, flags_spin); return -EEXIST; } il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS; memcpy(&sta_cmd, &il->stations[sta_id].sta, sizeof(struct il_addsta_cmd)); spin_unlock_irqrestore(&il->sta_lock, flags_spin); /* Add station to device's station table */ ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC); if (ret) { spin_lock_irqsave(&il->sta_lock, flags_spin); IL_ERR("Adding station %pM failed.\n", il->stations[sta_id].sta.sta.addr); il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE; il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS; spin_unlock_irqrestore(&il->sta_lock, flags_spin); } *sta_id_r = sta_id; return ret; } EXPORT_SYMBOL(il_add_station_common); /* * il_sta_ucode_deactivate - deactivate ucode status for a station * * il->sta_lock must be held */ static void il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id) { /* Ucode must be active and driver must be non active */ if ((il->stations[sta_id]. used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) != IL_STA_UCODE_ACTIVE) IL_ERR("removed non active STA %u\n", sta_id); il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE; memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry)); D_ASSOC("Removed STA %u\n", sta_id); } static int il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id, bool temporary) { struct il_rx_pkt *pkt; int ret; unsigned long flags_spin; struct il_rem_sta_cmd rm_sta_cmd; struct il_host_cmd cmd = { .id = C_REM_STA, .len = sizeof(struct il_rem_sta_cmd), .flags = CMD_SYNC, .data = &rm_sta_cmd, }; memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd)); rm_sta_cmd.num_sta = 1; memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN); cmd.flags |= CMD_WANT_SKB; ret = il_send_cmd(il, &cmd); if (ret) return ret; pkt = (struct il_rx_pkt *)cmd.reply_page; if (pkt->hdr.flags & IL_CMD_FAILED_MSK) { IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags); ret = -EIO; } if (!ret) { switch (pkt->u.rem_sta.status) { case REM_STA_SUCCESS_MSK: if (!temporary) { spin_lock_irqsave(&il->sta_lock, flags_spin); il_sta_ucode_deactivate(il, sta_id); spin_unlock_irqrestore(&il->sta_lock, flags_spin); } D_ASSOC("C_REM_STA PASSED\n"); break; default: ret = -EIO; IL_ERR("C_REM_STA failed\n"); break; } } il_free_pages(il, cmd.reply_page); return ret; } /* * il_remove_station - Remove driver's knowledge of station. */ int il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr) { unsigned long flags; if (!il_is_ready(il)) { D_INFO("Unable to remove station %pM, device not ready.\n", addr); /* * It is typical for stations to be removed when we are * going down. Return success since device will be down * soon anyway */ return 0; } D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr); if (WARN_ON(sta_id == IL_INVALID_STATION)) return -EINVAL; spin_lock_irqsave(&il->sta_lock, flags); if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) { D_INFO("Removing %pM but non DRIVER active\n", addr); goto out_err; } if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) { D_INFO("Removing %pM but non UCODE active\n", addr); goto out_err; } if (il->stations[sta_id].used & IL_STA_LOCAL) { kfree(il->stations[sta_id].lq); il->stations[sta_id].lq = NULL; } il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE; il->num_stations--; BUG_ON(il->num_stations < 0); spin_unlock_irqrestore(&il->sta_lock, flags); return il_send_remove_station(il, addr, sta_id, false); out_err: spin_unlock_irqrestore(&il->sta_lock, flags); return -EINVAL; } EXPORT_SYMBOL_GPL(il_remove_station); /* * il_clear_ucode_stations - clear ucode station table bits * * This function clears all the bits in the driver indicating * which stations are active in the ucode. Call when something * other than explicit station management would cause this in * the ucode, e.g. unassociated RXON. */ void il_clear_ucode_stations(struct il_priv *il) { int i; unsigned long flags_spin; bool cleared = false; D_INFO("Clearing ucode stations in driver\n"); spin_lock_irqsave(&il->sta_lock, flags_spin); for (i = 0; i < il->hw_params.max_stations; i++) { if (il->stations[i].used & IL_STA_UCODE_ACTIVE) { D_INFO("Clearing ucode active for station %d\n", i); il->stations[i].used &= ~IL_STA_UCODE_ACTIVE; cleared = true; } } spin_unlock_irqrestore(&il->sta_lock, flags_spin); if (!cleared) D_INFO("No active stations found to be cleared\n"); } EXPORT_SYMBOL(il_clear_ucode_stations); /* * il_restore_stations() - Restore driver known stations to device * * All stations considered active by driver, but not present in ucode, is * restored. * * Function sleeps. */ void il_restore_stations(struct il_priv *il) { struct il_addsta_cmd sta_cmd; struct il_link_quality_cmd lq; unsigned long flags_spin; int i; bool found = false; int ret; bool send_lq; if (!il_is_ready(il)) { D_INFO("Not ready yet, not restoring any stations.\n"); return; } D_ASSOC("Restoring all known stations ... start.\n"); spin_lock_irqsave(&il->sta_lock, flags_spin); for (i = 0; i < il->hw_params.max_stations; i++) { if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) && !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) { D_ASSOC("Restoring sta %pM\n", il->stations[i].sta.sta.addr); il->stations[i].sta.mode = 0; il->stations[i].used |= IL_STA_UCODE_INPROGRESS; found = true; } } for (i = 0; i < il->hw_params.max_stations; i++) { if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) { memcpy(&sta_cmd, &il->stations[i].sta, sizeof(struct il_addsta_cmd)); send_lq = false; if (il->stations[i].lq) { memcpy(&lq, il->stations[i].lq, sizeof(struct il_link_quality_cmd)); send_lq = true; } spin_unlock_irqrestore(&il->sta_lock, flags_spin); ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC); if (ret) { spin_lock_irqsave(&il->sta_lock, flags_spin); IL_ERR("Adding station %pM failed.\n", il->stations[i].sta.sta.addr); il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE; il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS; spin_unlock_irqrestore(&il->sta_lock, flags_spin); } /* * Rate scaling has already been initialized, send * current LQ command */ if (send_lq) il_send_lq_cmd(il, &lq, CMD_SYNC, true); spin_lock_irqsave(&il->sta_lock, flags_spin); il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS; } } spin_unlock_irqrestore(&il->sta_lock, flags_spin); if (!found) D_INFO("Restoring all known stations" " .... no stations to be restored.\n"); else D_INFO("Restoring all known stations" " .... complete.\n"); } EXPORT_SYMBOL(il_restore_stations); int il_get_free_ucode_key_idx(struct il_priv *il) { int i; for (i = 0; i < il->sta_key_max_num; i++) if (!test_and_set_bit(i, &il->ucode_key_table)) return i; return WEP_INVALID_OFFSET; } EXPORT_SYMBOL(il_get_free_ucode_key_idx); void il_dealloc_bcast_stations(struct il_priv *il) { unsigned long flags; int i; spin_lock_irqsave(&il->sta_lock, flags); for (i = 0; i < il->hw_params.max_stations; i++) { if (!(il->stations[i].used & IL_STA_BCAST)) continue; il->stations[i].used &= ~IL_STA_UCODE_ACTIVE; il->num_stations--; BUG_ON(il->num_stations < 0); kfree(il->stations[i].lq); il->stations[i].lq = NULL; } spin_unlock_irqrestore(&il->sta_lock, flags); } EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations); #ifdef CONFIG_IWLEGACY_DEBUG static void il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq) { int i; D_RATE("lq station id 0x%x\n", lq->sta_id); D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk, lq->general_params.dual_stream_ant_msk); for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags); } #else static inline void il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq) { } #endif /* * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity * * It sometimes happens when a HT rate has been in use and we * loose connectivity with AP then mac80211 will first tell us that the * current channel is not HT anymore before removing the station. In such a * scenario the RXON flags will be updated to indicate we are not * communicating HT anymore, but the LQ command may still contain HT rates. * Test for this to prevent driver from sending LQ command between the time * RXON flags are updated and when LQ command is updated. */ static bool il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq) { int i; if (il->ht.enabled) return true; D_INFO("Channel %u is not an HT channel\n", il->active.channel); for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) { if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) { D_INFO("idx %d of LQ expects HT channel\n", i); return false; } } return true; } /* * il_send_lq_cmd() - Send link quality command * @init: This command is sent as part of station initialization right * after station has been added. * * The link quality command is sent as the last step of station creation. * This is the special case in which init is set and we call a callback in * this case to clear the state indicating that station creation is in * progress. */ int il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq, u8 flags, bool init) { int ret = 0; unsigned long flags_spin; struct il_host_cmd cmd = { .id = C_TX_LINK_QUALITY_CMD, .len = sizeof(struct il_link_quality_cmd), .flags = flags, .data = lq, }; if (WARN_ON(lq->sta_id == IL_INVALID_STATION)) return -EINVAL; spin_lock_irqsave(&il->sta_lock, flags_spin); if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) { spin_unlock_irqrestore(&il->sta_lock, flags_spin); return -EINVAL; } spin_unlock_irqrestore(&il->sta_lock, flags_spin); il_dump_lq_cmd(il, lq); BUG_ON(init && (cmd.flags & CMD_ASYNC)); if (il_is_lq_table_valid(il, lq)) ret = il_send_cmd(il, &cmd); else ret = -EINVAL; if (cmd.flags & CMD_ASYNC) return ret; if (init) { D_INFO("init LQ command complete," " clearing sta addition status for sta %d\n", lq->sta_id); spin_lock_irqsave(&il->sta_lock, flags_spin); il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS; spin_unlock_irqrestore(&il->sta_lock, flags_spin); } return ret; } EXPORT_SYMBOL(il_send_lq_cmd); int il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct il_priv *il = hw->priv; struct il_station_priv_common *sta_common = (void *)sta->drv_priv; int ret; mutex_lock(&il->mutex); D_MAC80211("enter station %pM\n", sta->addr); ret = il_remove_station(il, sta_common->sta_id, sta->addr); if (ret) IL_ERR("Error removing station %pM\n", sta->addr); D_MAC80211("leave ret %d\n", ret); mutex_unlock(&il->mutex); return ret; } EXPORT_SYMBOL(il_mac_sta_remove); /************************** RX-FUNCTIONS ****************************/ /* * Rx theory of operation * * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), * each of which point to Receive Buffers to be filled by the NIC. These get * used not only for