Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
striebit | 1921 | 25.07% | 10 | 9.01% |
Johannes Berg | 1626 | 21.22% | 17 | 15.32% |
Luciano Coelho | 899 | 11.73% | 16 | 14.41% |
Arik Nemtsov | 717 | 9.36% | 6 | 5.41% |
Eran Harary | 665 | 8.68% | 9 | 8.11% |
Sara Sharon | 499 | 6.51% | 6 | 5.41% |
Gil Adam | 230 | 3.00% | 1 | 0.90% |
Haim Dreyfuss | 211 | 2.75% | 4 | 3.60% |
Eytan Lifshitz | 158 | 2.06% | 1 | 0.90% |
Emmanuel Grumbach | 137 | 1.79% | 8 | 7.21% |
Tova Mussai | 127 | 1.66% | 4 | 3.60% |
Miri Korenblit | 79 | 1.03% | 1 | 0.90% |
Liad Kaufman | 53 | 0.69% | 4 | 3.60% |
Chaya Rachel Ivgy | 46 | 0.60% | 2 | 1.80% |
Naftali Goldstein | 41 | 0.54% | 2 | 1.80% |
Matti Gottlieb | 40 | 0.52% | 2 | 1.80% |
Moshe Harel | 40 | 0.52% | 1 | 0.90% |
Eyal Shapira | 34 | 0.44% | 4 | 3.60% |
Gregory Greenman | 26 | 0.34% | 2 | 1.80% |
Golan Ben-Ami | 22 | 0.29% | 1 | 0.90% |
Eliad Peller | 20 | 0.26% | 3 | 2.70% |
Yue haibing | 19 | 0.25% | 2 | 1.80% |
Mordechai Goodstein | 17 | 0.22% | 1 | 0.90% |
Gustavo A. R. Silva | 15 | 0.20% | 1 | 0.90% |
David Spinadel | 15 | 0.20% | 1 | 0.90% |
Andrei Otcheretianski | 5 | 0.07% | 1 | 0.90% |
Stanislaw Gruszka | 1 | 0.01% | 1 | 0.90% |
Total | 7663 | 111 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2005-2014, 2018-2021 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #include <linux/types.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/etherdevice.h> #include <linux/pci.h> #include <linux/firmware.h> #include "iwl-drv.h" #include "iwl-modparams.h" #include "iwl-nvm-parse.h" #include "iwl-prph.h" #include "iwl-io.h" #include "iwl-csr.h" #include "fw/acpi.h" #include "fw/api/nvm-reg.h" #include "fw/api/commands.h" #include "fw/api/cmdhdr.h" #include "fw/img.h" /* NVM offsets (in words) definitions */ enum nvm_offsets { /* NVM HW-Section offset (in words) definitions */ SUBSYSTEM_ID = 0x0A, HW_ADDR = 0x15, /* NVM SW-Section offset (in words) definitions */ NVM_SW_SECTION = 0x1C0, NVM_VERSION = 0, RADIO_CFG = 1, SKU = 2, N_HW_ADDRS = 3, NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, /* NVM calibration section offset (in words) definitions */ NVM_CALIB_SECTION = 0x2B8, XTAL_CALIB = 0x316 - NVM_CALIB_SECTION, /* NVM REGULATORY -Section offset (in words) definitions */ NVM_CHANNELS_SDP = 0, }; enum ext_nvm_offsets { /* NVM HW-Section offset (in words) definitions */ MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, /* NVM SW-Section offset (in words) definitions */ NVM_VERSION_EXT_NVM = 0, N_HW_ADDRS_FAMILY_8000 = 3, /* NVM PHY_SKU-Section offset (in words) definitions */ RADIO_CFG_FAMILY_EXT_NVM = 0, SKU_FAMILY_8000 = 2, /* NVM REGULATORY -Section offset (in words) definitions */ NVM_CHANNELS_EXTENDED = 0, NVM_LAR_OFFSET_OLD = 0x4C7, NVM_LAR_OFFSET = 0x507, NVM_LAR_ENABLED = 0x7, }; /* SKU Capabilities (actual values from NVM definition) */ enum nvm_sku_bits { NVM_SKU_CAP_BAND_24GHZ = BIT(0), NVM_SKU_CAP_BAND_52GHZ = BIT(1), NVM_SKU_CAP_11N_ENABLE = BIT(2), NVM_SKU_CAP_11AC_ENABLE = BIT(3), NVM_SKU_CAP_MIMO_DISABLE = BIT(5), }; /* * These are the channel numbers in the order that they are stored in the NVM */ static const u16 iwl_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44 , 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165 }; static const u16 iwl_ext_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181 }; static const u16 iwl_uhb_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181, /* 6-7 GHz */ 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 }; #define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) #define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) #define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels) #define NUM_2GHZ_CHANNELS 14 #define NUM_5GHZ_CHANNELS 37 #define FIRST_2GHZ_HT_MINUS 5 #define LAST_2GHZ_HT_PLUS 9 #define N_HW_ADDR_MASK 0xF /* rate data (static) */ static struct ieee80211_rate iwl_cfg80211_rates[] = { { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, }; #define RATES_24_OFFS 0 #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) #define RATES_52_OFFS 4 #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) /** * enum iwl_nvm_channel_flags - channel flags in NVM * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo * @NVM_CHANNEL_IBSS: usable as an IBSS channel * @NVM_CHANNEL_ACTIVE: active scanning allowed * @NVM_CHANNEL_RADAR: radar detection required * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS * on same channel on 2.4 or same UNII band on 5.2 * @NVM_CHANNEL_UNIFORM: uniform spreading required * @NVM_CHANNEL_20MHZ: 20 MHz channel okay * @NVM_CHANNEL_40MHZ: 40 MHz channel okay * @NVM_CHANNEL_80MHZ: 80 MHz channel okay * @NVM_CHANNEL_160MHZ: 160 MHz channel okay * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?) */ enum iwl_nvm_channel_flags { NVM_CHANNEL_VALID = BIT(0), NVM_CHANNEL_IBSS = BIT(1), NVM_CHANNEL_ACTIVE = BIT(3), NVM_CHANNEL_RADAR = BIT(4), NVM_CHANNEL_INDOOR_ONLY = BIT(5), NVM_CHANNEL_GO_CONCURRENT = BIT(6), NVM_CHANNEL_UNIFORM = BIT(7), NVM_CHANNEL_20MHZ = BIT(8), NVM_CHANNEL_40MHZ = BIT(9), NVM_CHANNEL_80MHZ = BIT(10), NVM_CHANNEL_160MHZ = BIT(11), NVM_CHANNEL_DC_HIGH = BIT(12), }; /** * enum iwl_reg_capa_flags - global flags applied for the whole regulatory * domain. * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the * 2.4Ghz band is allowed. * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the * 5Ghz band is allowed. * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden * for this regulatory domain (valid only in 5Ghz). * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed. * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain. */ enum iwl_reg_capa_flags { REG_CAPA_BF_CCD_LOW_BAND = BIT(0), REG_CAPA_BF_CCD_HIGH_BAND = BIT(1), REG_CAPA_160MHZ_ALLOWED = BIT(2), REG_CAPA_80MHZ_ALLOWED = BIT(3), REG_CAPA_MCS_8_ALLOWED = BIT(4), REG_CAPA_MCS_9_ALLOWED = BIT(5), REG_CAPA_40MHZ_FORBIDDEN = BIT(7), REG_CAPA_DC_HIGH_ENABLED = BIT(9), REG_CAPA_11AX_DISABLED = BIT(10), }; /** * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory * domain (version 2). * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are * disabled. * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the * 2.4Ghz band is allowed. * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the * 5Ghz band is allowed. * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed. * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed. * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118, * 126, 122) are disabled. * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed * for this regulatory domain (uvalid only in 5Ghz). * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain. */ enum iwl_reg_capa_flags_v2 { REG_CAPA_V2_STRADDLE_DISABLED = BIT(0), REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1), REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2), REG_CAPA_V2_160MHZ_ALLOWED = BIT(3), REG_CAPA_V2_80MHZ_ALLOWED = BIT(4), REG_CAPA_V2_MCS_8_ALLOWED = BIT(5), REG_CAPA_V2_MCS_9_ALLOWED = BIT(6), REG_CAPA_V2_WEATHER_DISABLED = BIT(7), REG_CAPA_V2_40MHZ_ALLOWED = BIT(8), REG_CAPA_V2_11AX_DISABLED = BIT(10), }; /* * API v2 for reg_capa_flags is relevant from version 6 and onwards of the * MCC update command response. */ #define REG_CAPA_V2_RESP_VER 6 /** * struct iwl_reg_capa - struct for global regulatory capabilities, Used for * handling the different APIs of reg_capa_flags. * * @allow_40mhz: 11n channel with a width of 40Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed * for this regulatory domain (valid only in 5Ghz). * @disable_11ax: 11ax is forbidden for this regulatory domain. */ struct iwl_reg_capa { u16 allow_40mhz; u16 allow_80mhz; u16 allow_160mhz; u16 disable_11ax; }; static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level, int chan, u32 flags) { #define CHECK_AND_PRINT_I(x) \ ((flags & NVM_CHANNEL_##x) ? " " #x : "") if (!(flags & NVM_CHANNEL_VALID)) { IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n", chan, flags); return; } /* Note: already can print up to 101 characters, 110 is the limit! */ IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n", chan, flags, CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(INDOOR_ONLY), CHECK_AND_PRINT_I(GO_CONCURRENT), CHECK_AND_PRINT_I(UNIFORM), CHECK_AND_PRINT_I(20MHZ), CHECK_AND_PRINT_I(40MHZ), CHECK_AND_PRINT_I(80MHZ), CHECK_AND_PRINT_I(160MHZ), CHECK_AND_PRINT_I(DC_HIGH)); #undef CHECK_AND_PRINT_I } static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band, u32 nvm_flags, const struct iwl_cfg *cfg) { u32 flags = IEEE80211_CHAN_NO_HT40; if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) { if (ch_num <= LAST_2GHZ_HT_PLUS) flags &= ~IEEE80211_CHAN_NO_HT40PLUS; if (ch_num >= FIRST_2GHZ_HT_MINUS) flags &= ~IEEE80211_CHAN_NO_HT40MINUS; } else if (nvm_flags & NVM_CHANNEL_40MHZ) { if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) flags &= ~IEEE80211_CHAN_NO_HT40PLUS; else flags &= ~IEEE80211_CHAN_NO_HT40MINUS; } if (!(nvm_flags & NVM_CHANNEL_80MHZ)) flags |= IEEE80211_CHAN_NO_80MHZ; if (!(nvm_flags & NVM_CHANNEL_160MHZ)) flags |= IEEE80211_CHAN_NO_160MHZ; if (!(nvm_flags & NVM_CHANNEL_IBSS)) flags |= IEEE80211_CHAN_NO_IR; if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) flags |= IEEE80211_CHAN_NO_IR; if (nvm_flags & NVM_CHANNEL_RADAR) flags |= IEEE80211_CHAN_RADAR; if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) flags |= IEEE80211_CHAN_INDOOR_ONLY; /* Set the GO concurrent flag only in case that NO_IR is set. * Otherwise it is meaningless */ if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && (flags & IEEE80211_CHAN_NO_IR)) flags |= IEEE80211_CHAN_IR_CONCURRENT; return flags; } static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx) { if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) { return NL80211_BAND_6GHZ; } if (ch_idx >= NUM_2GHZ_CHANNELS) return NL80211_BAND_5GHZ; return NL80211_BAND_2GHZ; } static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const void * const nvm_ch_flags, u32 sbands_flags, bool v4) { int ch_idx; int n_channels = 0; struct ieee80211_channel *channel; u32 ch_flags; int num_of_ch; const u16 *nvm_chan; if (cfg->uhb_supported) { num_of_ch = IWL_NVM_NUM_CHANNELS_UHB; nvm_chan = iwl_uhb_nvm_channels; } else if (cfg->nvm_type == IWL_NVM_EXT) { num_of_ch = IWL_NVM_NUM_CHANNELS_EXT; nvm_chan = iwl_ext_nvm_channels; } else { num_of_ch = IWL_NVM_NUM_CHANNELS; nvm_chan = iwl_nvm_channels; } for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { enum nl80211_band band = iwl_nl80211_band_from_channel_idx(ch_idx); if (v4) ch_flags = __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx); else ch_flags = __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx); if (band == NL80211_BAND_5GHZ && !data->sku_cap_band_52ghz_enable) continue; /* workaround to disable wide channels in 5GHz */ if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) && band == NL80211_BAND_5GHZ) { ch_flags &= ~(NVM_CHANNEL_40MHZ | NVM_CHANNEL_80MHZ | NVM_CHANNEL_160MHZ); } if (ch_flags & NVM_CHANNEL_160MHZ) data->vht160_supported = true; if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) && !