Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Min Li | 4850 | 99.96% | 4 | 80.00% |
Yue haibing | 2 | 0.04% | 1 | 20.00% |
Total | 4852 | 5 |
// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 Integrated Device Technology, Inc // #define pr_fmt(fmt) "IDT_82p33xxx: " fmt #include <linux/firmware.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/timekeeping.h> #include <linux/bitops.h> #include "ptp_private.h" #include "ptp_idt82p33.h" MODULE_DESCRIPTION("Driver for IDT 82p33xxx clock devices"); MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FW_FILENAME); /* Module Parameters */ static u32 sync_tod_timeout = SYNC_TOD_TIMEOUT_SEC; module_param(sync_tod_timeout, uint, 0); MODULE_PARM_DESC(sync_tod_timeout, "duration in second to keep SYNC_TOD on (set to 0 to keep it always on)"); static u32 phase_snap_threshold = SNAP_THRESHOLD_NS; module_param(phase_snap_threshold, uint, 0); MODULE_PARM_DESC(phase_snap_threshold, "threshold (150000ns by default) below which adjtime would ignore"); static void idt82p33_byte_array_to_timespec(struct timespec64 *ts, u8 buf[TOD_BYTE_COUNT]) { time64_t sec; s32 nsec; u8 i; nsec = buf[3]; for (i = 0; i < 3; i++) { nsec <<= 8; nsec |= buf[2 - i]; } sec = buf[9]; for (i = 0; i < 5; i++) { sec <<= 8; sec |= buf[8 - i]; } ts->tv_sec = sec; ts->tv_nsec = nsec; } static void idt82p33_timespec_to_byte_array(struct timespec64 const *ts, u8 buf[TOD_BYTE_COUNT]) { time64_t sec; s32 nsec; u8 i; nsec = ts->tv_nsec; sec = ts->tv_sec; for (i = 0; i < 4; i++) { buf[i] = nsec & 0xff; nsec >>= 8; } for (i = 4; i < TOD_BYTE_COUNT; i++) { buf[i] = sec & 0xff; sec >>= 8; } } static int idt82p33_xfer_read(struct idt82p33 *idt82p33, unsigned char regaddr, unsigned char *buf, unsigned int count) { struct i2c_client *client = idt82p33->client; struct i2c_msg msg[2]; int cnt; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].len = 1; msg[0].buf = ®addr; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].len = count; msg[1].buf = buf; cnt = i2c_transfer(client->adapter, msg, 2); if (cnt < 0) { dev_err(&client->dev, "i2c_transfer returned %d\n", cnt); return cnt; } else if (cnt != 2) { dev_err(&client->dev, "i2c_transfer sent only %d of %d messages\n", cnt, 2); return -EIO; } return 0; } static int idt82p33_xfer_write(struct idt82p33 *idt82p33, u8 regaddr, u8 *buf, u16 count) { struct i2c_client *client = idt82p33->client; /* we add 1 byte for device register */ u8 msg[IDT82P33_MAX_WRITE_COUNT + 1]; int err; if (count > IDT82P33_MAX_WRITE_COUNT) return -EINVAL; msg[0] = regaddr; memcpy(&msg[1], buf, count); err = i2c_master_send(client, msg, count + 1); if (err < 0) { dev_err(&client->dev, "i2c_master_send returned %d\n", err); return err; } return 0; } static int idt82p33_page_offset(struct idt82p33 *idt82p33, unsigned char val) { int err; if (idt82p33->page_offset == val) return 0; err = idt82p33_xfer_write(idt82p33, PAGE_ADDR, &val, sizeof(val)); if (err) dev_err(&idt82p33->client->dev, "failed to set page offset %d\n", val); else idt82p33->page_offset = val; return err; } static int idt82p33_rdwr(struct idt82p33 *idt82p33, unsigned int regaddr, unsigned char *buf, unsigned int count, bool write) { u8 offset, page; int err; page = _PAGE(regaddr); offset = _OFFSET(regaddr); err = idt82p33_page_offset(idt82p33, page); if (err) return err; if (write) return idt82p33_xfer_write(idt82p33, offset, buf, count); return idt82p33_xfer_read(idt82p33, offset, buf, count); } static int idt82p33_read(struct idt82p33 *idt82p33, unsigned int regaddr, unsigned char *buf, unsigned int count) { return idt82p33_rdwr(idt82p33, regaddr, buf, count, false); } static