Rx frames, but for any command response or notification * from the NIC. The driver and NIC manage the Rx buffers by means * of idxes into the circular buffer. * * Rx Queue Indexes * The host/firmware share two idx registers for managing the Rx buffers. * * The READ idx maps to the first position that the firmware may be writing * to -- the driver can read up to (but not including) this position and get * good data. * The READ idx is managed by the firmware once the card is enabled. * * The WRITE idx maps to the last position the driver has read from -- the * position preceding WRITE is the last slot the firmware can place a packet. * * The queue is empty (no good data) if WRITE = READ - 1, and is full if * WRITE = READ. * * During initialization, the host sets up the READ queue position to the first * IDX position, and WRITE to the last (READ - 1 wrapped) * * When the firmware places a packet in a buffer, it will advance the READ idx * and fire the RX interrupt. The driver can then query the READ idx and * process as many packets as possible, moving the WRITE idx forward as it * resets the Rx queue buffers with new memory. * * The management in the driver is as follows: * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled * to replenish the iwl->rxq->rx_free. * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the * iwl->rxq is replenished and the READ IDX is updated (updating the * 'processed' and 'read' driver idxes as well) * + A received packet is processed and handed to the kernel network stack, * detached from the iwl->rxq. The driver 'processed' idx is updated. * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ * IDX is not incremented and iwl->status(RX_STALLED) is set. If there * were enough free buffers and RX_STALLED is set it is cleared. * * * Driver sequence: * * il_rx_queue_alloc() Allocates rx_free * il_rx_replenish() Replenishes rx_free list from rx_used, and calls * il_rx_queue_restock * il_rx_queue_restock() Moves available buffers from rx_free into Rx * queue, updates firmware pointers, and updates * the WRITE idx. If insufficient rx_free buffers * are available, schedules il_rx_replenish * * -- enable interrupts -- * ISR - il_rx() Detach il_rx_bufs from pool up to the * READ IDX, detaching the SKB from the pool. * Moves the packet buffer from queue to rx_used. * Calls il_rx_queue_restock to refill any empty * slots. * ... * */ /* * il_rx_queue_space - Return number of free slots available in queue. */ int il_rx_queue_space(const struct il_rx_queue *q) { int s = q->read - q->write; if (s <= 0) s += RX_QUEUE_SIZE; /* keep some buffer to not confuse full and empty queue */ s -= 2; if (s < 0) s = 0; return s; } EXPORT_SYMBOL(il_rx_queue_space); /* * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue */ void il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q) { unsigned long flags; u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg; u32 reg; spin_lock_irqsave(&q->lock, flags); if (q->need_update == 0) goto exit_unlock; /* If power-saving is in use, make sure device is awake */ if (test_bit(S_POWER_PMI, &il->status)) { reg = _il_rd(il, CSR_UCODE_DRV_GP1); if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n", reg); il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); goto exit_unlock; } q->write_actual = (q->write & ~0x7); il_wr(il, rx_wrt_ptr_reg, q->write_actual); /* Else device is assumed to be awake */ } else { /* Device expects a multiple of 8 */ q->write_actual = (q->write & ~0x7); il_wr(il, rx_wrt_ptr_reg, q->write_actual); } q->need_update = 0; exit_unlock: spin_unlock_irqrestore(&q->lock, flags); } EXPORT_SYMBOL(il_rx_queue_update_write_ptr); int il_rx_queue_alloc(struct il_priv *il) { struct il_rx_queue *rxq = &il->rxq; struct device *dev = &il->pci_dev->dev; int i; spin_lock_init(&rxq->lock); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); /* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */ rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma, GFP_KERNEL); if (!rxq->bd) goto err_bd; rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status), &rxq->rb_stts_dma, GFP_KERNEL); if (!rxq->rb_stts) goto err_rb; /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) list_add_tail(&rxq->pool[i].list, &rxq->rx_used); /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->write_actual = 0; rxq->free_count = 0; rxq->need_update = 0; return 0; err_rb: dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd, rxq->bd_dma); err_bd: return -ENOMEM; } EXPORT_SYMBOL(il_rx_queue_alloc); void il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_spectrum_notification *report = &(pkt->u.spectrum_notif); if (!report->state) { D_11H("Spectrum Measure Notification: Start\n"); return; } memcpy(&il->measure_report, report, sizeof(*report)); il->measurement_status |= MEASUREMENT_READY; } EXPORT_SYMBOL(il_hdl_spectrum_measurement); /* * returns non-zero if packet should be dropped */ int il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr, u32 decrypt_res, struct ieee80211_rx_status *stats) { u16 fc = le16_to_cpu(hdr->frame_control); /* * All contexts have the same setting here due to it being * a module parameter, so OK to check any context. */ if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK) return 0; if (!(fc & IEEE80211_FCTL_PROTECTED)) return 0; D_RX("decrypt_res:0x%x\n", decrypt_res); switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) { case RX_RES_STATUS_SEC_TYPE_TKIP: /* The uCode has got a bad phase 1 Key, pushes the packet. * Decryption will be done in SW. */ if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == RX_RES_STATUS_BAD_KEY_TTAK) break; fallthrough; case RX_RES_STATUS_SEC_TYPE_WEP: if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == RX_RES_STATUS_BAD_ICV_MIC) { /* bad ICV, the packet is destroyed since the * decryption is inplace, drop it */ D_RX("Packet destroyed\n"); return -1; } fallthrough; case RX_RES_STATUS_SEC_TYPE_CCMP: if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == RX_RES_STATUS_DECRYPT_OK) { D_RX("hw decrypt successfully!!!\n"); stats->flag |= RX_FLAG_DECRYPTED; } break; default: break; } return 0; } EXPORT_SYMBOL(il_set_decrypted_flag); /* * il_txq_update_write_ptr - Send new write idx to hardware */ void il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq) { u32 reg = 0; int txq_id = txq->q.id; if (txq->need_update == 0) return; /* if we're trying to save power */ if (test_bit(S_POWER_PMI, &il->status)) { /* wake up nic if it's powered down ... * uCode will wake up, and interrupt us again, so next * time we'll skip this part. */ reg = _il_rd(il, CSR_UCODE_DRV_GP1); if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n", txq_id, reg); il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); return; } il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8)); /* * else not in power-save mode, * uCode will never sleep when we're * trying to tx (during RFKILL, we're not trying to tx). */ } else _il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8)); txq->need_update = 0; } EXPORT_SYMBOL(il_txq_update_write_ptr); /* * il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's */ void il_tx_queue_unmap(struct il_priv *il, int txq_id) { struct il_tx_queue *txq = &il->txq[txq_id]; struct il_queue *q = &txq->q; if (q->n_bd == 0) return; while (q->write_ptr != q->read_ptr) { il->ops->txq_free_tfd(il, txq); q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd); } } EXPORT_SYMBOL(il_tx_queue_unmap); /* * il_tx_queue_free - Deallocate DMA queue. * @txq: Transmit queue to deallocate. * * Empty queue by removing and destroying all BD's. * Free all buffers. * 0-fill, but do not free "txq" descriptor structure. */ void il_tx_queue_free(struct il_priv *il, int txq_id) { struct il_tx_queue *txq = &il->txq[txq_id]; struct device *dev = &il->pci_dev->dev; int i; il_tx_queue_unmap(il, txq_id); /* De-alloc array of command/tx buffers */ if (txq->cmd) { for (i = 0; i < TFD_TX_CMD_SLOTS; i++) kfree(txq->cmd[i]); } /* De-alloc circular buffer of TFDs */ if (txq->q.n_bd) dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd, txq->tfds, txq->q.dma_addr); /* De-alloc array of per-TFD driver data */ kfree(txq->skbs); txq->skbs = NULL; /* deallocate arrays */ kfree(txq->cmd); kfree(txq->meta); txq->cmd = NULL; txq->meta = NULL; /* 0-fill queue descriptor structure */ memset(txq, 0, sizeof(*txq)); } EXPORT_SYMBOL(il_tx_queue_free); /* * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue */ void il_cmd_queue_unmap(struct il_priv *il) { struct il_tx_queue *txq = &il->txq[il->cmd_queue]; struct il_queue *q = &txq->q; int i; if (q->n_bd == 0) return; while (q->read_ptr != q->write_ptr) { i = il_get_cmd_idx(q, q->read_ptr, 0); if (txq->meta[i].flags & CMD_MAPPED) { dma_unmap_single(&il->pci_dev->dev, dma_unmap_addr(&txq->meta[i], mapping), dma_unmap_len(&txq->meta[i], len), DMA_BIDIRECTIONAL); txq->meta[i].flags = 0; } q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd); } i = q->n_win; if (txq->meta[i].flags & CMD_MAPPED) { dma_unmap_single(&il->pci_dev->dev, dma_unmap_addr(&txq->meta[i], mapping), dma_unmap_len(&txq->meta[i], len), DMA_BIDIRECTIONAL); txq->meta[i].flags = 0; } } EXPORT_SYMBOL(il_cmd_queue_unmap); /* * il_cmd_queue_free - Deallocate DMA queue. * * Empty queue by removing and destroying all BD's. * Free all buffers. * 0-fill, but do not free "txq" descriptor structure. */ void il_cmd_queue_free(struct il_priv *il) { struct il_tx_queue *txq = &il->txq[il->cmd_queue]; struct device *dev = &il->pci_dev->dev; int i; il_cmd_queue_unmap(il); /* De-alloc array of command/tx buffers */ if (txq->cmd) { for (i = 0; i <= TFD_CMD_SLOTS; i++) kfree(txq->cmd[i]); } /* De-alloc circular buffer of TFDs */ if (txq->q.n_bd) dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd, txq->tfds, txq->q.dma_addr); /* deallocate arrays */ kfree(txq->cmd); kfree(txq->meta); txq->cmd = NULL; txq->meta = NULL; /* 0-fill queue descriptor structure */ memset(txq, 0, sizeof(*txq)); } EXPORT_SYMBOL(il_cmd_queue_free); /*************** DMA-QUEUE-GENERAL-FUNCTIONS ***** * DMA services * * Theory of operation * * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer * of buffer descriptors, each of which points to one or more data buffers for * the device to read from or fill. Driver and device exchange status of each * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty * entries in each circular buffer, to protect against confusing empty and full * queue states. * * The device reads or writes the data in the queues via the device's several * DMA/FIFO channels. Each queue is mapped to a single DMA channel. * * For Tx queue, there are low mark and high