(ch_flags & NVM_CHANNEL_VALID)) { /* * Channels might become valid later if lar is * supported, hence we still want to add them to * the list of supported channels to cfg80211. */ iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, nvm_chan[ch_idx], ch_flags); continue; } channel = &data->channels[n_channels]; n_channels++; channel->hw_value = nvm_chan[ch_idx]; channel->band = band; channel->center_freq = ieee80211_channel_to_frequency( channel->hw_value, channel->band); /* Initialize regulatory-based run-time data */ /* * Default value - highest tx power value. max_power * is not used in mvm, and is used for backwards compatibility */ channel->max_power = IWL_DEFAULT_MAX_TX_POWER; /* don't put limitations in case we're using LAR */ if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR)) channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], ch_idx, band, ch_flags, cfg); else channel->flags = 0; /* TODO: Don't put limitations on UHB devices as we still don't * have NVM for them */ if (cfg->uhb_supported) channel->flags = 0; iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM, channel->hw_value, ch_flags); IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n", channel->hw_value, channel->max_power); } return n_channels; } static void iwl_init_vht_hw_capab(struct iwl_trans *trans, struct iwl_nvm_data *data, struct ieee80211_sta_vht_cap *vht_cap, u8 tx_chains, u8 rx_chains) { const struct iwl_cfg *cfg = trans->cfg; int num_rx_ants = num_of_ant(rx_chains); int num_tx_ants = num_of_ant(tx_chains); vht_cap->vht_supported = true; vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | IEEE80211_VHT_MAX_AMPDU_1024K << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; if (data->vht160_supported) vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | IEEE80211_VHT_CAP_SHORT_GI_160; if (cfg->vht_mu_mimo_supported) vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; if (cfg->ht_params->ldpc) vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; if (data->sku_cap_mimo_disabled) { num_rx_ants = 1; num_tx_ants = 1; } if (num_tx_ants > 1) vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; else vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; switch (iwlwifi_mod_params.amsdu_size) { case IWL_AMSDU_DEF: if (trans->trans_cfg->mq_rx_supported) vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; else vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; break; case IWL_AMSDU_2K: if (trans->trans_cfg->mq_rx_supported) vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; else WARN(1, "RB size of 2K is not supported by this device\n"); break; case IWL_AMSDU_4K: vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; break; case IWL_AMSDU_8K: vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; break; case IWL_AMSDU_12K: vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; break; default: break; } vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; /* this works because NOT_SUPPORTED == 3 */ vht_cap->vht_mcs.rx_mcs_map |= cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); } vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; vht_cap->vht_mcs.tx_highest |= cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); } static const struct ieee80211_sband_iftype_data iwl_he_capa[] = { { .types_mask = BIT(NL80211_IFTYPE_STATION), .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE | IEEE80211_HE_MAC_CAP0_TWT_REQ, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[2] = IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL | IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS, .mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU | IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39, .mac_cap_info[5] = IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 | IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 | IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS | IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX, .phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK | IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A | IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, .phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US | IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ, .phy_cap_info[3] = IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, .phy_cap_info[4] = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE | IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 | IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8, .phy_cap_info[6] = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, .phy_cap_info[7] = IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, .phy_cap_info[8] = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, .phy_cap_info[9] = IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB | IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, .phy_cap_info[10] = IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF, }, /* * Set default Tx/Rx HE MCS NSS Support field. * Indicate support for up to 2 spatial streams and all * MCS, without any special cases */ .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xfffa), .tx_mcs_160 = cpu_to_le16(0xfffa), .rx_mcs_80p80 = cpu_to_le16(0xffff), .tx_mcs_80p80 = cpu_to_le16(0xffff), }, /* * Set default PPE thresholds, with PPET16 set to 0, * PPET8 set to 7 */ .