Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kiran Divekar | 5883 | 71.95% | 3 | 4.76% |
Dan J Williams | 796 | 9.73% | 6 | 9.52% |
Holger Schurig | 573 | 7.01% | 1 | 1.59% |
Daniel Drake | 234 | 2.86% | 6 | 9.52% |
Johannes Berg | 182 | 2.23% | 12 | 19.05% |
Andreas Kemnade | 154 | 1.88% | 1 | 1.59% |
Andres Salomon | 70 | 0.86% | 2 | 3.17% |
Luis R. Rodriguez | 56 | 0.68% | 1 | 1.59% |
Wen Huang | 48 | 0.59% | 1 | 1.59% |
John W. Linville | 31 | 0.38% | 3 | 4.76% |
Amitkumar Karwar | 26 | 0.32% | 1 | 1.59% |
Joe Perches | 19 | 0.23% | 3 | 4.76% |
Avraham Stern | 17 | 0.21% | 1 | 1.59% |
Daniel Mack | 14 | 0.17% | 1 | 1.59% |
Randy Dunlap | 13 | 0.16% | 1 | 1.59% |
Sudip Mukherjee | 10 | 0.12% | 1 | 1.59% |
Nicolai Stange | 8 | 0.10% | 2 | 3.17% |
Omer Efrat | 6 | 0.07% | 1 | 1.59% |
Antonio Quartulli | 6 | 0.07% | 1 | 1.59% |
Andrew Morton | 6 | 0.07% | 1 | 1.59% |
Ilan Peer | 4 | 0.05% | 1 | 1.59% |
Dedy Lansky | 4 | 0.05% | 1 | 1.59% |
Alexey Dobriyan | 3 | 0.04% | 1 | 1.59% |
Tejun Heo | 3 | 0.04% | 1 | 1.59% |
Andy Shevchenko | 2 | 0.02% | 1 | 1.59% |
Wei Yongjun | 1 | 0.01% | 1 | 1.59% |
Bhumika Goyal | 1 | 0.01% | 1 | 1.59% |
Kees Cook | 1 | 0.01% | 1 | 1.59% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 1.59% |
Sven Neumann | 1 | 0.01% | 1 | 1.59% |
Masanari Iida | 1 | 0.01% | 1 | 1.59% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.59% |
Bruno Randolf | 1 | 0.01% | 1 | 1.59% |
Steven Miao | 1 | 0.01% | 1 | 1.59% |
Total | 8177 | 63 |
// SPDX-License-Identifier: GPL-2.0 /* * Implement cfg80211 ("iw") support. * * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany * Holger Schurig <hs4233@mail.mn-solutions.de> * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/hardirq.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/slab.h> #include <linux/ieee80211.h> #include <net/cfg80211.h> #include <asm/unaligned.h> #include "decl.h" #include "cfg.h" #include "cmd.h" #include "mesh.h" #define CHAN2G(_channel, _freq, _flags) { \ .band = NL80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static struct ieee80211_channel lbs_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; #define RATETAB_ENT(_rate, _hw_value, _flags) { \ .bitrate = (_rate), \ .hw_value = (_hw_value), \ .flags = (_flags), \ } /* Table 6 in section 3.2.1.1 */ static struct ieee80211_rate lbs_rates[] = { RATETAB_ENT(10, 0, 0), RATETAB_ENT(20, 1, 0), RATETAB_ENT(55, 2, 0), RATETAB_ENT(110, 3, 0), RATETAB_ENT(60, 9, 0), RATETAB_ENT(90, 6, 0), RATETAB_ENT(120, 7, 0), RATETAB_ENT(180, 8, 0), RATETAB_ENT(240, 9, 0), RATETAB_ENT(360, 10, 0), RATETAB_ENT(480, 11, 0), RATETAB_ENT(540, 12, 0), }; static struct ieee80211_supported_band lbs_band_2ghz = { .channels = lbs_2ghz_channels, .n_channels = ARRAY_SIZE(lbs_2ghz_channels), .bitrates = lbs_rates, .n_bitrates = ARRAY_SIZE(lbs_rates), }; static const u32 cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, }; /* Time to stay on the channel */ #define LBS_DWELL_PASSIVE 100 #define LBS_DWELL_ACTIVE 40 /*************************************************************************** * Misc utility functions * * TLVs are Marvell specific. They are very similar to IEs, they have the * same structure: type, length, data*. The only difference: for IEs, the * type and length are u8, but for TLVs they're __le16. */ /* * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1 * in the firmware spec */ static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type) { int ret = -ENOTSUPP; switch (auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: case NL80211_AUTHTYPE_SHARED_KEY: ret = auth_type; break; case NL80211_AUTHTYPE_AUTOMATIC: ret = NL80211_AUTHTYPE_OPEN_SYSTEM; break; case NL80211_AUTHTYPE_NETWORK_EAP: ret = 0x80; break; default: /* silence compiler */ break; } return ret; } /* * Various firmware commands need the list of supported rates, but with * the hight-bit set for basic rates */ static int lbs_add_rates(u8 *rates) { size_t i; for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { u8 rate = lbs_rates[i].bitrate / 5; if (rate == 0x02 || rate == 0x04 || rate == 0x0b || rate == 0x16) rate |= 0x80; rates[i] = rate; } return ARRAY_SIZE(lbs_rates); } /*************************************************************************** * TLV utility functions * * TLVs are Marvell specific. They are very similar to IEs, they have the * same structure: type, length, data*. The only difference: for IEs, the * type and length are u8, but for TLVs they're __le16. */ /* * Add ssid TLV */ #define LBS_MAX_SSID_TLV_SIZE \ (sizeof(struct mrvl_ie_header) \ + IEEE80211_MAX_SSID_LEN) static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len) { struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv; /* * TLV-ID SSID 00 00 * length 06 00 * ssid 4d 4e 54 45 53 54 */ ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID); ssid_tlv->header.len = cpu_to_le16(ssid_len); memcpy(ssid_tlv->ssid, ssid, ssid_len); return sizeof(ssid_tlv->header) + ssid_len; } /* * Add channel list TLV (section 8.4.2) * * Actual channel data comes from priv->wdev->wiphy->channels. */ #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \ (sizeof(struct mrvl_ie_header) \ + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset))) static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv, int last_channel, int active_scan) { int chanscanparamsize = sizeof(struct chanscanparamset) * (last_channel - priv->scan_channel); struct mrvl_ie_header *header = (void *) tlv; /* * TLV-ID CHANLIST 01 01 * length 0e 00 * channel 00 01 00 00 00 64 00 * radio type 00 * channel 01 * scan type 00 * min scan time 00 00 * max scan time 64 00 * channel 2 00 02 00 00 00 64 00 * */ header->type = cpu_to_le16(TLV_TYPE_CHANLIST); header->len = cpu_to_le16(chanscanparamsize); tlv += sizeof(struct mrvl_ie_header); /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel, last_channel); */ memset(tlv, 0, chanscanparamsize); while (priv->scan_channel < last_channel) { struct chanscanparamset *param = (void *) tlv; param->radiotype = CMD_SCAN_RADIO_TYPE_BG; param->channumber = priv->scan_req->channels[priv->scan_channel]->hw_value; if (active_scan) { param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE); } else { param->chanscanmode.passivescan = 1; param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE); } tlv += sizeof(struct chanscanparamset); priv->scan_channel++; } return sizeof(struct mrvl_ie_header) + chanscanparamsize; } /* * Add rates TLV * * The rates are in lbs_bg_rates[], but for the 802.11b * rates the high bit is set. We add this TLV only because * there's a firmware which otherwise doesn't report all * APs in range. */ #define LBS_MAX_RATES_TLV_SIZE \ (sizeof(struct mrvl_ie_header) \ + (ARRAY_SIZE(lbs_rates))) /* Adds a TLV with all rates the hardware supports */ static int lbs_add_supported_rates_tlv(u8 *tlv) { size_t i; struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; /* * TLV-ID RATES 01 00 * length 0e 00 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c */ rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); tlv += sizeof(rate_tlv->header); i = lbs_add_rates(tlv); tlv += i; rate_tlv->header.len = cpu_to_le16(i); return sizeof(rate_tlv->header) + i; } /* Add common rates from a TLV and return the new end of the TLV */ static u8 * add_ie_rates(u8 *tlv, const u8 *ie, int *nrates) { int hw, ap, ap_max = ie[1]; u8 hw_rate; if (ap_max > MAX_RATES) { lbs_deb_assoc("invalid rates\n"); return tlv; } /* Advance past IE header */ ie += 2; lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max); for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { hw_rate = lbs_rates[hw].bitrate / 5; for (ap = 0; ap < ap_max; ap++) { if (hw_rate == (ie[ap] & 0x7f)) { *tlv++ = ie[ap]; *nrates = *nrates + 1; } } } return tlv; } /* * Adds a TLV with all rates the hardware *and* BSS supports. */ static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss) { struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; const u8 *rates_eid, *ext_rates_eid; int n = 0; rcu_read_lock(); rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES); /* * 01 00 TLV_TYPE_RATES * 04 00 len * 82 84 8b 96 rates */ rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); tlv += sizeof(rate_tlv->header); /* Add basic rates */ if (rates_eid) { tlv = add_ie_rates(tlv, rates_eid, &n); /* Add extended rates, if any */ if (ext_rates_eid) tlv = add_ie_rates(tlv, ext_rates_eid, &n); } else { lbs_deb_assoc("assoc: bss had no basic rate IE\n"); /* Fallback: add basic 802.11b rates */ *tlv++ = 0x82; *tlv++ = 0x84; *tlv++ = 0x8b; *tlv++ = 0x96; n = 4; } rcu_read_unlock(); rate_tlv->header.len = cpu_to_le16(n); return sizeof(rate_tlv->header) + n; } /* * Add auth type TLV. * * This is only needed for newer firmware (V9 and up). */ #define LBS_MAX_AUTH_TYPE_TLV_SIZE \ sizeof(struct mrvl_ie_auth_type) static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type) { struct mrvl_ie_auth_type *auth = (void *) tlv; /* * 1f 01 TLV_TYPE_AUTH_TYPE * 01 00 len * 01 auth type */ auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE); auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header)); auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type)); return sizeof(*auth); } /* * Add channel (phy ds) TLV */ #define LBS_MAX_CHANNEL_TLV_SIZE \ sizeof(struct mrvl_ie_header) static int lbs_add_channel_tlv(u8 *tlv, u8 channel) { struct mrvl_ie_ds_param_set *ds = (void *) tlv; /* * 03 00 TLV_TYPE_PHY_DS * 01 00 len * 06 channel */ ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS); ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header)); ds->channel = channel; return sizeof(*ds); } /* * Add (empty) CF param TLV of the form: */ #define LBS_MAX_CF_PARAM_TLV_SIZE \ sizeof(struct mrvl_ie_header) static int lbs_add_cf_param_tlv(u8 *tlv) { struct mrvl_ie_cf_param_set *cf = (void *)tlv; /* * 04 00 TLV_TYPE_CF * 06 00 len * 00 cfpcnt * 00 cfpperiod * 00 00 cfpmaxduration * 00 00 cfpdurationremaining */ cf->header.type = cpu_to_le16(TLV_TYPE_CF); cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header)); return sizeof(*cf); } /* * Add WPA TLV */ #define LBS_MAX_WPA_TLV_SIZE \ (sizeof(struct mrvl_ie_header) \ + 128 /* TODO: I guessed the size */) static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len) { size_t tlv_len; /* * We need just convert an IE to an TLV. IEs use u8 for the header, * u8 type * u8 len * u8[] data * but TLVs use __le16 instead: * __le16 type * __le16 len * u8[] data */ *tlv++ = *ie++; *tlv++ = 0; tlv_len = *tlv++ = *ie++; *tlv++ = 0; while (tlv_len--) *tlv++ = *ie++; /* the TLV is two bytes larger than the IE */ return ie_len + 2; } /* * Set Channel */ static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy, struct cfg80211_chan_def *chandef) { struct lbs_private *priv = wiphy_priv(wiphy); int ret = -ENOTSUPP; if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT) goto out; ret = lbs_set_channel(priv, chandef->chan->hw_value); out: return ret; } static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy, struct net_device *netdev, struct ieee80211_channel *channel) { struct lbs_private *priv = wiphy_priv(wiphy); int ret = -ENOTSUPP; if (netdev != priv->mesh_dev) goto out; ret = lbs_mesh_set_channel(priv, channel->hw_value); out: return ret; } /* * Scanning */ /* * When scanning, the firmware doesn't send a nul packet with the power-safe * bit to the AP. So we cannot stay away from our current channel too long, * otherwise we loose data. So take a "nap" while scanning every other * while. */ #define LBS_SCAN_BEFORE_NAP 4 /* * When the firmware reports back a scan-result, it gives us an "u8 rssi", * which isn't really an RSSI, as it becomes larger when moving away from * the AP. Anyway, we need to convert that into mBm. */ #define LBS_SCAN_RSSI_TO_MBM(rssi) \ ((-(int)rssi + 3)*100) static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy, struct cmd_header *resp) { struct cfg80211_bss *bss; struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp; int bsssize; const u8 *pos; const u8 *tsfdesc; int tsfsize; int i; int ret = -EILSEQ; bsssize = get_unaligned_le16(&scanresp->bssdescriptsize); lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n", scanresp->nr_sets, bsssize, le16_to_cpu(resp->size)); if (scanresp->nr_sets == 0) { ret = 0; goto done; } /* * The general layout of the scan response is described in chapter * 5.7.1. Basically we have a common part, then any number of BSS * descriptor sections. Finally we have section with the same number * of TSFs. * * cmd_ds_802_11_scan_rsp * cmd_header * pos_size * nr_sets * bssdesc 1 * bssid * rssi * timestamp * intvl * capa * IEs * bssdesc 2 * bssdesc n * MrvlIEtypes_TsfFimestamp_t * TSF for BSS 1 * TSF for BSS 2 * TSF for BSS n */ pos = scanresp->bssdesc_and_tlvbuffer; lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer, scanresp->bssdescriptsize); tsfdesc = pos + bsssize; tsfsize = 4 + 8 * scanresp->nr_sets; lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize); /* Validity check: we expect a Marvell-Local TLV */ i = get_unaligned_le16(tsfdesc); tsfdesc += 2; if (i != TLV_TYPE_TSFTIMESTAMP) { lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i); goto done; } /* * Validity check: the TLV holds TSF values with 8 bytes each, so * the size in the TLV must match the nr_sets value */ i = get_unaligned_le16(tsfdesc); tsfdesc += 2; if (i / 8 != scanresp->nr_sets) { lbs_deb_scan("scan response: invalid number of TSF timestamp " "sets (expected %d got %d)\n", scanresp->nr_sets, i / 8); goto done; } for (i = 0; i < scanresp->nr_sets; i++) { const u8 *bssid; const u8 *ie; int left; int ielen; int rssi; u16 intvl; u16 capa; int chan_no = -1; const u8 *ssid = NULL; u8 ssid_len = 0; int len = get_unaligned_le16(pos); pos += 2; /* BSSID */ bssid = pos; pos += ETH_ALEN; /* RSSI */ rssi = *pos++; /* Packet time stamp */ pos += 8; /* Beacon interval */ intvl = get_unaligned_le16(pos); pos += 2; /* Capabilities */ capa = get_unaligned_le16(pos); pos += 2; /* To find out the channel, we must parse the IEs */ ie = pos; /* * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon * interval, capabilities */ ielen = left = len - (6 + 1 + 8 + 2 + 2); while (left >= 2) { u8 id, elen; id = *pos++; elen = *pos++; left -= 2; if (elen > left) { lbs_deb_scan("scan response: invalid IE fmt\n"); goto done; } if (id == WLAN_EID_DS_PARAMS) chan_no = *pos; if (id == WLAN_EID_SSID) { ssid = pos; ssid_len = elen; } left -= elen; pos += elen; } /* No channel, no luck */ if (chan_no != -1) { struct wiphy *wiphy = priv->wdev->wiphy; int freq = ieee80211_channel_to_frequency(chan_no, NL80211_BAND_2GHZ); struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq); lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n", bssid, capa, chan_no, ssid_len, ssid, LBS_SCAN_RSSI_TO_MBM(rssi)/100); if (channel && !(channel->flags & IEEE80211_CHAN_DISABLED)) { bss = cfg80211_inform_bss(wiphy, channel, CFG80211_BSS_FTYPE_UNKNOWN, bssid, get_unaligned_le64(tsfdesc), capa, intvl, ie, ielen, LBS_SCAN_RSSI_TO_MBM(rssi), GFP_KERNEL); cfg80211_put_bss(wiphy, bss); } } else lbs_deb_scan("scan response: missing BSS channel IE\n"); tsfdesc += 8; } ret = 0; done: return ret; } /* * Our scan command contains a TLV, consting of a SSID TLV, a channel list * TLV and a rates TLV. Determine the maximum size of them: */ #define LBS_SCAN_MAX_CMD_SIZE \ (sizeof(struct cmd_ds_802_11_scan) \ + LBS_MAX_SSID_TLV_SIZE \ + LBS_MAX_CHANNEL_LIST_TLV_SIZE \ + LBS_MAX_RATES_TLV_SIZE) /* * Assumes priv->scan_req is initialized and valid * Assumes priv->scan_channel is initialized */ static void lbs_scan_worker(struct work_struct *work) { struct lbs_private *priv = container_of(work, struct lbs_private, scan_work.work); struct cmd_ds_802_11_scan *scan_cmd; u8 *tlv; /* pointer into our current, growing TLV storage area */ int last_channel; int running, carrier; scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL); if (scan_cmd == NULL) return; /* prepare fixed part of scan command */ scan_cmd->bsstype = CMD_BSS_TYPE_ANY; /* stop network while we're away from our main channel */ running = !netif_queue_stopped(priv->dev); carrier = netif_carrier_ok(priv->dev); if (running) netif_stop_queue(priv->dev); if (carrier) netif_carrier_off(priv->dev); /* prepare fixed part of scan command */ tlv = scan_cmd->tlvbuffer; /* add SSID TLV */ if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0) tlv += lbs_add_ssid_tlv(tlv, priv->scan_req->ssids[0].ssid, priv->scan_req->ssids[0].ssid_len); /* add channel TLVs */ last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP; if (last_channel > priv->scan_req->n_channels) last_channel = priv->scan_req->n_channels; tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel, priv->scan_req->n_ssids); /* add rates TLV */ tlv += lbs_add_supported_rates_tlv(tlv); if (priv->scan_channel < priv->scan_req->n_channels) { cancel_delayed_work(&priv->scan_work); if (netif_running(priv->dev)) queue_delayed_work(priv->work_thread, &priv->scan_work, msecs_to_jiffies(300)); } /* This is the final data we are about to send */ scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd); lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd, sizeof(*scan_cmd)); lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer, tlv - scan_cmd->tlvbuffer); __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr, le16_to_cpu(scan_cmd->hdr.size), lbs_ret_scan, 0); if (priv->scan_channel >= priv->scan_req->n_channels) { /* Mark scan done */ cancel_delayed_work(&priv->scan_work); lbs_scan_done(priv); } /* Restart network */ if (carrier) netif_carrier_on(priv->dev); if (running && !priv->tx_pending_len) netif_wake_queue(priv->dev); kfree(scan_cmd); /* Wake up anything waiting on scan completion */ if (priv->scan_req == NULL) { lbs_deb_scan("scan: waking up waiters\n"); wake_up_all(&priv->scan_q); } } static void _internal_start_scan(struct lbs_private *priv, bool internal, struct cfg80211_scan_request *request) { lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n", request->n_ssids, request->n_channels, request->ie_len); priv->scan_channel = 0; priv->scan_req = request; priv->internal_scan = internal; queue_delayed_work(priv->work_thread, &priv->scan_work, msecs_to_jiffies(50)); } /* * Clean up priv->scan_req. Should be used to handle the allocation details. */ void