mark limits. If, after queuing * the packet for Tx, free space become < low mark, Tx queue stopped. When * reclaiming packets (on 'tx done IRQ), if free space become > high mark, * Tx queue resumed. * * See more detailed info in 4965.h. ***************************************************/ int il_queue_space(const struct il_queue *q) { int s = q->read_ptr - q->write_ptr; if (q->read_ptr > q->write_ptr) s -= q->n_bd; if (s <= 0) s += q->n_win; /* keep some reserve to not confuse empty and full situations */ s -= 2; if (s < 0) s = 0; return s; } EXPORT_SYMBOL(il_queue_space); /* * il_queue_init - Initialize queue's high/low-water and read/write idxes */ static int il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id) { /* * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise * il_queue_inc_wrap and il_queue_dec_wrap are broken. */ BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1)); /* FIXME: remove q->n_bd */ q->n_bd = TFD_QUEUE_SIZE_MAX; q->n_win = slots; q->id = id; /* slots_must be power-of-two size, otherwise * il_get_cmd_idx is broken. */ BUG_ON(!is_power_of_2(slots)); q->low_mark = q->n_win / 4; if (q->low_mark < 4) q->low_mark = 4; q->high_mark = q->n_win / 8; if (q->high_mark < 2) q->high_mark = 2; q->write_ptr = q->read_ptr = 0; return 0; } /* * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue */ static int il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id) { struct device *dev = &il->pci_dev->dev; size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX; /* Driver ilate data, only for Tx (not command) queues, * not shared with device. */ if (id != il->cmd_queue) { txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX, sizeof(struct sk_buff *), GFP_KERNEL); if (!txq->skbs) { IL_ERR("Fail to alloc skbs\n"); goto error; } } else txq->skbs = NULL; /* Circular buffer of transmit frame descriptors (TFDs), * shared with device */ txq->tfds = dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL); if (!txq->tfds) goto error; txq->q.id = id; return 0; error: kfree(txq->skbs); txq->skbs = NULL; return -ENOMEM; } /* * il_tx_queue_init - Allocate and initialize one tx/cmd queue */ int il_tx_queue_init(struct il_priv *il, u32 txq_id) { int i, len, ret; int slots, actual_slots; struct il_tx_queue *txq = &il->txq[txq_id]; /* * Alloc buffer array for commands (Tx or other types of commands). * For the command queue (#4/#9), allocate command space + one big * command for scan, since scan command is very huge; the system will * not have two scans at the same time, so only one is needed. * For normal Tx queues (all other queues), no super-size command * space is needed. */ if (txq_id == il->cmd_queue) { slots = TFD_CMD_SLOTS; actual_slots = slots + 1; } else { slots = TFD_TX_CMD_SLOTS; actual_slots = slots; } txq->meta = kcalloc(actual_slots, sizeof(struct il_cmd_meta), GFP_KERNEL); txq->cmd = kcalloc(actual_slots, sizeof(struct il_device_cmd *), GFP_KERNEL); if (!txq->meta || !txq->cmd) goto out_free_arrays; len = sizeof(struct il_device_cmd); for (i = 0; i < actual_slots; i++) { /* only happens for cmd queue */ if (i == slots) len = IL_MAX_CMD_SIZE; txq->cmd[i] = kmalloc(len, GFP_KERNEL); if (!txq->cmd[i]) goto err; } /* Alloc driver data array and TFD circular buffer */ ret = il_tx_queue_alloc(il, txq, txq_id); if (ret) goto err; txq->need_update = 0; /* * For the default queues 0-3, set up the swq_id * already -- all others need to get one later * (if they need one at all). */ if (txq_id < 4) il_set_swq_id(txq, txq_id, txq_id); /* Initialize queue's high/low-water marks, and head/tail idxes */ il_queue_init(il, &txq->q, slots, txq_id); /* Tell device where to find queue */ il->ops->txq_init(il, txq); return 0; err: for (i = 0; i < actual_slots; i++) kfree(txq->cmd[i]); out_free_arrays: kfree(txq->meta); txq->meta = NULL; kfree(txq->cmd); txq->cmd = NULL; return -ENOMEM; } EXPORT_SYMBOL(il_tx_queue_init); void il_tx_queue_reset(struct il_priv *il, u32 txq_id) { int slots, actual_slots; struct il_tx_queue *txq = &il->txq[txq_id]; if (txq_id == il->cmd_queue) { slots = TFD_CMD_SLOTS; actual_slots = TFD_CMD_SLOTS + 1; } else { slots = TFD_TX_CMD_SLOTS; actual_slots = TFD_TX_CMD_SLOTS; } memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots); txq->need_update = 0; /* Initialize queue's high/low-water marks, and head/tail idxes */ il_queue_init(il, &txq->q, slots, txq_id); /* Tell device where to find queue */ il->ops->txq_init(il, txq); } EXPORT_SYMBOL(il_tx_queue_reset); /*************** HOST COMMAND QUEUE FUNCTIONS *****/ /* * il_enqueue_hcmd - enqueue a uCode command * @il: device ilate data point * @cmd: a point to the ucode command structure * * The function returns < 0 values to indicate the operation is * failed. On success, it turns the idx (> 0) of command in the * command queue. */ int il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd) { struct il_tx_queue *txq = &il->txq[il->cmd_queue]; struct il_queue *q = &txq->q; struct il_device_cmd *out_cmd; struct il_cmd_meta *out_meta; dma_addr_t phys_addr; unsigned long flags; u32 idx; u16 fix_size; cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len); fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr)); /* If any of the command structures end up being larger than * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then * we will need to increase the size of the TFD entries * Also, check to see if command buffer should not exceed the size * of device_cmd and max_cmd_size. */ BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) && !(cmd->flags & CMD_SIZE_HUGE)); BUG_ON(fix_size > IL_MAX_CMD_SIZE); if (il_is_rfkill(il) || il_is_ctkill(il)) { IL_WARN("Not sending command - %s KILL\n", il_is_rfkill(il) ? "RF" : "CT"); return -EIO; } spin_lock_irqsave(&il->hcmd_lock, flags); if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { spin_unlock_irqrestore(&il->hcmd_lock, flags); IL_ERR("Restarting adapter due to command queue full\n"); queue_work(il->workqueue, &il->restart); return -ENOSPC; } idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE); out_cmd = txq->cmd[idx]; out_meta = &txq->meta[idx]; if (WARN_ON(out_meta->flags & CMD_MAPPED)) { spin_unlock_irqrestore(&il->hcmd_lock, flags); return -ENOSPC; } memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */ out_meta->flags = cmd->flags | CMD_MAPPED; if (cmd->flags & CMD_WANT_SKB) out_meta->source = cmd; if (cmd->flags & CMD_ASYNC) out_meta->callback = cmd->callback; out_cmd->hdr.cmd = cmd->id; memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len); /* At this point, the out_cmd now has all of the incoming cmd * information */ out_cmd->hdr.flags = 0; out_cmd->hdr.sequence = cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr)); if (cmd->flags & CMD_SIZE_HUGE) out_cmd->hdr.sequence |= SEQ_HUGE_FRAME; #ifdef CONFIG_IWLEGACY_DEBUG switch (out_cmd->hdr.cmd) { case C_TX_LINK_QUALITY_CMD: case C_SENSITIVITY: D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, " "%d bytes at %d[%d]:%d\n", il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr, idx, il->cmd_queue); break; default: D_HC("Sending command %s (#%x), seq: 0x%04X, " "%d bytes at %d[%d]:%d\n", il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr, idx, il->cmd_queue); } #endif phys_addr = dma_map_single(&il->pci_dev->dev, &out_cmd->hdr, fix_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(&il->pci_dev->dev, phys_addr))) { idx = -ENOMEM; goto out; } dma_unmap_addr_set(out_meta, mapping, phys_addr); dma_unmap_len_set(out_meta, len, fix_size); txq->need_update = 1; if (il->ops->txq_update_byte_cnt_tbl) /* Set up entry in queue's byte count circular buffer */ il->ops->txq_update_byte_cnt_tbl(il, txq, 0); il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1, U32_PAD(cmd->len)); /* Increment and update queue's write idx */ q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd); il_txq_update_write_ptr(il, txq); out: spin_unlock_irqrestore(&il->hcmd_lock, flags); return idx; } /* * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd * * When FW advances 'R' idx, all entries between old and new 'R' idx * need to be reclaimed. As result, some free space forms. If there is * enough free space (> low mark), wake the stack that feeds us. */ static void il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx) { struct il_tx_queue *txq = &il->txq[txq_id]; struct il_queue *q = &txq->q; int nfreed = 0; if (idx >= q->n_bd || il_queue_used(q, idx) == 0) { IL_ERR("Read idx for DMA queue txq id (%d), idx %d, " "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd, q->write_ptr, q->read_ptr); return; } for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx; q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) { if (nfreed++ > 0) { IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx, q->write_ptr, q->read_ptr); queue_work(il->workqueue, &il->restart); } } } /* * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them * @rxb: Rx buffer to reclaim * * If an Rx buffer has an async callback associated with it the callback * will be executed. The attached skb (if present) will only be freed * if the callback returns 1 */ void il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); u16 sequence = le16_to_cpu(pkt->hdr.sequence); int txq_id = SEQ_TO_QUEUE(sequence); int idx = SEQ_TO_IDX(sequence); int cmd_idx; bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME); struct il_device_cmd *cmd; struct il_cmd_meta *meta; struct il_tx_queue *txq = &il->txq[il->cmd_queue]; unsigned long flags; /* If a Tx command is being handled and it isn't in the actual * command queue then there a command routing bug has been introduced * in the queue management code. */ if (WARN (txq_id != il->cmd_queue, "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n", txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr, il->txq[il->cmd_queue].q.write_ptr)) { il_print_hex_error(il, pkt, 32); return; } cmd_idx = il_get_cmd_idx(&txq->q, idx, huge); cmd = txq->cmd[cmd_idx]; meta = &txq->meta[cmd_idx]; txq->time_stamp = jiffies; dma_unmap_single(&il->pci_dev->dev, dma_unmap_addr(meta, mapping), dma_unmap_len(meta, len), DMA_BIDIRECTIONAL); /* Input error checking is done when commands are added to queue. */ if (meta->flags & CMD_WANT_SKB) { meta->source->reply_page = (unsigned long)rxb_addr(rxb); rxb->page = NULL; } else if (meta->callback) meta->callback(il, cmd, pkt); spin_lock_irqsave(&il->hcmd_lock, flags); il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx); if (!