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, }, }, { .types_mask = BIT(NL80211_IFTYPE_AP), .he_cap = { .has_he = true, .he_cap_elem = { .mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE, .mac_cap_info[1] = IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US | IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8, .mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL, .phy_cap_info[0] = IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G, .phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD, .phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ | IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US, .phy_cap_info[3] = IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM | IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM | IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1, .phy_cap_info[6] = IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT, .phy_cap_info[7] = IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, .phy_cap_info[8] = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242, .phy_cap_info[9] = IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED, }, /* * Set default Tx/Rx HE MCS NSS Support field. * Indicate support for up to 2 spatial streams and all * MCS, without any special cases */ .he_mcs_nss_supp = { .rx_mcs_80 = cpu_to_le16(0xfffa), .tx_mcs_80 = cpu_to_le16(0xfffa), .rx_mcs_160 = cpu_to_le16(0xfffa), .tx_mcs_160 = cpu_to_le16(0xfffa), .rx_mcs_80p80 = cpu_to_le16(0xffff), .tx_mcs_80p80 = cpu_to_le16(0xffff), }, /* * Set default PPE thresholds, with PPET16 set to 0, * PPET8 set to 7 */ .ppe_thres = {0x61, 0x1c, 0xc7, 0x71}, }, }, }; static void iwl_init_he_6ghz_capa(struct iwl_trans *trans, struct iwl_nvm_data *data, struct ieee80211_supported_band *sband, u8 tx_chains, u8 rx_chains) { struct ieee80211_sta_ht_cap ht_cap; struct ieee80211_sta_vht_cap vht_cap = {}; struct ieee80211_sband_iftype_data *iftype_data; u16 he_6ghz_capa = 0; u32 exp; int i; if (sband->band != NL80211_BAND_6GHZ) return; /* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */ iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ, tx_chains, rx_chains); WARN_ON(!ht_cap.ht_supported); iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains); WARN_ON(!vht_cap.vht_supported); he_6ghz_capa |= u16_encode_bits(ht_cap.ampdu_density, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); he_6ghz_capa |= u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); he_6ghz_capa |= u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); /* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */ if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa); /* we know it's writable - we set it before ourselves */ iftype_data = (void *)sband->iftype_data; for (i = 0; i < sband->n_iftype_data; i++) iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa); } static void iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans, struct ieee80211_supported_band *sband, struct ieee80211_sband_iftype_data *iftype_data, u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw) { bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP); /* Advertise an A-MPDU exponent extension based on * operating band */ if (sband->band != NL80211_BAND_2GHZ) iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1; else iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |= IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3; if (is_ap && iwlwifi_mod_params.nvm_file) iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |= IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if ((tx_chains & rx_chains) == ANT_AB) { iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |= IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ; iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |= IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 | IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2; if (!is_ap) iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= IEEE80211_HE_PHY_CAP7_MAX_NC_2; } else if (!is_ap) { /* If not 2x2, we need to indicate 1x1 in the * Midamble RX Max NSTS - but not for AP mode */ iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &= ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS; iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &= ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS; iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |= IEEE80211_HE_PHY_CAP7_MAX_NC_1; } switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) { case IWL_CFG_RF_TYPE_GF: case IWL_CFG_RF_TYPE_MR: iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; if (!is_ap) iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; break; } if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT)) iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BCAST_TWT; } static void iwl_init_he_hw_capab(struct iwl_trans *trans, struct iwl_nvm_data *data, struct ieee80211_supported_band *sband, u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw) { struct ieee80211_sband_iftype_data *iftype_data; int i; /* should only initialize once */ if (WARN_ON(sband->iftype_data)) return; BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa)); BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa)); switch (sband->band) { case NL80211_BAND_2GHZ: iftype_data = data->iftd.low; break; case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: iftype_data = data->iftd.high; break; default: WARN_ON(1); return; } memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa)); sband->iftype_data = iftype_data; sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa); for (i = 0; i < sband->n_iftype_data; i++) iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i], tx_chains, rx_chains, fw); iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains); } static void iwl_init_sbands(struct iwl_trans *trans, struct iwl_nvm_data *data, const void *nvm_ch_flags, u8 tx_chains, u8 rx_chains, u32 sbands_flags, bool v4, const struct iwl_fw *fw) { struct device *dev = trans->dev; const struct iwl_cfg *cfg = trans->cfg; int n_channels; int n_used = 0; struct ieee80211_supported_band *sband; n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, sbands_flags, v4); sband = &data->bands[NL80211_BAND_2GHZ]; sband->band = NL80211_BAND_2GHZ; sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; sband->n_bitrates = N_RATES_24; n_used += iwl_init_sband_channels(data, sband, n_channels, NL80211_BAND_2GHZ); iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ, tx_chains, rx_chains); if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, fw); sband = &data->bands[NL80211_BAND_5GHZ]; sband->band = NL80211_BAND_5GHZ; sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; sband->n_bitrates = N_RATES_52; n_used += iwl_init_sband_channels(data, sband, n_channels, NL80211_BAND_5GHZ); iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ, tx_chains, rx_chains); if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) iwl_init_vht_hw_capab(trans, data, &sband->vht_cap, tx_chains, rx_chains); if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, fw); /* 6GHz band. */ sband = &data->bands[NL80211_BAND_6GHZ]; sband->band = NL80211_BAND_6GHZ; /* use the same rates as 5GHz band */ sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; sband->n_bitrates = N_RATES_52; n_used += iwl_init_sband_channels(data, sband, n_channels, NL80211_BAND_6GHZ); if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax) iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains, fw); else sband->n_channels = 0; if (n_channels != n_used) IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", n_used, n_channels); } static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, const __le16 *phy_sku) { if (cfg->nvm_type != IWL_NVM_EXT) return le16_to_cpup(nvm_sw + SKU); return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); } static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) { if (cfg->nvm_type != IWL_NVM_EXT) return le16_to_cpup(nvm_sw + NVM_VERSION); else return le32_to_cpup((__le32 *)(nvm_sw + NVM_VERSION_EXT_NVM)); } static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, const __le16 *phy_sku) { if (cfg->nvm_type != IWL_NVM_EXT) return le16_to_cpup(nvm_sw + RADIO_CFG); return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); } static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) { int n_hw_addr; if (cfg->nvm_type != IWL_NVM_EXT) return le16_to_cpup(nvm_sw + N_HW_ADDRS); n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); return n_hw_addr & N_HW_ADDR_MASK; } static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, struct iwl_nvm_data *data, u32 radio_cfg) { if (cfg->nvm_type != IWL_NVM_EXT) { data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); return; } /* set the radio configuration for family 8000 */ data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); } static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) { const u8 *hw_addr; hw_addr = (const u8 *)&mac_addr0; dest[0] = hw_addr[3]; dest[1] = hw_addr[2]; dest[2] = hw_addr[1]; dest[3] = hw_addr[0]; hw_addr = (const u8 *)&mac_addr1; dest[4] = hw_addr[1]; dest[5] = hw_addr[0]; } static void iwl_set_hw_address_from_csr(struct iwl_trans *trans, struct iwl_nvm_data *data) { __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP(trans))); __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP(trans))); iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); /* * If the OEM fused a valid address, use it instead of the one in the * OTP */ if (is_valid_ether_addr(data->hw_addr)) return; mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans))); mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans))); iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); } static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const __le16 *mac_override, const __be16 *nvm_hw) { const u8 *hw_addr; if (mac_override) { static const u8 reserved_mac[] = { 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 }; hw_addr = (const u8 *)(mac_override + MAC_ADDRESS_OVERRIDE_EXT_NVM); /* * Store the MAC address from MAO section. * No byte swapping is required in MAO section */ memcpy(data->hw_addr, hw_addr, ETH_ALEN); /* * Force the use of the OTP MAC address in case of reserved MAC * address in the NVM, or if address is given but invalid. */ if (is_valid_ether_addr(data->hw_addr) && memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) return; IWL_ERR(trans, "mac address from nvm override section is not valid\n"); } if (nvm_hw) { /* read the mac address from WFMP registers */ __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, WFMP_MAC_ADDR_0)); __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, WFMP_MAC_ADDR_1)); iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); return; } IWL_ERR(trans, "mac address is not found\n"); } static int iwl_set_hw_address(struct iwl_trans *trans, const struct iwl_cfg *cfg, struct iwl_nvm_data *data, const __be16 *nvm_hw, const __le16 *mac_override) { if (cfg->mac_addr_from_csr) { iwl_set_hw_address_from_csr(trans, data); } else if (cfg->nvm_type != IWL_NVM_EXT) { const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); /* The byte order is little endian 16 bit, meaning 214365 */ data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; } else { iwl_set_hw_address_family_8000(trans, cfg, data, mac_override, nvm_hw); } if (!is_valid_ether_addr(data->hw_addr)) { IWL_ERR(trans, "no valid mac address was found\n"); return -EINVAL; } IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); return 0; } static bool iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg, const __be16 *nvm_hw) { /* * Workaround a bug in Indonesia SKUs where the regulatory in * some 7000-family OTPs erroneously allow wide channels in * 5GHz. To check for Indonesia, we take the SKU