lbs_scan_done(struct lbs_private *priv) { WARN_ON(!priv->scan_req); if (priv->internal_scan) { kfree(priv->scan_req); } else { struct cfg80211_scan_info info = { .aborted = false, }; cfg80211_scan_done(priv->scan_req, &info); } priv->scan_req = NULL; } static int lbs_cfg_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct lbs_private *priv = wiphy_priv(wiphy); int ret = 0; if (priv->scan_req || delayed_work_pending(&priv->scan_work)) { /* old scan request not yet processed */ ret = -EAGAIN; goto out; } _internal_start_scan(priv, false, request); if (priv->surpriseremoved) ret = -EIO; out: return ret; } /* * Events */ void lbs_send_disconnect_notification(struct lbs_private *priv, bool locally_generated) { cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated, GFP_KERNEL); } void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event) { cfg80211_michael_mic_failure(priv->dev, priv->assoc_bss, event == MACREG_INT_CODE_MIC_ERR_MULTICAST ? NL80211_KEYTYPE_GROUP : NL80211_KEYTYPE_PAIRWISE, -1, NULL, GFP_KERNEL); } /* * Connect/disconnect */ /* * This removes all WEP keys */ static int lbs_remove_wep_keys(struct lbs_private *priv) { struct cmd_ds_802_11_set_wep cmd; int ret; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); cmd.keyindex = cpu_to_le16(priv->wep_tx_key); cmd.action = cpu_to_le16(CMD_ACT_REMOVE); ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); return ret; } /* * Set WEP keys */ static int lbs_set_wep_keys(struct lbs_private *priv) { struct cmd_ds_802_11_set_wep cmd; int i; int ret; /* * command 13 00 * size 50 00 * sequence xx xx * result 00 00 * action 02 00 ACT_ADD * transmit key 00 00 * type for key 1 01 WEP40 * type for key 2 00 * type for key 3 00 * type for key 4 00 * key 1 39 39 39 39 39 00 00 00 * 00 00 00 00 00 00 00 00 * key 2 00 00 00 00 00 00 00 00 * 00 00 00 00 00 00 00 00 * key 3 00 00 00 00 00 00 00 00 * 00 00 00 00 00 00 00 00 * key 4 00 00 00 00 00 00 00 00 */ if (priv->wep_key_len[0] || priv->wep_key_len[1] || priv->wep_key_len[2] || priv->wep_key_len[3]) { /* Only set wep keys if we have at least one of them */ memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); cmd.keyindex = cpu_to_le16(priv->wep_tx_key); cmd.action = cpu_to_le16(CMD_ACT_ADD); for (i = 0; i < 4; i++) { switch (priv->wep_key_len[i]) { case WLAN_KEY_LEN_WEP40: cmd.keytype[i] = CMD_TYPE_WEP_40_BIT; break; case WLAN_KEY_LEN_WEP104: cmd.keytype[i] = CMD_TYPE_WEP_104_BIT; break; default: cmd.keytype[i] = 0; break; } memcpy(cmd.keymaterial[i], priv->wep_key[i], priv->wep_key_len[i]); } ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); } else { /* Otherwise remove all wep keys */ ret = lbs_remove_wep_keys(priv); } return ret; } /* * Enable/Disable RSN status */ static int lbs_enable_rsn(struct lbs_private *priv, int enable) { struct cmd_ds_802_11_enable_rsn cmd; int ret; /* * cmd 2f 00 * size 0c 00 * sequence xx xx * result 00 00 * action 01 00 ACT_SET * enable 01 00 */ memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); cmd.action = cpu_to_le16(CMD_ACT_SET); cmd.enable = cpu_to_le16(enable); ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd); return ret; } /* * Set WPA/WPA key material */ /* * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we * get rid of WEXT, this should go into host.h */ struct cmd_key_material { struct cmd_header hdr; __le16 action; struct MrvlIEtype_keyParamSet param; } __packed; static int lbs_set_key_material(struct lbs_private *priv, int key_type, int key_info, const u8 *key, u16 key_len) { struct cmd_key_material cmd; int ret; /* * Example for WPA (TKIP): * * cmd 5e 00 * size 34 00 * sequence xx xx * result 00 00 * action 01 00 * TLV type 00 01 key param * length 00 26 * key type 01 00 TKIP * key info 06 00 UNICAST | ENABLED * key len 20 00 * key 32 bytes */ memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); cmd.action = cpu_to_le16(CMD_ACT_SET); cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL); cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4); cmd.param.keytypeid = cpu_to_le16(key_type); cmd.param.keyinfo = cpu_to_le16(key_info); cmd.param.keylen = cpu_to_le16(key_len); if (key && key_len) memcpy(cmd.param.key, key, key_len); ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd); return ret; } /* * Sets the auth type (open, shared, etc) in the firmware. That * we use CMD_802_11_AUTHENTICATE is misleading, this firmware * command doesn't send an authentication frame at all, it just * stores the auth_type. */ static int lbs_set_authtype(struct lbs_private *priv, struct cfg80211_connect_params *sme) { struct cmd_ds_802_11_authenticate cmd; int ret; /* * cmd 11 00 * size 19 00 * sequence xx xx * result 00 00 * BSS id 00 13 19 80 da 30 * auth type 00 * reserved 00 00 00 00 00 00 00 00 00 00 */ memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); if (sme->bssid) memcpy(cmd.bssid, sme->bssid, ETH_ALEN); /* convert auth_type */ ret = lbs_auth_to_authtype(sme->auth_type); if (ret < 0) goto done; cmd.authtype = ret; ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd); done: return ret; } /* * Create association request */ #define LBS_ASSOC_MAX_CMD_SIZE \ (sizeof(struct cmd_ds_802_11_associate) \ - 512 /* cmd_ds_802_11_associate.iebuf */ \ + LBS_MAX_SSID_TLV_SIZE \ + LBS_MAX_CHANNEL_TLV_SIZE \ + LBS_MAX_CF_PARAM_TLV_SIZE \ + LBS_MAX_AUTH_TYPE_TLV_SIZE \ + LBS_MAX_WPA_TLV_SIZE) static int lbs_associate(struct lbs_private *priv, struct cfg80211_bss *bss, struct cfg80211_connect_params *sme) { struct cmd_ds_802_11_associate_response *resp; struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE, GFP_KERNEL); const u8 *ssid_eid; size_t len, resp_ie_len; int status; int ret; u8 *pos; u8 *tmp; if (!cmd) { ret = -ENOMEM; goto done; } pos = &cmd->iebuf[0]; /* * cmd 50 00 * length 34 00 * sequence xx xx * result 00 00 * BSS id 00 13 19 80 da 30 * capabilities 11 00 * listen interval 0a 00 * beacon interval 00 00 * DTIM period 00 * TLVs xx (up to 512 bytes) */ cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE); /* Fill in static fields */ memcpy(cmd->bssid, bss->bssid, ETH_ALEN); cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL); cmd->capability = cpu_to_le16(bss->capability); /* add SSID TLV */ rcu_read_lock(); ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); if (ssid_eid) pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]); else lbs_deb_assoc("no SSID\n"); rcu_read_unlock(); /* add DS param TLV */ if (bss->channel) pos += lbs_add_channel_tlv(pos, bss->channel->hw_value); else lbs_deb_assoc("no channel\n"); /* add (empty) CF param TLV */ pos += lbs_add_cf_param_tlv(pos); /* add rates TLV */ tmp = pos + 4; /* skip Marvell IE header */ pos += lbs_add_common_rates_tlv(pos, bss); lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp); /* add auth type TLV */ if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9) pos += lbs_add_auth_type_tlv(pos, sme->auth_type); /* add WPA/WPA2 TLV */ if (sme->ie && sme->ie_len) pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len); len = (sizeof(*cmd) - sizeof(cmd->iebuf)) + (u16)(pos - (u8 *) &cmd->iebuf); cmd->hdr.size = cpu_to_le16(len); lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd, le16_to_cpu(cmd->hdr.size)); /* store for later use */ memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN); ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd); if (ret) goto done; /* generate connect message to cfg80211 */ resp = (void *) cmd; /* recast for easier field access */ status = le16_to_cpu(resp->statuscode); /* Older FW versions map the IEEE 802.11 Status Code in the association * response to the following values returned in resp->statuscode: * * IEEE Status Code Marvell Status Code * 0 -> 0x0000 ASSOC_RESULT_SUCCESS * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED * others -> 0x0003 ASSOC_RESULT_REFUSED * * Other response codes: * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused) * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for * association response from the AP) */ if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { switch (status) { case 0: break; case 1: lbs_deb_assoc("invalid association parameters\n"); status = WLAN_STATUS_CAPS_UNSUPPORTED; break; case 2: lbs_deb_assoc("timer expired while waiting for AP\n"); status = WLAN_STATUS_AUTH_TIMEOUT; break; case 3: lbs_deb_assoc("association refused by AP\n"); status = WLAN_STATUS_ASSOC_DENIED_UNSPEC; break; case 4: lbs_deb_assoc("authentication refused by AP\n"); status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION; break; default: lbs_deb_assoc("association failure %d\n", status); /* v5 OLPC firmware does return the AP status code if * it's not one of the values above. Let that through. */ break; } } lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, " "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode), le16_to_cpu(resp->capability), le16_to_cpu(resp->aid)); resp_ie_len = le16_to_cpu(resp->hdr.size) - sizeof(resp->hdr) - 6; cfg80211_connect_result(priv->dev, priv->assoc_bss, sme->ie, sme->ie_len, resp->iebuf, resp_ie_len, status, GFP_KERNEL); if (status == 0) { /* TODO: get rid of priv->connect_status */ priv->connect_status = LBS_CONNECTED; netif_carrier_on(priv->dev); if (!priv->tx_pending_len) netif_tx_wake_all_queues(priv->dev); } kfree(cmd); done: return ret; } static struct cfg80211_scan_request * _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme) { struct cfg80211_scan_request *creq = NULL; int i, n_channels = ieee80211_get_num_supported_channels(wiphy); enum nl80211_band band; creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + n_channels * sizeof(void *), GFP_ATOMIC); if (!creq) return NULL; /* SSIDs come after channels */ creq->ssids = (void *)&creq->channels[n_channels]; creq->n_channels = n_channels; creq->n_ssids = 1; /* Scan all available channels */ i = 0; for (band = 0; band < NUM_NL80211_BANDS; band++) { int j; if (!wiphy->bands[band]) continue; for (j = 0; j < wiphy->bands[band]->n_channels; j++) { /* ignore disabled channels */ if (wiphy->bands[band]->channels[j].flags & IEEE80211_CHAN_DISABLED) continue; creq->channels[i] = &wiphy->bands[band]->channels[j]; i++; } } if (i) { /* Set real number of channels specified in creq->channels[] */ creq->n_channels = i; /* Scan for the SSID we're going to connect to */ memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len); creq->ssids[0].ssid_len = sme->ssid_len; } else { /* No channels found... */ kfree(creq); creq = NULL; } return creq; } static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct lbs_private *priv = wiphy_priv(wiphy); struct cfg80211_bss *bss = NULL; int ret = 0; u8 preamble = RADIO_PREAMBLE_SHORT; if (dev == priv->mesh_dev) return -EOPNOTSUPP; if (!sme->bssid) { struct cfg80211_scan_request *creq; /* * Scan for the requested network after waiting for existing * scans to finish. */ lbs_deb_assoc("assoc: waiting for existing scans\n"); wait_event_interruptible_timeout(priv->scan_q, (priv->scan_req == NULL), (15 * HZ)); creq = _new_connect_scan_req(wiphy, sme); if (!creq) { ret = -EINVAL; goto done; } lbs_deb_assoc("assoc: scanning for compatible AP\n"); _internal_start_scan(priv, true, creq); lbs_deb_assoc("assoc: waiting for scan to complete\n"); wait_event_interruptible_timeout(priv->scan_q, (priv->scan_req == NULL), (15 * HZ)); lbs_deb_assoc("assoc: scanning completed\n"); } /* Find the BSS we want using available scan results */ bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS, IEEE80211_PRIVACY_ANY); if (!bss) { wiphy_err(wiphy, "assoc: bss %pM not in scan results\n", sme->bssid); ret = -ENOENT; goto done; } lbs_deb_assoc("trying %pM\n", bss->bssid); lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n", sme->crypto.cipher_group, sme->key_idx, sme->key_len); /* As this is a new connection, clear locally stored WEP keys */ priv->wep_tx_key = 0; memset(priv->wep_key, 0, sizeof(priv->wep_key)); memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len)); /* set/remove WEP keys */ switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* Store provided WEP keys in priv-> */ priv->wep_tx_key = sme->key_idx; priv->wep_key_len[sme->key_idx] = sme->key_len; memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len); /* Set