(meta->flags & CMD_ASYNC)) { clear_bit(S_HCMD_ACTIVE, &il->status); D_INFO("Clearing HCMD_ACTIVE for command %s\n", il_get_cmd_string(cmd->hdr.cmd)); wake_up(&il->wait_command_queue); } /* Mark as unmapped */ meta->flags = 0; spin_unlock_irqrestore(&il->hcmd_lock, flags); } EXPORT_SYMBOL(il_tx_cmd_complete); MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965"); MODULE_VERSION(IWLWIFI_VERSION); MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR); MODULE_LICENSE("GPL"); /* * set bt_coex_active to true, uCode will do kill/defer * every time the priority line is asserted (BT is sending signals on the * priority line in the PCIx). * set bt_coex_active to false, uCode will ignore the BT activity and * perform the normal operation * * User might experience transmit issue on some platform due to WiFi/BT * co-exist problem. The possible behaviors are: * Able to scan and finding all the available AP * Not able to associate with any AP * On those platforms, WiFi communication can be restored by set * "bt_coex_active" module parameter to "false" * * default: bt_coex_active = true (BT_COEX_ENABLE) */ static bool bt_coex_active = true; module_param(bt_coex_active, bool, 0444); MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist"); u32 il_debug_level; EXPORT_SYMBOL(il_debug_level); const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; EXPORT_SYMBOL(il_bcast_addr); #define MAX_BIT_RATE_40_MHZ 150 /* Mbps */ #define MAX_BIT_RATE_20_MHZ 72 /* Mbps */ static void il_init_ht_hw_capab(const struct il_priv *il, struct ieee80211_sta_ht_cap *ht_info, enum nl80211_band band) { u16 max_bit_rate = 0; u8 rx_chains_num = il->hw_params.rx_chains_num; u8 tx_chains_num = il->hw_params.tx_chains_num; ht_info->cap = 0; memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); ht_info->ht_supported = true; ht_info->cap |= IEEE80211_HT_CAP_SGI_20; max_bit_rate = MAX_BIT_RATE_20_MHZ; if (il->hw_params.ht40_channel & BIT(band)) { ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; ht_info->cap |= IEEE80211_HT_CAP_SGI_40; ht_info->mcs.rx_mask[4] = 0x01; max_bit_rate = MAX_BIT_RATE_40_MHZ; } if (il->cfg->mod_params->amsdu_size_8K) ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU; ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF; ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF; ht_info->mcs.rx_mask[0] = 0xFF; if (rx_chains_num >= 2) ht_info->mcs.rx_mask[1] = 0xFF; if (rx_chains_num >= 3) ht_info->mcs.rx_mask[2] = 0xFF; /* Highest supported Rx data rate */ max_bit_rate *= rx_chains_num; WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK); ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate); /* Tx MCS capabilities */ ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; if (tx_chains_num != rx_chains_num) { ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF; ht_info->mcs.tx_params |= ((tx_chains_num - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); } } /* * il_init_geos - Initialize mac80211's geo/channel info based from eeprom */ int il_init_geos(struct il_priv *il) { struct il_channel_info *ch; struct ieee80211_supported_band *sband; struct ieee80211_channel *channels; struct ieee80211_channel *geo_ch; struct ieee80211_rate *rates; int i = 0; s8 max_tx_power = 0; if (il->bands[NL80211_BAND_2GHZ].n_bitrates || il->bands[NL80211_BAND_5GHZ].n_bitrates) { D_INFO("Geography modes already initialized.\n"); set_bit(S_GEO_CONFIGURED, &il->status); return 0; } channels = kcalloc(il->channel_count, sizeof(struct ieee80211_channel), GFP_KERNEL); if (!channels) return -ENOMEM; rates = kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY), GFP_KERNEL); if (!rates) { kfree(channels); return -ENOMEM; } /* 5.2GHz channels start after the 2.4GHz channels */ sband = &il->bands[NL80211_BAND_5GHZ]; sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)]; /* just OFDM */ sband->bitrates = &rates[IL_FIRST_OFDM_RATE]; sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE; if (il->cfg->sku & IL_SKU_N) il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_5GHZ); sband = &il->bands[NL80211_BAND_2GHZ]; sband->channels = channels; /* OFDM & CCK */ sband->bitrates = rates; sband->n_bitrates = RATE_COUNT_LEGACY; if (il->cfg->sku & IL_SKU_N) il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_2GHZ); il->ieee_channels = channels; il->ieee_rates = rates; for (i = 0; i < il->channel_count; i++) { ch = &il->channel_info[i]; if (!il_is_channel_valid(ch)) continue; sband = &il->bands[ch->band]; geo_ch = &sband->channels[sband->n_channels++]; geo_ch->center_freq = ieee80211_channel_to_frequency(ch->channel, ch->band); geo_ch->max_power = ch->max_power_avg; geo_ch->max_antenna_gain = 0xff; geo_ch->hw_value = ch->channel; if (il_is_channel_valid(ch)) { if (!(ch->flags & EEPROM_CHANNEL_IBSS)) geo_ch->flags |= IEEE80211_CHAN_NO_IR; if (!(ch->flags & EEPROM_CHANNEL_ACTIVE)) geo_ch->flags |= IEEE80211_CHAN_NO_IR; if (ch->flags & EEPROM_CHANNEL_RADAR) geo_ch->flags |= IEEE80211_CHAN_RADAR; geo_ch->flags |= ch->ht40_extension_channel; if (ch->max_power_avg > max_tx_power) max_tx_power = ch->max_power_avg; } else { geo_ch->flags |= IEEE80211_CHAN_DISABLED; } D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel, geo_ch->center_freq, il_is_channel_a_band(ch) ? "5.2" : "2.4", geo_ch-> flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid", geo_ch->flags); } il->tx_power_device_lmt = max_tx_power; il->tx_power_user_lmt = max_tx_power; il->tx_power_next = max_tx_power; if (il->bands[NL80211_BAND_5GHZ].n_channels == 0 && (il->cfg->sku & IL_SKU_A)) { IL_INFO("Incorrectly detected BG card as ABG. " "Please send your PCI ID 0x%04X:0x%04X to maintainer.\n", il->pci_dev->device, il->pci_dev->subsystem_device); il->cfg->sku &= ~IL_SKU_A; } IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n", il->bands[NL80211_BAND_2GHZ].n_channels, il->bands[NL80211_BAND_5GHZ].n_channels); set_bit(S_GEO_CONFIGURED, &il->status); return 0; } EXPORT_SYMBOL(il_init_geos); /* * il_free_geos - undo allocations in il_init_geos */ void il_free_geos(struct il_priv *il) { kfree(il->ieee_channels); kfree(il->ieee_rates); clear_bit(S_GEO_CONFIGURED, &il->status); } EXPORT_SYMBOL(il_free_geos); static bool il_is_channel_extension(struct il_priv *il, enum nl80211_band band, u16 channel, u8 extension_chan_offset) { const struct il_channel_info *ch_info; ch_info = il_get_channel_info(il, band, channel); if (!il_is_channel_valid(ch_info)) return false; if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE) return !(ch_info-> ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS); else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW) return !(ch_info-> ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS); return false; } bool il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap) { if (!il->ht.enabled || !il->ht.is_40mhz) return false; /* * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40 * the bit will not set if it is pure 40MHz case */ if (ht_cap && !ht_cap->ht_supported) return false; #ifdef CONFIG_IWLEGACY_DEBUGFS if (il->disable_ht40) return false; #endif return il_is_channel_extension(il, il->band, le16_to_cpu(il->staging.channel), il->ht.extension_chan_offset); } EXPORT_SYMBOL(il_is_ht40_tx_allowed); static u16 noinline il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val) { u16 new_val; u16 beacon_factor; /* * If mac80211 hasn't given us a beacon interval, program * the default into the device. */ if (!beacon_val) return DEFAULT_BEACON_INTERVAL; /* * If the beacon interval we obtained from the peer * is too large, we'll have to wake up more often * (and in IBSS case, we'll beacon too much) * * For example, if max_beacon_val is 4096, and the * requested beacon interval is 7000, we'll have to * use 3500 to be able to wake up on the beacons. * * This could badly influence beacon detection stats. */ beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val; new_val = beacon_val / beacon_factor; if (!new_val) new_val = max_beacon_val; return new_val; } int il_send_rxon_timing(struct il_priv *il) { u64 tsf; s32 interval_tm, rem; struct ieee80211_conf *conf = NULL; u16 beacon_int; struct ieee80211_vif *vif = il->vif; conf = &il->hw->conf; lockdep_assert_held(&il->mutex); memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd)); il->timing.timestamp = cpu_to_le64(il->timestamp); il->timing.listen_interval = cpu_to_le16(conf->listen_interval); beacon_int = vif ? vif->bss_conf.beacon_int : 0; /* * TODO: For IBSS we need to get atim_win from mac80211, * for now just always use 0 */ il->timing.atim_win = 0; beacon_int = il_adjust_beacon_interval(beacon_int, il->hw_params.max_beacon_itrvl * TIME_UNIT); il->timing.beacon_interval = cpu_to_le16(beacon_int); tsf = il->timestamp; /* tsf is modifed by do_div: copy it */ interval_tm = beacon_int * TIME_UNIT; rem = do_div(tsf, interval_tm); il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem); il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1; D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n", le16_to_cpu(il->timing.beacon_interval), le32_to_cpu(il->timing.beacon_init_val), le16_to_cpu(il->timing.atim_win)); return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing), &il->timing); } EXPORT_SYMBOL(il_send_rxon_timing); void il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt) { struct il_rxon_cmd *rxon = &il->staging; if (hw_decrypt) rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK; else rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK; } EXPORT_SYMBOL(il_set_rxon_hwcrypto); /* validate RXON structure is valid */ int il_check_rxon_cmd(struct il_priv *il) { struct il_rxon_cmd *rxon = &il->staging; bool error = false; if (rxon->flags & RXON_FLG_BAND_24G_MSK) { if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) { IL_WARN("check 2.4G: wrong narrow\n"); error = true; } if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) { IL_WARN("check 2.4G: wrong radar\n"); error = true; } } else { if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) { IL_WARN("check 5.2G: not short slot!\n"); error = true; } if (rxon->flags & RXON_FLG_CCK_MSK) { IL_WARN("check 5.2G: CCK!\n"); error = true; } } if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) { IL_WARN("mac/bssid mcast!