value from * bits 1-4 in the subsystem ID and check if it is either 5 or * 9. In those cases, we need to force-disable wide channels * in 5GHz otherwise the FW will throw a sysassert when we try * to use them. */ if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) { /* * Unlike the other sections in the NVM, the hw * section uses big-endian. */ u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID); u8 sku = (subsystem_id & 0x1e) >> 1; if (sku == 5 || sku == 9) { IWL_DEBUG_EEPROM(trans->dev, "disabling wide channels in 5GHz (0x%0x %d)\n", subsystem_id, sku); return true; } } return false; } struct iwl_nvm_data * iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, const struct iwl_fw *fw, const __be16 *nvm_hw, const __le16 *nvm_sw, const __le16 *nvm_calib, const __le16 *regulatory, const __le16 *mac_override, const __le16 *phy_sku, u8 tx_chains, u8 rx_chains) { struct iwl_nvm_data *data; bool lar_enabled; u32 sku, radio_cfg; u32 sbands_flags = 0; u16 lar_config; const __le16 *ch_section; if (cfg->uhb_supported) data = kzalloc(struct_size(data, channels, IWL_NVM_NUM_CHANNELS_UHB), GFP_KERNEL); else if (cfg->nvm_type != IWL_NVM_EXT) data = kzalloc(struct_size(data, channels, IWL_NVM_NUM_CHANNELS), GFP_KERNEL); else data = kzalloc(struct_size(data, channels, IWL_NVM_NUM_CHANNELS_EXT), GFP_KERNEL); if (!data) return NULL; data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); iwl_set_radio_cfg(cfg, data, radio_cfg); if (data->valid_tx_ant) tx_chains &= data->valid_tx_ant; if (data->valid_rx_ant) rx_chains &= data->valid_rx_ant; sku = iwl_get_sku(cfg, nvm_sw, phy_sku); data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) data->sku_cap_11n_enable = false; data->sku_cap_11ac_enable = data->sku_cap_11n_enable && (sku & NVM_SKU_CAP_11AC_ENABLE); data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); if (cfg->nvm_type != IWL_NVM_EXT) { /* Checking for required sections */ if (!nvm_calib) { IWL_ERR(trans, "Can't parse empty Calib NVM sections\n"); kfree(data); return NULL; } ch_section = cfg->nvm_type == IWL_NVM_SDP ? ®ulatory[NVM_CHANNELS_SDP] : &nvm_sw[NVM_CHANNELS]; /* in family 8000 Xtal calibration values moved to OTP */ data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); lar_enabled = true; } else { u16 lar_offset = data->nvm_version < 0xE39 ? NVM_LAR_OFFSET_OLD : NVM_LAR_OFFSET; lar_config = le16_to_cpup(regulatory + lar_offset); data->lar_enabled = !!(lar_config & NVM_LAR_ENABLED); lar_enabled = data->lar_enabled; ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; } /* If no valid mac address was found - bail out */ if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { kfree(data); return NULL; } if (lar_enabled && fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw)) sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ; iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains, sbands_flags, false, fw); data->calib_version = 255; return data; } IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan, int ch_idx, u16 nvm_flags, struct iwl_reg_capa reg_capa, const struct iwl_cfg *cfg) { u32 flags = NL80211_RRF_NO_HT40; if (ch_idx < NUM_2GHZ_CHANNELS && (nvm_flags & NVM_CHANNEL_40MHZ)) { if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) flags &= ~NL80211_RRF_NO_HT40PLUS; if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) flags &= ~NL80211_RRF_NO_HT40MINUS; } else if (nvm_flags & NVM_CHANNEL_40MHZ) { if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) flags &= ~NL80211_RRF_NO_HT40PLUS; else flags &= ~NL80211_RRF_NO_HT40MINUS; } if (!(nvm_flags & NVM_CHANNEL_80MHZ)) flags |= NL80211_RRF_NO_80MHZ; if (!(nvm_flags & NVM_CHANNEL_160MHZ)) flags |= NL80211_RRF_NO_160MHZ; if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) flags |= NL80211_RRF_NO_IR; if (nvm_flags & NVM_CHANNEL_RADAR) flags |= NL80211_RRF_DFS; if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) flags |= NL80211_RRF_NO_OUTDOOR; /* Set the GO concurrent flag only in case that NO_IR is set. * Otherwise it is meaningless */ if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && (flags & NL80211_RRF_NO_IR)) flags |= NL80211_RRF_GO_CONCURRENT; /* * reg_capa is per regulatory domain so apply it for every channel */ if (ch_idx >= NUM_2GHZ_CHANNELS) { if (!reg_capa.allow_40mhz) flags |= NL80211_RRF_NO_HT40; if (!reg_capa.allow_80mhz) flags |= NL80211_RRF_NO_80MHZ; if (!reg_capa.allow_160mhz) flags |= NL80211_RRF_NO_160MHZ; } if (reg_capa.disable_11ax) flags |= NL80211_RRF_NO_HE; return flags; } static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver) { struct iwl_reg_capa reg_capa; if (resp_ver >= REG_CAPA_V2_RESP_VER) { reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED; reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED; reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED; reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED; } else { reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN); reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED; reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED; reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED; } return reg_capa; } struct ieee80211_regdomain * iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, int num_of_ch, __le32 *channels, u16 fw_mcc, u16 geo_info, u16 cap, u8 resp_ver) { int ch_idx; u16 ch_flags; u32 reg_rule_flags, prev_reg_rule_flags = 0; const u16 *nvm_chan; struct ieee80211_regdomain *regd, *copy_rd; struct ieee80211_reg_rule *rule; enum nl80211_band band; int center_freq, prev_center_freq = 0; int valid_rules = 0; bool new_rule; int max_num_ch; struct iwl_reg_capa reg_capa; if (cfg->uhb_supported) { max_num_ch = IWL_NVM_NUM_CHANNELS_UHB; nvm_chan = iwl_uhb_nvm_channels; } else if (cfg->nvm_type == IWL_NVM_EXT) { max_num_ch = IWL_NVM_NUM_CHANNELS_EXT; nvm_chan = iwl_ext_nvm_channels; } else { max_num_ch = IWL_NVM_NUM_CHANNELS; nvm_chan = iwl_nvm_channels; } if (WARN_ON(num_of_ch > max_num_ch)) num_of_ch = max_num_ch; if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) return ERR_PTR(-EINVAL); IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", num_of_ch); /* build a regdomain rule for every valid channel */ regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL); if (!regd) return ERR_PTR(-ENOMEM); /* set alpha2 from FW. */ regd->alpha2[0] = fw_mcc >> 8; regd->alpha2[1] = fw_mcc & 0xff; /* parse regulatory capability flags */ reg_capa = iwl_get_reg_capa(cap, resp_ver); for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { ch_flags = (u16)__le32_to_cpup(channels + ch_idx); band = iwl_nl80211_band_from_channel_idx(ch_idx); center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], band); new_rule = false; if (!(ch_flags & NVM_CHANNEL_VALID)) { iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, nvm_chan[ch_idx], ch_flags); continue; } reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, ch_flags, reg_capa, cfg); /* we can't continue the same rule */ if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || center_freq - prev_center_freq > 20) { valid_rules++; new_rule = true; } rule = ®d->reg_rules[valid_rules - 1]; if (new_rule) rule->freq_range.start_freq_khz = MHZ_TO_KHZ(center_freq - 10); rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); /* this doesn't matter - not used by FW */ rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); rule->power_rule.max_eirp = DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); rule->flags = reg_rule_flags; /* rely on auto-calculation to merge BW of contiguous chans */ rule->flags |= NL80211_RRF_AUTO_BW; rule->freq_range.max_bandwidth_khz = 0; prev_center_freq = center_freq; prev_reg_rule_flags = reg_rule_flags; iwl_nvm_print_channel_flags(dev, IWL_DL_LAR, nvm_chan[ch_idx], ch_flags); if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) || band == NL80211_BAND_2GHZ) continue; reg_query_regdb_wmm(regd->alpha2, center_freq, rule); } /* * Certain firmware versions might report no valid channels * if booted in RF-kill, i.e. not all calibrations etc. are * running. We'll get out of this situation later when the * rfkill is removed and we update the regdomain again, but * since cfg80211 doesn't accept an empty regdomain, add a * dummy (unusable) rule here in this case so we can init. */ if (!valid_rules) { valid_rules = 1; rule = ®d->reg_rules[valid_rules - 1]; rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412); rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413); rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1); rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); rule->power_rule.max_eirp = DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); } regd->n_reg_rules = valid_rules; /* * Narrow down regdom for unused regulatory rules to prevent hole * between reg rules to wmm rules. */ copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules), GFP_KERNEL); if (!copy_rd) copy_rd = ERR_PTR(-ENOMEM); kfree(regd); return copy_rd; } IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 #define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc #define MAX_NVM_FILE_LEN 16384 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data, unsigned int len) { #define IWL_4165_DEVICE_ID 0x5501 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5) if (section == NVM_SECTION_TYPE_PHY_SKU && hw_id == IWL_4165_DEVICE_ID && data && len >= 5 && (data[4] & NVM_SKU_CAP_MIMO_DISABLE)) /* OTP 0x52 bug work around: it's a 1x1 device */ data[3] = ANT_B | (ANT_B << 4); } IWL_EXPORT_SYMBOL(iwl_nvm_fixups); /* * Reads external NVM from a file into mvm->nvm_sections * * HOW TO CREATE THE NVM FILE FORMAT: * ------------------------------ * 1. create hex file, format: * 3800 -> header * 0000 -> header * 5a40 -> data * * rev - 6 bit (word1) * len - 10 bit (word1) * id - 4 bit (word2) * rsv - 12 bit (word2) * * 2. flip 8bits with 8 bits per line to get the right NVM file format * * 3. create binary file from the hex file * * 4. save as "iNVM_xxx.bin" under /lib/firmware */ int iwl_read_external_nvm(struct iwl_trans *trans, const char *nvm_file_name, struct iwl_nvm_section *nvm_sections) { int ret, section_size; u16 section_id; const struct firmware *fw_entry; const struct { __le16 word1; __le16 word2; u8 data[]; } *file_sec; const u8 *eof; u8 *temp; int max_section_size; const __le32 *dword_buff; #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) #define NVM_WORD2_ID(x) (x >> 12) #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8)) #define EXT_NVM_WORD1_ID(x) ((x) >> 4) #define NVM_HEADER_0 (0x2A504C54) #define NVM_HEADER_1 (0x4E564D2A) #define NVM_HEADER_SIZE (4 * sizeof(u32)) IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n"); /* Maximal size depends on NVM version */ if (trans->cfg->nvm_type != IWL_NVM_EXT) max_section_size = IWL_MAX_NVM_SECTION_SIZE; else max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE; /* * Obtain NVM image via request_firmware. Since we already used * request_firmware_nowait() for the firmware binary load and only * get here after that we assume the NVM request can be satisfied * synchronously. */ ret = request_firmware(&fw_entry, nvm_file_name, trans->dev); if (ret) { IWL_ERR(trans, "ERROR: %s isn't available %d\n", nvm_file_name, ret); return ret; } IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n", nvm_file_name, fw_entry->size); if (fw_entry->size > MAX_NVM_FILE_LEN) { IWL_ERR(trans, "NVM file too large\n"); ret = -EINVAL; goto out; } eof = fw_entry->data + fw_entry->size; dword_buff = (__le32 *)fw_entry->data; /* some NVM file will contain a header. * The header is identified by 2 dwords header as follow: * dword[0] = 0x2A504C54 * dword[1] = 0x4E564D2A * * This header must be skipped when providing the NVM data to the FW. */ if (fw_entry->size > NVM_HEADER_SIZE && dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE); IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); IWL_INFO(trans, "NVM Manufacturing date %08X\n", le32_to_cpu(dword_buff[3])); /* nvm file validation, dword_buff[2] holds the file version */ if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 && CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP && le32_to_cpu(dword_buff[2]) < 0xE4A) { ret = -EFAULT; goto out; } } else { file_sec = (void *)fw_entry->data; } while (true) { if (file_sec->data > eof) { IWL_ERR(trans, "ERROR - NVM file too short for section header\n"); ret = -EINVAL; break; } /* check for EOF marker */ if (!file_sec->word1 && !file_sec->word2) { ret = 0; break; } if (trans->cfg->nvm_type != IWL_NVM_EXT) { section_size = 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); } else { section_size = 2 * EXT_NVM_WORD2_LEN( le16_to_cpu(file_sec->word2)); section_id = EXT_NVM_WORD1_ID( le16_to_cpu(file_sec->word1)); } if (section_size > max_section_size) { IWL_ERR(trans, "ERROR - section too large (%d)\n", section_size); ret = -EINVAL; break; } if (!section_size) { IWL_ERR(trans, "ERROR - section empty\n"); ret = -EINVAL; break; } if (file_sec->data + section_size > eof) { IWL_ERR(trans, "ERROR - NVM file too short for section (%d bytes)\n", section_size); ret = -EINVAL; break; } if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, "Invalid NVM section ID %d\n", section_id)) { ret = -EINVAL; break; } temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); if (!temp) { ret = -ENOMEM; break; } iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size); kfree(nvm_sections[section_id].data); nvm_sections[section_id].data = temp; nvm_sections[section_id].length = section_size; /* advance to the next section */ file_sec = (void *)(file_sec->data + section_size); } out: release_firmware(fw_entry); return ret; } IWL_EXPORT_SYMBOL(iwl_read_external_nvm); struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans, const struct iwl_fw *fw) { struct iwl_nvm_get_info cmd = {}; struct iwl_nvm_data *nvm; struct iwl_host_cmd hcmd = { .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, .data = { &cmd, }, .len = { sizeof(cmd) }, .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO) }; int ret; bool empty_otp; u32 mac_flags; u32 sbands_flags = 0; /* * All the values in iwl_nvm_get_info_rsp v4 are the same as * in v3, except for the channel profile part of the * regulatory. So we can just access the new struct, with the * exception of the latter. */ struct iwl_nvm_get_info_rsp *rsp; struct iwl_nvm_get_info_rsp_v3 *rsp_v3; bool v4 = fw_has_api(&fw->ucode_capa, IWL_UCODE_TLV_API_REGULATORY_NVM_INFO); size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); void *channel_profile; ret = iwl_trans_send_cmd(trans, &hcmd); if (ret) return ERR_PTR(ret); if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size, "Invalid payload len in NVM response from FW %d", iwl_rx_packet_payload_len(hcmd.resp_pkt))) { ret = -EINVAL; goto out; } rsp = (void *)hcmd.resp_pkt->data; empty_otp = !!(le32_to_cpu(rsp->general.flags) & NVM_GENERAL_FLAGS_EMPTY_OTP); if (empty_otp) IWL_INFO(trans, "OTP is empty\n"); nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL); if (!nvm) { ret = -ENOMEM; goto out; } iwl_set_hw_address_from_csr(trans, nvm); /* TODO: if platform NVM has MAC address - override it here */ if (!is_valid_ether_addr(nvm->hw_addr)) { IWL_ERR(trans, "no valid mac address was found\n"); ret = -EINVAL; goto err_free; } IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr); /* Initialize general data */ nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version); nvm->n_hw_addrs = rsp->general.n_hw_addrs; if (nvm->n_hw_addrs == 0) IWL_WARN(trans, "Firmware declares no reserved mac addresses. OTP is empty: %d\n", empty_otp); /* Initialize MAC sku data */ mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags); nvm->sku_cap_11ac_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); nvm->sku_cap_11n_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED); nvm->sku_cap_11ax_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); nvm->sku_cap_band_24ghz_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); nvm->sku_cap_band_52ghz_enable = !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); nvm->sku_cap_mimo_disabled = !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED); /* Initialize PHY sku data */ nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains); nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains); if (le32_to_cpu(rsp->regulatory.lar_enabled) && fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) { nvm->lar_enabled = true; sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR; } rsp_v3 = (void *)rsp; channel_profile = v4 ? (void *)rsp->regulatory.channel_profile : (void *)rsp_v3->regulatory.channel_profile; iwl_init_sbands(trans, nvm, channel_profile, nvm->valid_tx_ant & fw->valid_tx_ant, nvm->valid_rx_ant & fw->valid_rx_ant, sbands_flags, v4, fw); iwl_free_resp(&hcmd); return nvm; err_free: kfree(nvm); out: iwl_free_resp(&hcmd); return ERR_PTR(ret); } IWL_EXPORT_SYMBOL(iwl_get_nvm);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1