WEP keys and WEP mode */ lbs_set_wep_keys(priv); priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE; lbs_set_mac_control(priv); /* No RSN mode for WEP */ lbs_enable_rsn(priv, 0); break; case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */ /* * If we don't have no WEP, no WPA and no WPA2, * we remove all keys like in the WPA/WPA2 setup, * we just don't set RSN. * * Therefore: fall-through */ case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: /* Remove WEP keys and WEP mode */ lbs_remove_wep_keys(priv); priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE; lbs_set_mac_control(priv); /* clear the WPA/WPA2 keys */ lbs_set_key_material(priv, KEY_TYPE_ID_WEP, /* doesn't matter */ KEY_INFO_WPA_UNICAST, NULL, 0); lbs_set_key_material(priv, KEY_TYPE_ID_WEP, /* doesn't matter */ KEY_INFO_WPA_MCAST, NULL, 0); /* RSN mode for WPA/WPA2 */ lbs_enable_rsn(priv, sme->crypto.cipher_group != 0); break; default: wiphy_err(wiphy, "unsupported cipher group 0x%x\n", sme->crypto.cipher_group); ret = -ENOTSUPP; goto done; } ret = lbs_set_authtype(priv, sme); if (ret == -ENOTSUPP) { wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type); goto done; } lbs_set_radio(priv, preamble, 1); /* Do the actual association */ ret = lbs_associate(priv, bss, sme); done: if (bss) cfg80211_put_bss(wiphy, bss); return ret; } int lbs_disconnect(struct lbs_private *priv, u16 reason) { struct cmd_ds_802_11_deauthenticate cmd; int ret; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); /* Mildly ugly to use a locally store my own BSSID ... */ memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN); cmd.reasoncode = cpu_to_le16(reason); ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd); if (ret) return ret; cfg80211_disconnected(priv->dev, reason, NULL, 0, true, GFP_KERNEL); priv->connect_status = LBS_DISCONNECTED; return 0; } static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct lbs_private *priv = wiphy_priv(wiphy); if (dev == priv->mesh_dev) return -EOPNOTSUPP; /* store for lbs_cfg_ret_disconnect() */ priv->disassoc_reason = reason_code; return lbs_disconnect(priv, reason_code); } static int lbs_cfg_set_default_key(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { struct lbs_private *priv = wiphy_priv(wiphy); if (netdev == priv->mesh_dev) return -EOPNOTSUPP; if (key_index != priv->wep_tx_key) { lbs_deb_assoc("set_default_key: to %d\n", key_index); priv->wep_tx_key = key_index; lbs_set_wep_keys(priv); } return 0; } static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev, u8 idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct lbs_private *priv = wiphy_priv(wiphy); u16 key_info; u16 key_type; int ret = 0; if (netdev == priv->mesh_dev) return -EOPNOTSUPP; lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n", params->cipher, mac_addr); lbs_deb_assoc("add_key: key index %d, key len %d\n", idx, params->key_len); if (params->key_len) lbs_deb_hex(LBS_DEB_CFG80211, "KEY", params->key, params->key_len); lbs_deb_assoc("add_key: seq len %d\n", params->seq_len); if (params->seq_len) lbs_deb_hex(LBS_DEB_CFG80211, "SEQ", params->seq, params->seq_len); switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* actually compare if something has changed ... */ if ((priv->wep_key_len[idx] != params->key_len) || memcmp(priv->wep_key[idx], params->key, params->key_len) != 0) { priv->wep_key_len[idx] = params->key_len; memcpy(priv->wep_key[idx], params->key, params->key_len); lbs_set_wep_keys(priv); } break; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: key_info = KEY_INFO_WPA_ENABLED | ((idx == 0) ? KEY_INFO_WPA_UNICAST : KEY_INFO_WPA_MCAST); key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP) ? KEY_TYPE_ID_TKIP : KEY_TYPE_ID_AES; lbs_set_key_material(priv, key_type, key_info, params->key, params->key_len); break; default: wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher); ret = -ENOTSUPP; break; } return ret; } static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n", key_index, mac_addr); #ifdef TODO struct lbs_private *priv = wiphy_priv(wiphy); /* * I think can keep this a NO-OP, because: * - we clear all keys whenever we do lbs_cfg_connect() anyway * - neither "iw" nor "wpa_supplicant" won't call this during * an ongoing connection * - TODO: but I have to check if this is still true when * I set the AP to periodic re-keying * - we've not kzallec() something when we've added a key at * lbs_cfg_connect() or lbs_cfg_add_key(). * * This causes lbs_cfg_del_key() only called at disconnect time, * where we'd just waste time deleting a key that is not going * to be used anyway. */ if (key_index < 3 && priv->wep_key_len[key_index]) { priv->wep_key_len[key_index] = 0; lbs_set_wep_keys(priv); } #endif return 0; } /* * Get station */ static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { struct lbs_private *priv = wiphy_priv(wiphy); s8 signal, noise; int ret; size_t i; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) | BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | BIT_ULL(NL80211_STA_INFO_RX_BYTES) | BIT_ULL(NL80211_STA_INFO_RX_PACKETS); sinfo->tx_bytes = priv->dev->stats.tx_bytes; sinfo->tx_packets = priv->dev->stats.tx_packets; sinfo->rx_bytes = priv->dev->stats.rx_bytes; sinfo->rx_packets = priv->dev->stats.rx_packets; /* Get current RSSI */ ret = lbs_get_rssi(priv, &signal, &noise); if (ret == 0) { sinfo->signal = signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); } /* Convert priv->cur_rate from hw_value to NL80211 value */ for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { if (priv->cur_rate == lbs_rates[i].hw_value) { sinfo->txrate.legacy = lbs_rates[i].bitrate; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); break; } } return 0; } /* * Change interface */ static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { struct lbs_private *priv = wiphy_priv(wiphy); int ret = 0; if (dev == priv->mesh_dev) return -EOPNOTSUPP; switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: break; default: return -EOPNOTSUPP; } if (priv->iface_running) ret = lbs_set_iface_type(priv, type); if (!ret) priv->wdev->iftype = type; return ret; } /* * IBSS (Ad-Hoc) */ /* * The firmware needs the following bits masked out of the beacon-derived * capability field when associating/joining to a BSS: * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused) */ #define CAPINFO_MASK (~(0xda00)) static void lbs_join_post(struct lbs_private *priv, struct cfg80211_ibss_params *params, u8 *bssid, u16 capability) { u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */ 2 + 4 + /* basic rates */ 2 + 1 + /* DS parameter */ 2 + 2 + /* atim */ 2 + 8]; /* extended rates */ u8 *fake = fake_ie; struct cfg80211_bss *bss; /* * For cfg80211_inform_bss, we'll need a fake IE, as we can't get * the real IE from the firmware. So we fabricate a fake IE based on * what the firmware actually sends (sniffed with wireshark). */ /* Fake SSID IE */ *fake++ = WLAN_EID_SSID; *fake++ = params->ssid_len; memcpy(fake, params->ssid, params->ssid_len); fake += params->ssid_len; /* Fake supported basic rates IE */ *fake++ = WLAN_EID_SUPP_RATES; *fake++ = 4; *fake++ = 0x82; *fake++ = 0x84; *fake++ = 0x8b; *fake++ = 0x96; /* Fake DS channel IE */ *fake++ = WLAN_EID_DS_PARAMS; *fake++ = 1; *fake++ = params->chandef.chan->hw_value; /* Fake IBSS params IE */ *fake++ = WLAN_EID_IBSS_PARAMS; *fake++ = 2; *fake++ = 0; /* ATIM=0 */ *fake++ = 0; /* Fake extended rates IE, TODO: don't add this for 802.11b only, * but I don't know how this could be checked */ *fake++ = WLAN_EID_EXT_SUPP_RATES; *fake++ = 8; *fake++ = 0x0c; *fake++ = 0x12; *fake++ = 0x18; *fake++ = 0x24; *fake++ = 0x30; *fake++ = 0x48; *fake++ = 0x60; *fake++ = 0x6c; lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie); bss = cfg80211_inform_bss(priv->wdev->wiphy, params->chandef.chan, CFG80211_BSS_FTYPE_UNKNOWN, bssid, 0, capability, params->beacon_interval, fake_ie, fake - fake_ie, 0, GFP_KERNEL); cfg80211_put_bss(priv->wdev->wiphy, bss); cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan, GFP_KERNEL); /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */ priv->connect_status = LBS_CONNECTED; netif_carrier_on(priv->dev); if (!priv->tx_pending_len) netif_wake_queue(priv->dev); } static int lbs_ibss_join_existing(struct lbs_private *priv, struct cfg80211_ibss_params *params, struct cfg80211_bss *bss) { const u8 *rates_eid; struct cmd_ds_802_11_ad_hoc_join cmd; u8 preamble = RADIO_PREAMBLE_SHORT; int ret = 0; int hw, i; u8 rates_max; u8 *rates; /* TODO: set preamble based on scan result */ ret = lbs_set_radio(priv, preamble, 1); if (ret) goto out; /* * Example CMD_802_11_AD_HOC_JOIN command: * * command 2c 00 CMD_802_11_AD_HOC_JOIN * size 65 00 * sequence xx xx * result 00 00 * bssid 02 27 27 97 2f 96 * ssid 49 42 53 53 00 00 00 00 * 00 00 00 00 00 00 00 00 * 00 00 00 00 00 00 00 00 * 00 00 00 00 00 00 00 00 * type 02 CMD_BSS_TYPE_IBSS * beacon period 64 00 * dtim period 00 * timestamp 00 00 00 00 00 00 00 00 * localtime 00 00 00 00 00 00 00 00 * IE DS 03 * IE DS len 01 * IE DS channel 01 * reserveed 00 00 00 00 * IE IBSS 06 * IE IBSS len 02 * IE IBSS atim 00 00 * reserved 00 00 00 00 * capability 02 00 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00 * fail timeout ff 00 * probe delay 00 00 */ memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN); memcpy(cmd.bss.ssid, params->ssid, params->ssid_len); cmd.bss.type = CMD_BSS_TYPE_IBSS; cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval); cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS; cmd.bss.ds.header.len = 1; cmd.bss.ds.channel = params->chandef.chan->hw_value; cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS; cmd.bss.ibss.header.len = 2; cmd.bss.ibss.atimwindow = 0; cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK); /* set rates to the intersection of our rates and the rates in the bss */ rcu_read_lock(); rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); if (!rates_eid) { lbs_add_rates(cmd.bss.rates); } else { rates_max = rates_eid[1]; if (rates_max > MAX_RATES) { lbs_deb_join("invalid rates"); rcu_read_unlock(); ret = -EINVAL; goto out; } rates = cmd.bss.rates; for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { u8 hw_rate = lbs_rates[hw].bitrate / 5; for (i = 0; i < rates_max; i++) { if (hw_rate == (rates_eid[i+2] & 0x7f)) { u8 rate = rates_eid[i+2]; if (rate == 0x02 || rate == 0x04 || rate == 0x0b || rate == 0x16) rate |= 0x80; *rates++ = rate; } } } } rcu_read_unlock(); /* Only v8 and below support setting this */ if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT); cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); } ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd); if (ret) goto out; /* * This is a sample response to CMD_802_11_AD_HOC_JOIN: * * response 2c 80 * size 09 00 * sequence xx xx * result 00 00 * reserved 00 */ lbs_join_post(priv, params, bss->bssid, bss->capability); out: return ret; } static int lbs_ibss_start_new(struct lbs_private *priv, struct cfg80211_ibss_params *params) { struct cmd_ds_802_11_ad_hoc_start cmd; struct cmd_ds_802_11_ad_hoc_result *resp = (struct cmd_ds_802_11_ad_hoc_result *) &cmd; u8 preamble = RADIO_PREAMBLE_SHORT; int ret = 0; u16 capability; ret = lbs_set_radio(priv, preamble, 1); if (ret) goto out; /* * Example CMD_802_11_AD_HOC_START command: * * command 2b 00 CMD_802_11_AD_HOC_START * size b1 00 * sequence xx xx * result 00 00 * ssid 54 45 53 54 00 00 00 00 * 00 00 00 00 00 00 00 00 * 00 00 00 00 00 00 00 00 * 00 00 00 00 00 00 00 00 * bss type 02 * beacon period 64 00 * dtim period 00 * IE IBSS 06 * IE IBSS len 02 * IE IBSS atim 00 00 * reserved 00 00 00 00 * IE DS 03 * IE DS len 01 * IE DS channel 01 * reserved 00 00 00 00 * probe delay 00 00 * capability 02 00 * rates 82 84 8b 96 (basic rates with have bit 7 set) * 0c 12 18 24 30 48 60 6c * padding 100 bytes */ memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); memcpy(cmd.ssid, params->ssid, params->ssid_len); cmd.bsstype = CMD_BSS_TYPE_IBSS; cmd.beaconperiod = cpu_to_le16(params->beacon_interval); cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS; cmd.ibss.header.len = 2; cmd.ibss.atimwindow = 0; cmd.ds.header.id = WLAN_EID_DS_PARAMS; cmd.ds.header.len = 