\n"); error = true; } /* make sure basic rates 6Mbps and 1Mbps are supported */ if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 && (rxon->cck_basic_rates & RATE_1M_MASK) == 0) { IL_WARN("neither 1 nor 6 are basic\n"); error = true; } if (le16_to_cpu(rxon->assoc_id) > 2007) { IL_WARN("aid > 2007\n"); error = true; } if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) == (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) { IL_WARN("CCK and short slot\n"); error = true; } if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) == (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) { IL_WARN("CCK and auto detect"); error = true; } if ((rxon-> flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) == RXON_FLG_TGG_PROTECT_MSK) { IL_WARN("TGg but no auto-detect\n"); error = true; } if (error) IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel)); if (error) { IL_ERR("Invalid RXON\n"); return -EINVAL; } return 0; } EXPORT_SYMBOL(il_check_rxon_cmd); /* * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed * @il: staging_rxon is compared to active_rxon * * If the RXON structure is changing enough to require a new tune, * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required. */ int il_full_rxon_required(struct il_priv *il) { const struct il_rxon_cmd *staging = &il->staging; const struct il_rxon_cmd *active = &il->active; #define CHK(cond) \ if ((cond)) { \ D_INFO("need full RXON - " #cond "\n"); \ return 1; \ } #define CHK_NEQ(c1, c2) \ if ((c1) != (c2)) { \ D_INFO("need full RXON - " \ #c1 " != " #c2 " - %d != %d\n", \ (c1), (c2)); \ return 1; \ } /* These items are only settable from the full RXON command */ CHK(!il_is_associated(il)); CHK(!ether_addr_equal_64bits(staging->bssid_addr, active->bssid_addr)); CHK(!ether_addr_equal_64bits(staging->node_addr, active->node_addr)); CHK(!ether_addr_equal_64bits(staging->wlap_bssid_addr, active->wlap_bssid_addr)); CHK_NEQ(staging->dev_type, active->dev_type); CHK_NEQ(staging->channel, active->channel); CHK_NEQ(staging->air_propagation, active->air_propagation); CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates, active->ofdm_ht_single_stream_basic_rates); CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates, active->ofdm_ht_dual_stream_basic_rates); CHK_NEQ(staging->assoc_id, active->assoc_id); /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can * be updated with the RXON_ASSOC command -- however only some * flag transitions are allowed using RXON_ASSOC */ /* Check if we are not switching bands */ CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK, active->flags & RXON_FLG_BAND_24G_MSK); /* Check if we are switching association toggle */ CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK, active->filter_flags & RXON_FILTER_ASSOC_MSK); #undef CHK #undef CHK_NEQ return 0; } EXPORT_SYMBOL(il_full_rxon_required); u8 il_get_lowest_plcp(struct il_priv *il) { /* * Assign the lowest rate -- should really get this from * the beacon skb from mac80211. */ if (il->staging.flags & RXON_FLG_BAND_24G_MSK) return RATE_1M_PLCP; else return RATE_6M_PLCP; } EXPORT_SYMBOL(il_get_lowest_plcp); static void _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf) { struct il_rxon_cmd *rxon = &il->staging; if (!il->ht.enabled) { rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK | RXON_FLG_HT_PROT_MSK); return; } rxon->flags |= cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS); /* Set up channel bandwidth: * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */ /* clear the HT channel mode before set the mode */ rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK); if (il_is_ht40_tx_allowed(il, NULL)) { /* pure ht40 */ if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) { rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40; /* Note: control channel is opposite of extension channel */ switch (il->ht.extension_chan_offset) { case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: rxon->flags &= ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; break; } } else { /* Note: control channel is opposite of extension channel */ switch (il->ht.extension_chan_offset) { case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: rxon->flags &= ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK); rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED; break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK; rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED; break; case IEEE80211_HT_PARAM_CHA_SEC_NONE: default: /* channel location only valid if in Mixed mode */ IL_ERR("invalid extension channel offset\n"); break; } } } else { rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY; } if (il->ops->set_rxon_chain) il->ops->set_rxon_chain(il); D_ASSOC("rxon flags 0x%X operation mode :0x%X " "extension channel offset 0x%x\n", le32_to_cpu(rxon->flags), il->ht.protection, il->ht.extension_chan_offset); } void il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf) { _il_set_rxon_ht(il, ht_conf); } EXPORT_SYMBOL(il_set_rxon_ht); /* Return valid, unused, channel for a passive scan to reset the RF */ u8 il_get_single_channel_number(struct il_priv *il, enum nl80211_band band) { const struct il_channel_info *ch_info; int i; u8 channel = 0; u8 min, max; if (band == NL80211_BAND_5GHZ) { min = 14; max = il->channel_count; } else { min = 0; max = 14; } for (i = min; i < max; i++) { channel = il->channel_info[i].channel; if (channel == le16_to_cpu(il->staging.channel)) continue; ch_info = il_get_channel_info(il, band, channel); if (il_is_channel_valid(ch_info)) break; } return channel; } EXPORT_SYMBOL(il_get_single_channel_number); /* * il_set_rxon_channel - Set the band and channel values in staging RXON * @ch: requested channel as a pointer to struct ieee80211_channel * NOTE: Does not commit to the hardware; it sets appropriate bit fields * in the staging RXON flag structure based on the ch->band */ int il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch) { enum nl80211_band band = ch->band; u16 channel = ch->hw_value; if (le16_to_cpu(il->staging.channel) == channel && il->band == band) return 0; il->staging.channel = cpu_to_le16(channel); if (band == NL80211_BAND_5GHZ) il->staging.flags &= ~RXON_FLG_BAND_24G_MSK; else il->staging.flags |= RXON_FLG_BAND_24G_MSK; il->band = band; D_INFO("Staging channel set to %d [%d]\n", channel, band); return 0; } EXPORT_SYMBOL(il_set_rxon_channel); void il_set_flags_for_band(struct il_priv *il, enum nl80211_band band, struct ieee80211_vif *vif) { if (band == NL80211_BAND_5GHZ) { il->staging.flags &= ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_CCK_MSK); il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK; } else { /* Copied from il_post_associate() */ if (vif && vif->bss_conf.use_short_slot) il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK; else il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK; il->staging.flags |= RXON_FLG_BAND_24G_MSK; il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK; il->staging.flags &= ~RXON_FLG_CCK_MSK; } } EXPORT_SYMBOL(il_set_flags_for_band); /* * initialize rxon structure with default values from eeprom */ void il_connection_init_rx_config(struct il_priv *il) { const struct il_channel_info *ch_info; memset(&il->staging, 0, sizeof(il->staging)); switch (il->iw_mode) { case NL80211_IFTYPE_UNSPECIFIED: il->staging.dev_type = RXON_DEV_TYPE_ESS; break; case NL80211_IFTYPE_STATION: il->staging.dev_type = RXON_DEV_TYPE_ESS; il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK; break; case NL80211_IFTYPE_ADHOC: il->staging.dev_type = RXON_DEV_TYPE_IBSS; il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK; il->staging.filter_flags = RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK; break; default: IL_ERR("Unsupported interface type %d\n", il->vif->type); return; } #if 0 /* TODO: Figure out when short_preamble would be set and cache from * that */ if (!hw_to_local(il->hw)->short_preamble) il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; else il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; #endif ch_info = il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel)); if (!ch_info) ch_info = &il->channel_info[0]; il->staging.channel = cpu_to_le16(ch_info->channel); il->band = ch_info->band; il_set_flags_for_band(il, il->band, il->vif); il->staging.ofdm_basic_rates = (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF; il->staging.cck_basic_rates = (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF; /* clear both MIX and PURE40 mode flag */ il->staging.flags &= ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40); if (il->vif) memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN); il->staging.ofdm_ht_single_stream_basic_rates = 0xff; il->staging.ofdm_ht_dual_stream_basic_rates = 0xff; } EXPORT_SYMBOL(il_connection_init_rx_config); void il_set_rate(struct il_priv *il) { const struct ieee80211_supported_band *hw = NULL; struct ieee80211_rate *rate; int i; hw = il_get_hw_mode(il, il->band); if (!hw) { IL_ERR("Failed to set rate: unable to get hw mode\n"); return; } il->active_rate = 0; for (i = 0; i < hw->n_bitrates; i++) { rate = &(hw->bitrates[i]); if (rate->hw_value < RATE_COUNT_LEGACY) il->active_rate |= (1 << rate->hw_value); } D_RATE("Set active_rate = %0x\n", il->active_rate); il->staging.cck_basic_rates = (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF; il->staging.ofdm_basic_rates = (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF; } EXPORT_SYMBOL(il_set_rate); void il_chswitch_done(struct il_priv *il, bool is_success) { if (test_bit(S_EXIT_PENDING, &il->status)) return; if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status)) ieee80211_chswitch_done(il->vif, is_success); } EXPORT_SYMBOL(il_chswitch_done); void il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_csa_notification *csa = &(pkt->u.csa_notif); struct il_rxon_cmd *rxon = (void *)&il->active; if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status)) return; if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) { rxon->channel = csa->channel; il->staging.channel = csa->channel; D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel)); il_chswitch_done(il, true); } else { IL_ERR("CSA notif (fail) : channel %d\n", le16_to_cpu(csa->channel)); il_chswitch_done(il, false); } } EXPORT_SYMBOL(il_hdl_csa); #ifdef CONFIG_IWLEGACY_DEBUG void il_print_rx_config_cmd(struct il_priv *il) { struct il_rxon_cmd *rxon = &il->staging; D_RADIO("RX CONFIG:\n"); il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon)); D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel)); D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags)); D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags)); D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type); D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates); D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates); D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr); D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr); D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id)); } EXPORT_SYMBOL(il_print_rx_config_cmd); #endif /* * il_irq_handle_error - called for HW or SW error interrupt from card */ void il_irq_handle_error(struct il_priv *il) { /* Set the FW error flag -- cleared on il_down */ set_bit(S_FW_ERROR, &il->status); /* Cancel currently queued command. */ clear_bit(S_HCMD_ACTIVE, &il->status); IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version); il->ops->dump_nic_error_log(il); if (il->ops->dump_fh) il->ops->dump_fh(il, NULL, false); #ifdef CONFIG_IWLEGACY_DEBUG if (il_get_debug_level(il) & IL_DL_FW_ERRORS) il_print_rx_config_cmd(il); #endif wake_up(&il->wait_command_queue); /* Keep the restart process from trying to send host * commands by clearing the INIT status bit */ clear_bit(S_READY, &il->status); if (!test_bit(S_EXIT_PENDING, &il->status)) { IL_DBG(IL_DL_FW_ERRORS, "Restarting adapter due to uCode error.