int idt82p33_write(struct idt82p33 *idt82p33, unsigned int regaddr, unsigned char *buf, unsigned int count) { return idt82p33_rdwr(idt82p33, regaddr, buf, count, true); } static int idt82p33_dpll_set_mode(struct idt82p33_channel *channel, enum pll_mode mode) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 dpll_mode; int err; if (channel->pll_mode == mode) return 0; err = idt82p33_read(idt82p33, channel->dpll_mode_cnfg, &dpll_mode, sizeof(dpll_mode)); if (err) return err; dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT); dpll_mode |= (mode << PLL_MODE_SHIFT); err = idt82p33_write(idt82p33, channel->dpll_mode_cnfg, &dpll_mode, sizeof(dpll_mode)); if (err) return err; channel->pll_mode = dpll_mode; return 0; } static int _idt82p33_gettime(struct idt82p33_channel *channel, struct timespec64 *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; u8 trigger; int err; trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG, HW_TOD_RD_TRIG_SEL_LSB_TOD_STS); err = idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); if (err) return err; if (idt82p33->calculate_overhead_flag) idt82p33->start_time = ktime_get_raw(); err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; idt82p33_byte_array_to_timespec(ts, buf); return 0; } /* * TOD Trigger: * Bits[7:4] Write 0x9, MSB write * Bits[3:0] Read 0x9, LSB read */ static int _idt82p33_settime(struct idt82p33_channel *channel, struct timespec64 const *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 local_ts = *ts; char buf[TOD_BYTE_COUNT]; s64 dynamic_overhead_ns; unsigned char trigger; int err; u8 i; trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG, HW_TOD_RD_TRIG_SEL_LSB_TOD_STS); err = idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); if (err) return err; if (idt82p33->calculate_overhead_flag) { dynamic_overhead_ns = ktime_to_ns(ktime_get_raw()) - ktime_to_ns(idt82p33->start_time); timespec64_add_ns(&local_ts, dynamic_overhead_ns); idt82p33->calculate_overhead_flag = 0; } idt82p33_timespec_to_byte_array(&local_ts, buf); /* * Store the new time value. */ for (i = 0; i < TOD_BYTE_COUNT; i++) { err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i, &buf[i], sizeof(buf[i])); if (err) return err; } return err; } static int _idt82p33_adjtime(struct idt82p33_channel *channel, s64 delta_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 ts; s64 now_ns; int err; idt82p33->calculate_overhead_flag = 1; err = _idt82p33_gettime(channel, &ts); if (err) return err; now_ns = timespec64_to_ns(&ts); now_ns += delta_ns + idt82p33->tod_write_overhead_ns; ts = ns_to_timespec64(now_ns); err = _idt82p33_settime(channel, &ts); return err; } static int _idt82p33_adjfine(struct idt82p33_channel *channel, long scaled_ppm) { struct idt82p33 *idt82p33 = channel->idt82p33; unsigned char buf[5] = {0}; int err, i; s64 fcw; if (scaled_ppm == channel->current_freq_ppb) return 0; /* * Frequency Control Word unit is: 1.68 * 10^-10 ppm * * adjfreq: * ppb * 10^9 * FCW = ---------- * 168 * * adjfine: * scaled_ppm * 5^12 * FCW = ------------- * 168 * 2^4 */ fcw = scaled_ppm * 244140625ULL; fcw = div_s64(fcw, 2688); for (i = 0; i < 5; i++) { buf[i] = fcw & 0xff; fcw >>= 8; } err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO); if (err) return err; err = idt82p33_write(idt82p33, channel->dpll_freq_cnfg, buf, sizeof(buf)); if (err == 0) channel->current_freq_ppb = scaled_ppm; return err; } static int idt82p33_measure_one_byte_write_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; ktime_t start, stop; s64 total_ns; u8 trigger; int err; u8 i; total_ns = 0; *overhead_ns = 0; trigger = TOD_TRIGGER(HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG, HW_TOD_RD_TRIG_SEL_LSB_TOD_STS); for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); err = idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); stop = ktime_get_raw(); if (err) return err; total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } *overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_tod_write_9_byte_overhead( struct idt82p33_channel *channel) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; ktime_t start, stop; s64 total_ns; int err = 0; u8 i, j; total_ns = 0; idt82p33->tod_write_overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); /* Need one less byte for applicable overhead */ for (j = 0; j < (TOD_BYTE_COUNT - 1); j++) { err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i, &buf[i], sizeof(buf[i])); if (err) return err; } stop = ktime_get_raw(); total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } idt82p33->tod_write_overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_settime_gettime_gap_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct timespec64 ts1 = {0, 0}; struct timespec64 ts2; int err; *overhead_ns = 0; err = _idt82p33_settime(channel, &ts1); if (err) return err; err = _idt82p33_gettime(channel, &ts2); if (!err) *overhead_ns = timespec64_to_ns(&ts2) - timespec64_to_ns(&ts1); return err; } static int idt82p33_measure_tod_write_overhead(struct idt82p33_channel *channel) { s64 trailing_overhead_ns, one_byte_write_ns, gap_ns; struct idt82p33 *idt82p33 = channel->idt82p33; int err; idt82p33->tod_write_overhead_ns = 0; err = idt82p33_measure_settime_gettime_gap_overhead(channel, &gap_ns); if (err) { dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_measure_one_byte_write_overhead(channel, &one_byte_write_ns); if (err) return err; err = idt82p33_measure_tod_write_9_byte_overhead(channel); if (err) return err; trailing_overhead_ns = gap_ns - (2 * one_byte_write_ns); idt82p33->tod_write_overhead_ns -= trailing_overhead_ns; return err; } static int idt82p33_check_and_set_masks(struct idt82p33 *idt82p33, u8 page, u8 offset, u8 val) { int err = 0; if (page == PLLMASK_ADDR_HI && offset == PLLMASK_ADDR_LO) { if ((val & 0xfc) || !(val & 0x3)) { dev_err(&idt82p33->client->dev, "Invalid PLL mask 0x%hhx\n", val); err = -EINVAL; } else { idt82p33->pll_mask = val; } } else if (page == PLL0_OUTMASK_ADDR_HI && offset == PLL0_OUTMASK_ADDR_LO) { idt82p33->channel[0].output_mask = val; } else if (page == PLL1_OUTMASK_ADDR_HI && offset == PLL1_OUTMASK_ADDR_LO) { idt82p33->channel[1].output_mask = val; } return err; } static void idt82p33_display_masks(struct idt82p33 *idt82p33) { u8 mask, i; dev_info(&idt82p33->client->dev, "pllmask = 0x%02x\n", idt82p33->pll_mask); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if (mask & idt82p33->pll_mask) dev_info(&idt82p33->client->dev, "PLL%d output_mask = 0x%04x\n", i, idt82p33->channel[i].output_mask); } } static int idt82p33_sync_tod(struct idt82p33_channel *channel, bool enable) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 sync_cnfg; int err; /* Turn it off after sync_tod_timeout seconds */ if (enable && sync_tod_timeout) ptp_schedule_worker(channel->ptp_clock, sync_tod_timeout * HZ); err = idt82p33_read(idt82p33, channel->dpll_sync_cnfg, &sync_cnfg, sizeof(sync_cnfg)); if (err) return err; sync_cnfg &= ~SYNC_TOD; if (enable) sync_cnfg |= SYNC_TOD; return idt82p33_write(idt82p33, channel->dpll_sync_cnfg, &sync_cnfg, sizeof(sync_cnfg)); } static long idt82p33_sync_tod_work_handler(struct ptp_clock_info *ptp) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; mutex_lock(&idt82p33->reg_lock); (void)idt82p33_sync_tod(channel, false); mutex_unlock(&idt82p33->reg_lock); /* Return