1; cmd.ds.channel = params->chandef.chan->hw_value; /* Only v8 and below support setting probe delay */ if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); /* TODO: mix in WLAN_CAPABILITY_PRIVACY */ capability = WLAN_CAPABILITY_IBSS; cmd.capability = cpu_to_le16(capability); lbs_add_rates(cmd.rates); ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd); if (ret) goto out; /* * This is a sample response to CMD_802_11_AD_HOC_JOIN: * * response 2b 80 * size 14 00 * sequence xx xx * result 00 00 * reserved 00 * bssid 02 2b 7b 0f 86 0e */ lbs_join_post(priv, params, resp->bssid, capability); out: return ret; } static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { struct lbs_private *priv = wiphy_priv(wiphy); int ret = 0; struct cfg80211_bss *bss; if (dev == priv->mesh_dev) return -EOPNOTSUPP; if (!params->chandef.chan) { ret = -ENOTSUPP; goto out; } ret = lbs_set_channel(priv, params->chandef.chan->hw_value); if (ret) goto out; /* Search if someone is beaconing. This assumes that the * bss list is populated already */ bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid, params->ssid, params->ssid_len, IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY); if (bss) { ret = lbs_ibss_join_existing(priv, params, bss); cfg80211_put_bss(wiphy, bss); } else ret = lbs_ibss_start_new(priv, params); out: return ret; } static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { struct lbs_private *priv = wiphy_priv(wiphy); struct cmd_ds_802_11_ad_hoc_stop cmd; int ret = 0; if (dev == priv->mesh_dev) return -EOPNOTSUPP; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.size = cpu_to_le16(sizeof(cmd)); ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd); /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */ lbs_mac_event_disconnected(priv, true); return ret; } static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct lbs_private *priv = wiphy_priv(wiphy); if (!(priv->fwcapinfo & FW_CAPINFO_PS)) { if (!enabled) return 0; else return -EINVAL; } /* firmware does not work well with too long latency with power saving * enabled, so do not enable it if there is only polling, no * interrupts (like in some sdio hosts which can only * poll for sdio irqs) */ if (priv->is_polling) { if (!enabled) return 0; else return -EINVAL; } if (!enabled) { priv->psmode = LBS802_11POWERMODECAM; if (priv->psstate != PS_STATE_FULL_POWER) lbs_set_ps_mode(priv, PS_MODE_ACTION_EXIT_PS, true); return 0; } if (priv->psmode != LBS802_11POWERMODECAM) return 0; priv->psmode = LBS802_11POWERMODEMAX_PSP; if (priv->connect_status == LBS_CONNECTED) lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true); return 0; } /* * Initialization */ static const struct cfg80211_ops lbs_cfg80211_ops = { .set_monitor_channel = lbs_cfg_set_monitor_channel, .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel, .scan = lbs_cfg_scan, .connect = lbs_cfg_connect, .disconnect = lbs_cfg_disconnect, .add_key = lbs_cfg_add_key, .del_key = lbs_cfg_del_key, .set_default_key = lbs_cfg_set_default_key, .get_station = lbs_cfg_get_station, .change_virtual_intf = lbs_change_intf, .join_ibss = lbs_join_ibss, .leave_ibss = lbs_leave_ibss, .set_power_mgmt = lbs_set_power_mgmt, }; /* * At this time lbs_private *priv doesn't even exist, so we just allocate * memory and don't initialize the wiphy further. This is postponed until we * can talk to the firmware and happens at registration time in * lbs_cfg_wiphy_register(). */ struct wireless_dev *lbs_cfg_alloc(struct device *dev) { int ret = 0; struct wireless_dev *wdev; wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); if (!wdev) return ERR_PTR(-ENOMEM); wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private)); if (!wdev->wiphy) { dev_err(dev, "cannot allocate wiphy\n"); ret = -ENOMEM; goto err_wiphy_new; } return wdev; err_wiphy_new: kfree(wdev); return ERR_PTR(ret); } static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv) { struct region_code_mapping { const char *cn; int code; }; /* Section 5.17.2 */ static const struct region_code_mapping regmap[] = { {"US ", 0x10}, /* US FCC */ {"CA ", 0x20}, /* Canada */ {"EU ", 0x30}, /* ETSI */ {"ES ", 0x31}, /* Spain */ {"FR ", 0x32}, /* France */ {"JP ", 0x40}, /* Japan */ }; size_t i; for (i = 0; i < ARRAY_SIZE(regmap); i++) if (regmap[i].code == priv->regioncode) { regulatory_hint(priv->wdev->wiphy, regmap[i].cn); break; } } static void lbs_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct lbs_private *priv = wiphy_priv(wiphy); memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2)); if (lbs_iface_active(priv)) lbs_set_11d_domain_info(priv); } /* * This function get's called after lbs_setup_firmware() determined the * firmware capabities. So we can setup the wiphy according to our * hardware/firmware. */ int lbs_cfg_register(struct lbs_private *priv) { struct wireless_dev *wdev = priv->wdev; int ret; wdev->wiphy->max_scan_ssids = 1; wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); if (lbs_rtap_supported(priv)) wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); if (lbs_mesh_activated(priv)) wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT); wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz; /* * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have * never seen a firmware without WPA */ wdev->wiphy->cipher_suites = cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); wdev->wiphy->reg_notifier = lbs_reg_notifier; ret = wiphy_register(wdev->wiphy); if (ret < 0) pr_err("cannot register wiphy device\n"); priv->wiphy_registered = true; ret = register_netdev(priv->dev); if (ret) pr_err("cannot register network device\n"); INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker); lbs_cfg_set_regulatory_hint(priv); return ret; } void lbs_scan_deinit(struct lbs_private *priv) { cancel_delayed_work_sync(&priv->scan_work); } void lbs_cfg_free(struct lbs_private *priv) { struct wireless_dev *wdev = priv->wdev; if (!wdev) return; if (priv->wiphy_registered) wiphy_unregister(wdev->wiphy); if (wdev->wiphy) wiphy_free(wdev->wiphy); kfree(wdev); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1