\n"); if (il->cfg->mod_params->restart_fw) queue_work(il->workqueue, &il->restart); } } EXPORT_SYMBOL(il_irq_handle_error); static int _il_apm_stop_master(struct il_priv *il) { int ret = 0; /* stop device's busmaster DMA activity */ _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); ret = _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); if (ret < 0) IL_WARN("Master Disable Timed Out, 100 usec\n"); D_INFO("stop master\n"); return ret; } void _il_apm_stop(struct il_priv *il) { lockdep_assert_held(&il->reg_lock); D_INFO("Stop card, put in low power state\n"); /* Stop device's DMA activity */ _il_apm_stop_master(il); /* Reset the entire device */ _il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ _il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); } EXPORT_SYMBOL(_il_apm_stop); void il_apm_stop(struct il_priv *il) { unsigned long flags; spin_lock_irqsave(&il->reg_lock, flags); _il_apm_stop(il); spin_unlock_irqrestore(&il->reg_lock, flags); } EXPORT_SYMBOL(il_apm_stop); /* * Start up NIC's basic functionality after it has been reset * (e.g. after platform boot, or shutdown via il_apm_stop()) * NOTE: This does not load uCode nor start the embedded processor */ int il_apm_init(struct il_priv *il) { int ret = 0; u16 lctl; D_INFO("Init card's basic functions\n"); /* * Use "set_bit" below rather than "write", to preserve any hardware * bits already set by default after reset. */ /* Disable L0S exit timer (platform NMI Work/Around) */ il_set_bit(il, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ il_set_bit(il, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s * NOTE: This is no-op for 3945 (non-existent bit) */ il_set_bit(il, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); /* * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition. * Check if BIOS (or OS) enabled L1-ASPM on this device. * If so (likely), disable L0S, so device moves directly L0->L1; * costs negligible amount of power savings. * If not (unlikely), enable L0S, so there is at least some * power savings, even without L1. */ if (il->cfg->set_l0s) { ret = pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl); if (!ret && (lctl & PCI_EXP_LNKCTL_ASPM_L1)) { /* L1-ASPM enabled; disable(!) L0S */ il_set_bit(il, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); D_POWER("L1 Enabled; Disabling L0S\n"); } else { /* L1-ASPM disabled; enable(!) L0S */ il_clear_bit(il, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); D_POWER("L1 Disabled; Enabling L0S\n"); } } /* Configure analog phase-lock-loop before activating to D0A */ if (il->cfg->pll_cfg_val) il_set_bit(il, CSR_ANA_PLL_CFG, il->cfg->pll_cfg_val); /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is supported, e.g. il_wr_prph() * and accesses to uCode SRAM. */ ret = _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { D_INFO("Failed to init the card\n"); goto out; } /* * Enable DMA and BSM (if used) clocks, wait for them to stabilize. * BSM (Boostrap State Machine) is only in 3945 and 4965. * * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits * do not disable clocks. This preserves any hardware bits already * set by default in "CLK_CTRL_REG" after reset. */ if (il->cfg->use_bsm) il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT); else il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(20); /* Disable L1-Active */ il_set_bits_prph(il, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); out: return ret; } EXPORT_SYMBOL(il_apm_init); int il_set_tx_power(struct il_priv *il, s8 tx_power, bool force) { int ret; s8 prev_tx_power; bool defer; lockdep_assert_held(&il->mutex); if (il->tx_power_user_lmt == tx_power && !force) return 0; if (!il->ops->send_tx_power) return -EOPNOTSUPP; /* 0 dBm mean 1 milliwatt */ if (tx_power < 0) { IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power); return -EINVAL; } if (tx_power > il->tx_power_device_lmt) { IL_WARN("Requested user TXPOWER %d above upper limit %d.\n", tx_power, il->tx_power_device_lmt); return -EINVAL; } if (!il_is_ready_rf(il)) return -EIO; /* scan complete and commit_rxon use tx_power_next value, * it always need to be updated for newest request */ il->tx_power_next = tx_power; /* do not set tx power when scanning or channel changing */ defer = test_bit(S_SCANNING, &il->status) || memcmp(&il->active, &il->staging, sizeof(il->staging)); if (defer && !force) { D_INFO("Deferring tx power set\n"); return 0; } prev_tx_power = il->tx_power_user_lmt; il->tx_power_user_lmt = tx_power; ret = il->ops->send_tx_power(il); /* if fail to set tx_power, restore the orig. tx power */ if (ret) { il->tx_power_user_lmt = prev_tx_power; il->tx_power_next = prev_tx_power; } return ret; } EXPORT_SYMBOL(il_set_tx_power); void il_send_bt_config(struct il_priv *il) { struct il_bt_cmd bt_cmd = { .lead_time = BT_LEAD_TIME_DEF, .max_kill = BT_MAX_KILL_DEF, .kill_ack_mask = 0, .kill_cts_mask = 0, }; if (!bt_coex_active) bt_cmd.flags = BT_COEX_DISABLE; else bt_cmd.flags = BT_COEX_ENABLE; D_INFO("BT coex %s\n", (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active"); if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd)) IL_ERR("failed to send BT Coex Config\n"); } EXPORT_SYMBOL(il_send_bt_config); int il_send_stats_request(struct il_priv *il, u8 flags, bool clear) { struct il_stats_cmd stats_cmd = { .configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0, }; if (flags & CMD_ASYNC) return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd), &stats_cmd, NULL); else return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd), &stats_cmd); } EXPORT_SYMBOL(il_send_stats_request); void il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb) { #ifdef CONFIG_IWLEGACY_DEBUG struct il_rx_pkt *pkt = rxb_addr(rxb); struct il_sleep_notification *sleep = &(pkt->u.sleep_notif); D_RX("sleep mode: %d, src: %d\n", sleep->pm_sleep_mode, sleep->pm_wakeup_src); #endif } EXPORT_SYMBOL(il_hdl_pm_sleep); void il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK; D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len, il_get_cmd_string(pkt->hdr.cmd)); il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len); } EXPORT_SYMBOL(il_hdl_pm_debug_stats); void il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb) { struct il_rx_pkt *pkt = rxb_addr(rxb); IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) " "seq 0x%04X ser 0x%08X\n", le32_to_cpu(pkt->u.err_resp.error_type), il_get_cmd_string(pkt->u.err_resp.cmd_id), pkt->u.err_resp.cmd_id, le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num), le32_to_cpu(pkt->u.err_resp.error_info)); } EXPORT_SYMBOL(il_hdl_error); void il_clear_isr_stats(struct il_priv *il) { memset(&il->isr_stats, 0, sizeof(il->isr_stats)); } int il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, const struct ieee80211_tx_queue_params *params) { struct il_priv *il = hw->priv; unsigned long flags; int q; D_MAC80211("enter\n"); if (!il_is_ready_rf(il)) { D_MAC80211("leave - RF not ready\n"); return -EIO; } if (queue >= AC_NUM) { D_MAC80211("leave - queue >= AC_NUM %d\n", queue); return 0; } q = AC_NUM - 1 - queue; spin_lock_irqsave(&il->lock, flags); il->qos_data.def_qos_parm.ac[q].cw_min = cpu_to_le16(params->cw_min); il->qos_data.def_qos_parm.ac[q].cw_max = cpu_to_le16(params->cw_max); il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs; il->qos_data.def_qos_parm.ac[q].edca_txop = cpu_to_le16((params->txop * 32)); il->qos_data.def_qos_parm.ac[q].reserved1 = 0; spin_unlock_irqrestore(&il->lock, flags); D_MAC80211("leave\n"); return 0; } EXPORT_SYMBOL(il_mac_conf_tx); int il_mac_tx_last_beacon(struct ieee80211_hw *hw) { struct il_priv *il = hw->priv; int ret; D_MAC80211("enter\n"); ret = (il->ibss_manager == IL_IBSS_MANAGER); D_MAC80211("leave ret %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon); static int il_set_mode(struct il_priv *il) { il_connection_init_rx_config(il); if (il->ops->set_rxon_chain) il->ops->set_rxon_chain(il); return il_commit_rxon(il); } int il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct il_priv *il = hw->priv; int err; bool reset; mutex_lock(&il->mutex); D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr); if (!il_is_ready_rf(il)) { IL_WARN("Try to add interface when device not ready\n"); err = -EINVAL; goto out; } /* * We do not support multiple virtual interfaces, but on hardware reset * we have to add the same interface again. */ reset = (il->vif == vif); if (il->vif && !reset) { err = -EOPNOTSUPP; goto out; } il->vif = vif; il->iw_mode = vif->type; err = il_set_mode(il); if (err) { IL_WARN("Fail to set mode %d\n", vif->type); if (!reset) { il->vif = NULL; il->iw_mode = NL80211_IFTYPE_STATION; } } out: D_MAC80211("leave err %d\n", err); mutex_unlock(&il->mutex); return err; } EXPORT_SYMBOL(il_mac_add_interface); static void il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif) { lockdep_assert_held(&il->mutex); if (il->scan_vif == vif) { il_scan_cancel_timeout(il, 200); il_force_scan_end(il); } il_set_mode(il); } void il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct il_priv *il = hw->priv; mutex_lock(&il->mutex); D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr); WARN_ON(il->vif != vif); il->vif = NULL; il->iw_mode = NL80211_IFTYPE_UNSPECIFIED; il_teardown_interface(il, vif); eth_zero_addr(il->bssid); D_MAC80211("leave\n"); mutex_unlock(&il->mutex); } EXPORT_SYMBOL(il_mac_remove_interface); int il_alloc_txq_mem(struct il_priv *il) { if (!il->txq) il->txq = kcalloc(il->cfg->num_of_queues, sizeof(struct il_tx_queue), GFP_KERNEL); if (!il->txq) { IL_ERR("Not enough memory for txq\n"); return -ENOMEM; } return 0; } EXPORT_SYMBOL(il_alloc_txq_mem); void il_free_txq_mem(struct il_priv *il) { kfree(il->txq); il->txq = NULL; } EXPORT_SYMBOL(il_free_txq_mem); int il_force_reset(struct il_priv *il, bool external) { struct il_force_reset *force_reset; if (test_bit(S_EXIT_PENDING, &il->status)) return -EINVAL; force_reset = &il->force_reset; force_reset->reset_request_count++; if (!external) { if (force_reset->last_force_reset_jiffies && time_after(force_reset->last_force_reset_jiffies + force_reset->reset_duration, jiffies)) { D_INFO("force reset rejected\n"); force_reset->reset_reject_count++; return -EAGAIN; } } force_reset->reset_success_count++; force_reset->last_force_reset_jiffies = jiffies; /* * if the request is from external(ex: debugfs), * then always perform the request in regardless the module * parameter setting * if the request is from internal (uCode error or driver * detect failure), then fw_restart module parameter * need to be check before performing firmware reload */ if (!external && !il->cfg->mod_params->restart_fw) { D_INFO("Cancel firmware reload based on " "module parameter setting\n"); return 0; } IL_ERR("On demand firmware reload\n"); /* Set the FW error flag -- cleared on il_down */ set_bit(S_FW_ERROR, &il->status); wake_up(&il->wait_command_queue); /* * Keep the restart process from trying to send host * commands by clearing the INIT status bit */ clear_bit(S_READY, &il->status); queue_work(il->workqueue, &il->restart); return 0; } EXPORT_SYMBOL(il_force_reset); int il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_iftype newtype, bool newp2p) { struct il_priv *il = hw->priv; int err; mutex_lock(&il->mutex); D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n", vif->type, vif->addr, newtype, newp2p); if (newp2p) { err = -EOPNOTSUPP; goto out; } if (!il->vif || !il_is_ready_rf(il)) { /* * Huh? But wait ... this can maybe happen when * we're in the middle of a firmware restart! */ err = -EBUSY; goto out; } /* success */ vif->type = newtype; vif->p2p = false; il->iw_mode = newtype; il_teardown_interface(il, vif); err = 0; out: D_MAC80211("leave err %d\n", err); mutex_unlock(&il->mutex); return err; } EXPORT_SYMBOL(il_mac_change_interface); void il_mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct il_priv *il = hw->priv; unsigned long timeout = jiffies + msecs_to_jiffies(500); int i; mutex_lock(&il->mutex); D_MAC80211("enter\n"); if (il->txq == NULL) goto out; for (i = 0; i < il->hw_params.max_txq_num; i++) { struct il_queue *q; if (i == il->cmd_queue) continue; q = &il->txq[i].q; if (q->read_ptr == q->write_ptr) continue; if (time_after(jiffies, timeout)) { IL_ERR("Failed to flush queue %d\n", q->id); break; } msleep(20); } out: D_MAC80211("leave\n"); mutex_unlock(&il->mutex); } EXPORT_SYMBOL(il_mac_flush); /* * On every watchdog tick we check (latest) time stamp. If it does not * change during timeout period and queue is not empty we reset firmware. */ static int il_check_stuck_queue(struct il_priv *il, int cnt) { struct il_tx_queue *txq = &il->txq[cnt]; struct il_queue *q = &txq->q; unsigned long timeout; unsigned long now = jiffies; int ret; if (q->read_ptr == q->write_ptr) { txq->time_stamp = now; return 0; } timeout = txq->time_stamp + msecs_to_jiffies(il->cfg->wd_timeout); if (time_after(now, timeout)) { IL_ERR("Queue %d stuck for %u ms.\n", q->id, jiffies_to_msecs(now - txq->time_stamp)); ret = il_force_reset(il, false); return (ret == -EAGAIN) ? 0 : 1; } return 0; } /* * Making watchdog tick be a quarter of timeout assure we will * discover the queue hung between timeout and 1.25*timeout */ #define IL_WD_TICK(timeout) ((timeout) / 4) /* * Watchdog timer callback, we check each tx queue for stuck, if if hung * we reset the firmware. If everything is fine just rearm the timer. */ void il_bg_watchdog(struct timer_list *t) { struct il_priv *il = from_timer(il, t, watchdog); int cnt; unsigned long timeout; if (test_bit(S_EXIT_PENDING, &il->status)) return; timeout = il->cfg->wd_timeout; if (timeout == 0) return; /* monitor and check for stuck cmd queue */ if (il_check_stuck_queue(il, il->cmd_queue)) return; /* monitor and check for other stuck queues */ for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) { /* skip as we already checked the command queue */ if (cnt == il->cmd_queue) continue; if (il_check_stuck_queue(il, cnt)) return; } mod_timer(&il->watchdog, jiffies + msecs_to_jiffies(IL_WD_TICK(timeout))); } EXPORT_SYMBOL(il_bg_watchdog); void il_setup_watchdog(struct il_priv *il) { unsigned int timeout = il->cfg->wd_timeout; if (timeout) mod_timer(&il->watchdog, jiffies + msecs_to_jiffies(IL_WD_TICK(timeout))); else del_timer(&il->watchdog); } EXPORT_SYMBOL(il_setup_watchdog); /* * extended beacon time format * time in usec will be changed into a 32-bit value in extended:internal format * the extended part is the beacon counts * the internal part is the time in usec within one beacon interval */ u32 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval) { u32 quot; u32 rem; u32 interval = beacon_interval * TIME_UNIT; if (!interval || !usec) return 0; quot = (usec / interval) & (il_beacon_time_mask_high(il, il->hw_params. beacon_time_tsf_bits) >> il-> hw_params.beacon_time_tsf_bits); rem = (usec % interval) & il_beacon_time_mask_low(il, il->hw_params. beacon_time_tsf_bits); return (quot << il->hw_params.beacon_time_tsf_bits) + rem; } EXPORT_SYMBOL(il_usecs_to_beacons); /* base is usually what we get from ucode with each received frame, * the same as HW timer counter counting down */ __le32 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon, u32 beacon_interval) { u32 base_low = base & il_beacon_time_mask_low(il, il->hw_params. beacon_time_tsf_bits); u32 addon_low = addon & il_beacon_time_mask_low(il, il->hw_params. beacon_time_tsf_bits); u32 interval = beacon_interval * TIME_UNIT; u32 res = (base & il_beacon_time_mask_high(il, il->hw_params. beacon_time_tsf_bits)) + (addon & il_beacon_time_mask_high(il, il->hw_params. beacon_time_tsf_bits)); if (base_low > addon_low) res += base_low - addon_low; else if (base_low < addon_low) { res += interval + base_low - addon_low; res += (1 << il->hw_params.beacon_time_tsf_bits); } else res += (1 << il->hw_params.beacon_time_tsf_bits); return cpu_to_le32(res); } EXPORT_SYMBOL(il_add_beacon_time); #ifdef CONFIG_PM_SLEEP static int il_pci_suspend(struct device *device) { struct il_priv *il = dev_get_drvdata(device); /* * This function is called when system goes into suspend state * mac80211 will call il_mac_stop() from the mac80211 suspend function * first but since il_mac_stop() has no knowledge of who the caller is, * it will not call apm_ops.stop() to stop the DMA operation. * Calling apm_ops.stop here to make sure we stop the DMA. */ il_apm_stop(il); return 0; } static int il_pci_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct il_priv *il = pci_get_drvdata(pdev); bool hw_rfkill = false; /* * We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state. */ pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); il_enable_interrupts(il); if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) hw_rfkill = true; if (hw_rfkill) set_bit(S_RFKILL, &il->status); else clear_bit(S_RFKILL, &il->status); wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill); return 0; } SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume); EXPORT_SYMBOL(il_pm_ops); #endif /* CONFIG_PM_SLEEP */ static void il_update_qos(struct il_priv *il) { if (test_bit(S_EXIT_PENDING, &il->status)) return; il->qos_data.def_qos_parm.qos_flags = 0; if (il->qos_data.qos_active) il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_UPDATE_EDCA_MSK; if (il->ht.enabled) il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK; D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n", il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags); il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd), &il->qos_data.def_qos_parm, NULL); } /* * il_mac_config - mac80211 config callback */ int il_mac_config(struct ieee80211_hw *hw, u32 changed) { struct il_priv *il = hw->priv; const struct il_channel_info *ch_info; struct ieee80211_conf *conf = &hw->conf; struct ieee80211_channel *channel = conf->chandef.chan; struct il_ht_config *ht_conf = &il->current_ht_config; unsigned long flags = 0; int ret = 0; u16 ch; int scan_active = 0; bool ht_changed = false; mutex_lock(&il->mutex); D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value, changed); if (unlikely(test_bit(S_SCANNING, &il->status))) { scan_active = 1; D_MAC80211("scan active\n"); } if (changed & (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) { /* mac80211 uses static for non-HT which is what we want */ il->current_ht_config.smps = conf->smps_mode; /* * Recalculate chain counts. * * If monitor mode is enabled then mac80211 will * set up the SM PS mode to OFF if an HT channel is * configured. */ if (il->ops->set_rxon_chain) il->ops->set_rxon_chain(il); } /* during scanning mac80211 will delay channel setting until * scan finish with changed = 0 */ if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) { if (scan_active) goto set_ch_out; ch = channel->hw_value; ch_info = il_get_channel_info(il, channel->band, ch); if (!il_is_channel_valid(ch_info)) { D_MAC80211("leave - invalid channel\n"); ret = -EINVAL; goto set_ch_out; } if (il->iw_mode == NL80211_IFTYPE_ADHOC && !il_is_channel_ibss(ch_info)) { D_MAC80211("leave - not IBSS channel\n"); ret = -EINVAL; goto set_ch_out; } spin_lock_irqsave(&il->lock, flags); /* Configure HT40 channels */ if (il->ht.enabled != conf_is_ht(conf)) { il->ht.enabled = conf_is_ht(conf); ht_changed = true; } if (il->ht.enabled) { if (conf_is_ht40_minus(conf)) { il->ht.extension_chan_offset = IEEE80211_HT_PARAM_CHA_SEC_BELOW; il->ht.is_40mhz = true; } else if (conf_is_ht40_plus(conf)) { il->ht.extension_chan_offset = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; il->ht.is_40mhz = true; } else { il->ht.extension_chan_offset = IEEE80211_HT_PARAM_CHA_SEC_NONE; il->ht.is_40mhz = false; } } else il->ht.is_40mhz = false; /* * Default to no protection. Protection mode will * later be set from BSS config in il_ht_conf */ il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE; /* if we are switching from ht to 2.4 clear flags * from any ht related info since 2.4 does not * support ht */ if ((le16_to_cpu(il->staging.channel) != ch)) il->staging.flags = 0; il_set_rxon_channel(il, channel); il_set_rxon_ht(il, ht_conf); il_set_flags_for_band(il, channel->band, il->vif); spin_unlock_irqrestore(&il->lock, flags); if (il->ops->update_bcast_stations) ret = il->ops->update_bcast_stations(il); set_ch_out: /* The list of supported rates and rate mask can be different * for each band; since the band may have changed, reset * the rate mask to what mac80211 lists */ il_set_rate(il); } if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) { il->power_data.ps_disabled = !