a negative value here to not reschedule */ return -1; } static int idt82p33_output_enable(struct idt82p33_channel *channel, bool enable, unsigned int outn) { struct idt82p33 *idt82p33 = channel->idt82p33; int err; u8 val; err = idt82p33_read(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val)); if (err) return err; if (enable) val &= ~SQUELCH_ENABLE; else val |= SQUELCH_ENABLE; return idt82p33_write(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val)); } static int idt82p33_output_mask_enable(struct idt82p33_channel *channel, bool enable) { u16 mask; int err; u8 outn; mask = channel->output_mask; outn = 0; while (mask) { if (mask & 0x1) { err = idt82p33_output_enable(channel, enable, outn); if (err) return err; } mask >>= 0x1; outn++; } return 0; } static int idt82p33_perout_enable(struct idt82p33_channel *channel, bool enable, struct ptp_perout_request *perout) { unsigned int flags = perout->flags; /* Enable/disable output based on output_mask */ if (flags == PEROUT_ENABLE_OUTPUT_MASK) return idt82p33_output_mask_enable(channel, enable); /* Enable/disable individual output instead */ return idt82p33_output_enable(channel, enable, perout->index); } static int idt82p33_enable_tod(struct idt82p33_channel *channel) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 ts = {0, 0}; int err; u8 val; val = 0; err = idt82p33_write(idt82p33, channel->dpll_input_mode_cnfg, &val, sizeof(val)); if (err) return err; err = idt82p33_measure_tod_write_overhead(channel); if (err) { dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); return err; } err = _idt82p33_settime(channel, &ts); if (err) return err; return idt82p33_sync_tod(channel, true); } static void idt82p33_ptp_clock_unregister_all(struct idt82p33 *idt82p33) { struct idt82p33_channel *channel; u8 i; for (i = 0; i < MAX_PHC_PLL; i++) { channel = &idt82p33->channel[i]; if (channel->ptp_clock) ptp_clock_unregister(channel->ptp_clock); } } static int idt82p33_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; err = -EOPNOTSUPP; mutex_lock(&idt82p33->reg_lock); if (rq->type == PTP_CLK_REQ_PEROUT) { if (!on) err = idt82p33_perout_enable(channel, false, &rq->perout); /* Only accept a 1-PPS aligned to the second. */ else if (rq->perout.start.nsec || rq->perout.period.sec != 1 || rq->perout.period.nsec) { err = -ERANGE; } else err = idt82p33_perout_enable(channel, true, &rq->perout); } mutex_unlock(&idt82p33->reg_lock); return err; } static int idt82p33_adjwritephase(struct ptp_clock_info *ptp, s32 offset_ns) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; s64 offset_regval, offset_fs; u8 val[4] = {0}; int err; offset_fs = (s64)(-offset_ns) * 1000000; if (offset_fs > WRITE_PHASE_OFFSET_LIMIT) offset_fs = WRITE_PHASE_OFFSET_LIMIT; else if (offset_fs < -WRITE_PHASE_OFFSET_LIMIT) offset_fs = -WRITE_PHASE_OFFSET_LIMIT; /* Convert from phaseoffset_fs to register value */ offset_regval = div_s64(offset_fs * 1000, IDT_T0DPLL_PHASE_RESOL); val[0] = offset_regval & 0xFF; val[1] = (offset_regval >> 8) & 0xFF; val[2] = (offset_regval >> 16) & 0xFF; val[3] = (offset_regval >> 24) & 0x1F; val[3] |= PH_OFFSET_EN; mutex_lock(&idt82p33->reg_lock); err = idt82p33_dpll_set_mode(channel, PLL_MODE_WPH); if (err) { dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); goto out; } err = idt82p33_write(idt82p33, channel->dpll_phase_cnfg, val, sizeof(val)); out: mutex_unlock(&idt82p33->reg_lock); return err; } static int idt82p33_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(&idt82p33->reg_lock); err = _idt82p33_adjfine(channel, scaled_ppm); if (err) dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); mutex_unlock(&idt82p33->reg_lock); return err; } static int idt82p33_adjtime(struct ptp_clock_info *ptp, s64 delta_ns) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(&idt82p33->reg_lock); if (abs(delta_ns) < phase_snap_threshold) { mutex_unlock(&idt82p33->reg_lock); return 0; } err = _idt82p33_adjtime(channel, delta_ns); if (err) { mutex_unlock(&idt82p33->reg_lock); dev_err(&idt82p33->client->dev, "Adjtime failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_sync_tod(channel, true); if (err) dev_err(&idt82p33->client->dev, "Sync_tod failed in %s with err %d!\n", __func__, err); mutex_unlock(&idt82p33->reg_lock); return err; } static int idt82p33_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(&idt82p33->reg_lock); err = _idt82p33_gettime(channel, ts); if (err) dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); mutex_unlock(&idt82p33->reg_lock); return err; } static int idt82p33_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(&idt82p33->reg_lock); err = _idt82p33_settime(channel, ts); if (err) dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); mutex_unlock(&idt82p33->reg_lock); return err; } static int idt82p33_channel_init(struct idt82p33_channel *channel, int index) { switch (index) { case 0: channel->dpll_tod_cnfg = DPLL1_TOD_CNFG; channel->dpll_tod_trigger = DPLL1_TOD_TRIGGER; channel->dpll_tod_sts = DPLL1_TOD_STS; channel->dpll_mode_cnfg = DPLL1_OPERATING_MODE_CNFG; channel->dpll_freq_cnfg = DPLL1_HOLDOVER_FREQ_CNFG; channel->dpll_phase_cnfg = DPLL1_PHASE_OFFSET_CNFG; channel->dpll_sync_cnfg = DPLL1_SYNC_EDGE_CNFG; channel->dpll_input_mode_cnfg = DPLL1_INPUT_MODE_CNFG; break; case 1: channel->dpll_tod_cnfg = DPLL2_TOD_CNFG; channel->dpll_tod_trigger = DPLL2_TOD_TRIGGER; channel->dpll_tod_sts = DPLL2_TOD_STS; channel->dpll_mode_cnfg = DPLL2_OPERATING_MODE_CNFG; channel->dpll_freq_cnfg = DPLL2_HOLDOVER_FREQ_CNFG; channel->dpll_phase_cnfg = DPLL2_PHASE_OFFSET_CNFG; channel->dpll_sync_cnfg = DPLL2_SYNC_EDGE_CNFG; channel->dpll_input_mode_cnfg = DPLL2_INPUT_MODE_CNFG; break; default: return -EINVAL; } channel->current_freq_ppb = 0; return 0; } static void idt82p33_caps_init(struct ptp_clock_info *caps) { caps->owner = THIS_MODULE; caps->max_adj = 92000; caps->n_per_out = 11; caps->adjphase = idt82p33_adjwritephase; caps->adjfine = idt82p33_adjfine; caps->adjtime = idt82p33_adjtime; caps->gettime64 = idt82p33_gettime; caps->settime64 = idt82p33_settime; caps->enable = idt82p33_enable; caps->do_aux_work = idt82p33_sync_tod_work_handler; } static int idt82p33_enable_channel(struct idt82p33 *idt82p33, u32 index) { struct idt82p33_channel *channel; int err; if (!(index < MAX_PHC_PLL)) return -EINVAL; channel = &idt82p33->channel[index]; err = idt82p33_channel_init(channel, index); if (err) { dev_err(&idt82p33->client->dev, "Channel_init failed in %s with err %d!\n", __func__, err); return err; } channel->idt82p33 = idt82p33; idt82p33_caps_init(&channel->caps); snprintf(channel->caps.name, sizeof(channel->caps.name), "IDT 82P33 PLL%u", index); channel->ptp_clock = ptp_clock_register(&channel->caps, NULL); if (IS_ERR(channel->ptp_clock)) { err = PTR_ERR(channel->ptp_clock); channel->ptp_clock = NULL; return err; } if (!channel->ptp_clock) return -ENOTSUPP; err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO); if (err) { dev_err(&idt82p33->client->dev, "Dpll_set_mode failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_enable_tod(channel); if (err) { dev_err(&idt82p33->client->dev, "Enable_tod failed in %s with err %d!