(conf->flags & IEEE80211_CONF_PS); if (!il->power_data.ps_disabled) IL_WARN_ONCE("Enabling power save might cause firmware crashes\n"); ret = il_power_update_mode(il, false); if (ret) D_MAC80211("Error setting sleep level\n"); } if (changed & IEEE80211_CONF_CHANGE_POWER) { D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt, conf->power_level); il_set_tx_power(il, conf->power_level, false); } if (!il_is_ready(il)) { D_MAC80211("leave - not ready\n"); goto out; } if (scan_active) goto out; if (memcmp(&il->active, &il->staging, sizeof(il->staging))) il_commit_rxon(il); else D_INFO("Not re-sending same RXON configuration.\n"); if (ht_changed) il_update_qos(il); out: D_MAC80211("leave ret %d\n", ret); mutex_unlock(&il->mutex); return ret; } EXPORT_SYMBOL(il_mac_config); void il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct il_priv *il = hw->priv; unsigned long flags; mutex_lock(&il->mutex); D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr); spin_lock_irqsave(&il->lock, flags); memset(&il->current_ht_config, 0, sizeof(struct il_ht_config)); /* new association get rid of ibss beacon skb */ dev_kfree_skb(il->beacon_skb); il->beacon_skb = NULL; il->timestamp = 0; spin_unlock_irqrestore(&il->lock, flags); il_scan_cancel_timeout(il, 100); if (!il_is_ready_rf(il)) { D_MAC80211("leave - not ready\n"); mutex_unlock(&il->mutex); return; } /* we are restarting association process */ il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK; il_commit_rxon(il); il_set_rate(il); D_MAC80211("leave\n"); mutex_unlock(&il->mutex); } EXPORT_SYMBOL(il_mac_reset_tsf); static void il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif) { struct il_ht_config *ht_conf = &il->current_ht_config; struct ieee80211_sta *sta; struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; D_ASSOC("enter:\n"); if (!il->ht.enabled) return; il->ht.protection = bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION; il->ht.non_gf_sta_present = !!(bss_conf-> ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); ht_conf->single_chain_sufficient = false; switch (vif->type) { case NL80211_IFTYPE_STATION: rcu_read_lock(); sta = ieee80211_find_sta(vif, bss_conf->bssid); if (sta) { struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; int maxstreams; maxstreams = (ht_cap->mcs. tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; maxstreams += 1; if (ht_cap->mcs.rx_mask[1] == 0 && ht_cap->mcs.rx_mask[2] == 0) ht_conf->single_chain_sufficient = true; if (maxstreams <= 1) ht_conf->single_chain_sufficient = true; } else { /* * If at all, this can only happen through a race * when the AP disconnects us while we're still * setting up the connection, in that case mac80211 * will soon tell us about that. */ ht_conf->single_chain_sufficient = true; } rcu_read_unlock(); break; case NL80211_IFTYPE_ADHOC: ht_conf->single_chain_sufficient = true; break; default: break; } D_ASSOC("leave\n"); } static inline void il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif) { /* * inform the ucode that there is no longer an * association and that no more packets should be * sent */ il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK; il->staging.assoc_id = 0; il_commit_rxon(il); } static void il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct il_priv *il = hw->priv; unsigned long flags; __le64 timestamp; struct sk_buff *skb = ieee80211_beacon_get(hw, vif); if (!skb) return; D_MAC80211("enter\n"); lockdep_assert_held(&il->mutex); if (!il->beacon_enabled) { IL_ERR("update beacon with no beaconing enabled\n"); dev_kfree_skb(skb); return; } spin_lock_irqsave(&il->lock, flags); dev_kfree_skb(il->beacon_skb); il->beacon_skb = skb; timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp; il->timestamp = le64_to_cpu(timestamp); D_MAC80211("leave\n"); spin_unlock_irqrestore(&il->lock, flags); if (!il_is_ready_rf(il)) { D_MAC80211("leave - RF not ready\n"); return; } il->ops->post_associate(il); } void il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changes) { struct il_priv *il = hw->priv; int ret; mutex_lock(&il->mutex); D_MAC80211("enter: changes 0x%x\n", changes); if (!il_is_alive(il)) { D_MAC80211("leave - not alive\n"); mutex_unlock(&il->mutex); return; } if (changes & BSS_CHANGED_QOS) { unsigned long flags; spin_lock_irqsave(&il->lock, flags); il->qos_data.qos_active = bss_conf->qos; il_update_qos(il); spin_unlock_irqrestore(&il->lock, flags); } if (changes & BSS_CHANGED_BEACON_ENABLED) { /* FIXME: can we remove beacon_enabled ? */ if (vif->bss_conf.enable_beacon) il->beacon_enabled = true; else il->beacon_enabled = false; } if (changes & BSS_CHANGED_BSSID) { D_MAC80211("BSSID %pM\n", bss_conf->bssid); /* * On passive channel we wait with blocked queues to see if * there is traffic on that channel. If no frame will be * received (what is very unlikely since scan detects AP on * that channel, but theoretically possible), mac80211 associate * procedure will time out and mac80211 will call us with NULL * bssid. We have to unblock queues on such condition. */ if (is_zero_ether_addr(bss_conf->bssid)) il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE); /* * If there is currently a HW scan going on in the background, * then we need to cancel it, otherwise sometimes we are not * able to authenticate (FIXME: why ?) */ if (il_scan_cancel_timeout(il, 100)) { D_MAC80211("leave - scan abort failed\n"); mutex_unlock(&il->mutex); return; } /* mac80211 only sets assoc when in STATION mode */ memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN); /* FIXME: currently needed in a few places */ memcpy(il->bssid, bss_conf->bssid, ETH_ALEN); } /* * This needs to be after setting the BSSID in case * mac80211 decides to do both changes at once because * it will invoke post_associate. */ if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON)) il_beacon_update(hw, vif); if (changes & BSS_CHANGED_ERP_PREAMBLE) { D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble); if (bss_conf->use_short_preamble) il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; else il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; } if (changes & BSS_CHANGED_ERP_CTS_PROT) { D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot); if (bss_conf->use_cts_prot && il->band != NL80211_BAND_5GHZ) il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK; else il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK; if (bss_conf->use_cts_prot) il->staging.flags |= RXON_FLG_SELF_CTS_EN; else il->staging.flags &= ~RXON_FLG_SELF_CTS_EN; } if (changes & BSS_CHANGED_BASIC_RATES) { /* XXX use this information * * To do that, remove code from il_set_rate() and put something * like this here: * if (A-band) il->staging.ofdm_basic_rates = bss_conf->basic_rates; else il->staging.ofdm_basic_rates = bss_conf->basic_rates >> 4; il->staging.cck_basic_rates = bss_conf->basic_rates & 0xF; */ } if (changes & BSS_CHANGED_HT) { il_ht_conf(il, vif); if (il->ops->set_rxon_chain) il->ops->set_rxon_chain(il); } if (changes & BSS_CHANGED_ASSOC) { D_MAC80211("ASSOC %d\n", bss_conf->assoc); if (bss_conf->assoc) { il->timestamp = bss_conf->sync_tsf; if (!il_is_rfkill(il)) il->ops->post_associate(il); } else il_set_no_assoc(il, vif); } if (changes && il_is_associated(il) && bss_conf->aid) { D_MAC80211("Changes (%#x) while associated\n", changes); ret = il_send_rxon_assoc(il); if (!ret) { /* Sync active_rxon with latest change. */ memcpy((void *)&il->active, &il->staging, sizeof(struct il_rxon_cmd)); } } if (changes & BSS_CHANGED_BEACON_ENABLED) { if (vif->bss_conf.enable_beacon) { memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN); memcpy(il->bssid, bss_conf->bssid, ETH_ALEN); il->ops->config_ap(il); } else il_set_no_assoc(il, vif); } if (changes & BSS_CHANGED_IBSS) { ret = il->ops->manage_ibss_station(il, vif, bss_conf->ibss_joined); if (ret) IL_ERR("failed to %s IBSS station %pM\n", bss_conf->ibss_joined ? "add" : "remove", bss_conf->bssid); } D_MAC80211("leave\n"); mutex_unlock(&il->mutex); } EXPORT_SYMBOL(il_mac_bss_info_changed); irqreturn_t il_isr(int irq, void *data) { struct il_priv *il = data; u32 inta, inta_mask; u32 inta_fh; unsigned long flags; if (!il) return IRQ_NONE; spin_lock_irqsave(&il->lock, flags); /* Disable (but don't clear!) interrupts here to avoid * back-to-back ISRs and sporadic interrupts from our NIC. * If we have something to service, the tasklet will re-enable ints. * If we *don't* have something, we'll re-enable before leaving here. */ inta_mask = _il_rd(il, CSR_INT_MASK); /* just for debug */ _il_wr(il, CSR_INT_MASK, 0x00000000); /* Discover which interrupts are active/pending */ inta = _il_rd(il, CSR_INT); inta_fh = _il_rd(il, CSR_FH_INT_STATUS); /* Ignore interrupt if there's nothing in NIC to service. * This may be due to IRQ shared with another device, * or due to sporadic interrupts thrown from our NIC. */ if (!inta && !inta_fh) { D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n"); goto none; } if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) { /* Hardware disappeared. It might have already raised * an interrupt */ IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta); goto unplugged; } D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask, inta_fh); inta &= ~CSR_INT_BIT_SCD; /* il_irq_tasklet() will service interrupts and re-enable them */ if (likely(inta || inta_fh)) tasklet_schedule(&il->irq_tasklet); unplugged: spin_unlock_irqrestore(&il->lock, flags); return IRQ_HANDLED; none: /* re-enable interrupts here since we don't have anything to service. */ /* only Re-enable if disabled by irq */ if (test_bit(S_INT_ENABLED, &il->status)) il_enable_interrupts(il); spin_unlock_irqrestore(&il->lock, flags); return IRQ_NONE; } EXPORT_SYMBOL(il_isr); /* * il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this * function. */ void il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info, __le16 fc, __le32 *tx_flags) { if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) { *tx_flags |= TX_CMD_FLG_RTS_MSK; *tx_flags &= ~TX_CMD_FLG_CTS_MSK; *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK; if (!ieee80211_is_mgmt(fc)) return; switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) { case cpu_to_le16(IEEE80211_STYPE_AUTH): case cpu_to_le16(IEEE80211_STYPE_DEAUTH): case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ): case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ): *tx_flags &= ~TX_CMD_FLG_RTS_MSK; *tx_flags |= TX_CMD_FLG_CTS_MSK; break; } } else if (info->control.rates[0]. flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { *tx_flags &= ~TX_CMD_FLG_RTS_MSK; *tx_flags |= TX_CMD_FLG_CTS_MSK; *tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK; } } EXPORT_SYMBOL(il_tx_cmd_protection);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1