\n", __func__, err); return err; } dev_info(&idt82p33->client->dev, "PLL%d registered as ptp%d\n", index, channel->ptp_clock->index); return 0; } static int idt82p33_load_firmware(struct idt82p33 *idt82p33) { const struct firmware *fw; struct idt82p33_fwrc *rec; u8 loaddr, page, val; int err; s32 len; dev_dbg(&idt82p33->client->dev, "requesting firmware '%s'\n", FW_FILENAME); err = request_firmware(&fw, FW_FILENAME, &idt82p33->client->dev); if (err) { dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); return err; } dev_dbg(&idt82p33->client->dev, "firmware size %zu bytes\n", fw->size); rec = (struct idt82p33_fwrc *) fw->data; for (len = fw->size; len > 0; len -= sizeof(*rec)) { if (rec->reserved) { dev_err(&idt82p33->client->dev, "bad firmware, reserved field non-zero\n"); err = -EINVAL; } else { val = rec->value; loaddr = rec->loaddr; page = rec->hiaddr; rec++; err = idt82p33_check_and_set_masks(idt82p33, page, loaddr, val); } if (err == 0) { /* maximum 8 pages */ if (page >= PAGE_NUM) continue; /* Page size 128, last 4 bytes of page skipped */ if (((loaddr > 0x7b) && (loaddr <= 0x7f)) || loaddr > 0xfb) continue; err = idt82p33_write(idt82p33, _ADDR(page, loaddr), &val, sizeof(val)); } if (err) goto out; } idt82p33_display_masks(idt82p33); out: release_firmware(fw); return err; } static int idt82p33_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct idt82p33 *idt82p33; int err; u8 i; (void)id; idt82p33 = devm_kzalloc(&client->dev, sizeof(struct idt82p33), GFP_KERNEL); if (!idt82p33) return -ENOMEM; mutex_init(&idt82p33->reg_lock); idt82p33->client = client; idt82p33->page_offset = 0xff; idt82p33->tod_write_overhead_ns = 0; idt82p33->calculate_overhead_flag = 0; idt82p33->pll_mask = DEFAULT_PLL_MASK; idt82p33->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0; idt82p33->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1; mutex_lock(&idt82p33->reg_lock); err = idt82p33_load_firmware(idt82p33); if (err) dev_warn(&idt82p33->client->dev, "loading firmware failed with %d\n", err); if (idt82p33->pll_mask) { for (i = 0; i < MAX_PHC_PLL; i++) { if (idt82p33->pll_mask & (1 << i)) { err = idt82p33_enable_channel(idt82p33, i); if (err) { dev_err(&idt82p33->client->dev, "Failed in %s with err %d!\n", __func__, err); break; } } } } else { dev_err(&idt82p33->client->dev, "no PLLs flagged as PHCs, nothing to do\n"); err = -ENODEV; } mutex_unlock(&idt82p33->reg_lock); if (err) { idt82p33_ptp_clock_unregister_all(idt82p33); return err; } i2c_set_clientdata(client, idt82p33); return 0; } static int idt82p33_remove(struct i2c_client *client) { struct idt82p33 *idt82p33 = i2c_get_clientdata(client); idt82p33_ptp_clock_unregister_all(idt82p33); mutex_destroy(&idt82p33->reg_lock); return 0; } #ifdef CONFIG_OF static const struct of_device_id idt82p33_dt_id[] = { { .compatible = "idt,82p33810" }, { .compatible = "idt,82p33813" }, { .compatible = "idt,82p33814" }, { .compatible = "idt,82p33831" }, { .compatible = "idt,82p33910" }, { .compatible = "idt,82p33913" }, { .compatible = "idt,82p33914" }, { .compatible = "idt,82p33931" }, {}, }; MODULE_DEVICE_TABLE(of, idt82p33_dt_id); #endif static const struct i2c_device_id idt82p33_i2c_id[] = { { "idt82p33810", }, { "idt82p33813", }, { "idt82p33814", }, { "idt82p33831", }, { "idt82p33910", }, { "idt82p33913", }, { "idt82p33914", }, { "idt82p33931", }, {}, }; MODULE_DEVICE_TABLE(i2c, idt82p33_i2c_id); static struct i2c_driver idt82p33_driver = { .driver = { .of_match_table = of_match_ptr(idt82p33_dt_id), .name = "idt82p33", }, .probe = idt82p33_probe, .remove = idt82p33_remove, .id_table = idt82p33_i2c_id, }; module_i2c_driver(idt82p33_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1