Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Lemon | 7652 | 99.84% | 8 | 80.00% |
Leon Romanovsky | 8 | 0.10% | 1 | 10.00% |
Christophe Jaillet | 4 | 0.05% | 1 | 10.00% |
Total | 7664 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2020 Facebook */ #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/serial_8250.h> #include <linux/clkdev.h> #include <linux/clk-provider.h> #include <linux/platform_device.h> #include <linux/ptp_clock_kernel.h> #include <linux/spi/spi.h> #include <linux/spi/xilinx_spi.h> #include <net/devlink.h> #include <linux/i2c.h> #include <linux/mtd/mtd.h> #ifndef PCI_VENDOR_ID_FACEBOOK #define PCI_VENDOR_ID_FACEBOOK 0x1d9b #endif #ifndef PCI_DEVICE_ID_FACEBOOK_TIMECARD #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 #endif static struct class timecard_class = { .owner = THIS_MODULE, .name = "timecard", }; struct ocp_reg { u32 ctrl; u32 status; u32 select; u32 version; u32 time_ns; u32 time_sec; u32 __pad0[2]; u32 adjust_ns; u32 adjust_sec; u32 __pad1[2]; u32 offset_ns; u32 offset_window_ns; u32 __pad2[2]; u32 drift_ns; u32 drift_window_ns; u32 __pad3[6]; u32 servo_offset_p; u32 servo_offset_i; u32 servo_drift_p; u32 servo_drift_i; }; #define OCP_CTRL_ENABLE BIT(0) #define OCP_CTRL_ADJUST_TIME BIT(1) #define OCP_CTRL_ADJUST_OFFSET BIT(2) #define OCP_CTRL_ADJUST_DRIFT BIT(3) #define OCP_CTRL_ADJUST_SERVO BIT(8) #define OCP_CTRL_READ_TIME_REQ BIT(30) #define OCP_CTRL_READ_TIME_DONE BIT(31) #define OCP_STATUS_IN_SYNC BIT(0) #define OCP_STATUS_IN_HOLDOVER BIT(1) #define OCP_SELECT_CLK_NONE 0 #define OCP_SELECT_CLK_REG 0xfe struct tod_reg { u32 ctrl; u32 status; u32 uart_polarity; u32 version; u32 correction_sec; u32 __pad0[3]; u32 uart_baud; u32 __pad1[3]; u32 utc_status; u32 leap; }; #define TOD_CTRL_PROTOCOL BIT(28) #define TOD_CTRL_DISABLE_FMT_A BIT(17) #define TOD_CTRL_DISABLE_FMT_B BIT(16) #define TOD_CTRL_ENABLE BIT(0) #define TOD_CTRL_GNSS_MASK ((1U << 4) - 1) #define TOD_CTRL_GNSS_SHIFT 24 #define TOD_STATUS_UTC_MASK 0xff #define TOD_STATUS_UTC_VALID BIT(8) #define TOD_STATUS_LEAP_VALID BIT(16) struct ts_reg { u32 enable; u32 error; u32 polarity; u32 version; u32 __pad0[4]; u32 cable_delay; u32 __pad1[3]; u32 intr; u32 intr_mask; u32 event_count; u32 __pad2[1]; u32 ts_count; u32 time_ns; u32 time_sec; u32 data_width; u32 data; }; struct pps_reg { u32 ctrl; u32 status; u32 __pad0[6]; u32 cable_delay; }; #define PPS_STATUS_FILTER_ERR BIT(0) #define PPS_STATUS_SUPERV_ERR BIT(1) struct img_reg { u32 version; }; struct ptp_ocp_flash_info { const char *name; int pci_offset; int data_size; void *data; }; struct ptp_ocp_ext_info { const char *name; int index; irqreturn_t (*irq_fcn)(int irq, void *priv); int (*enable)(void *priv, bool enable); }; struct ptp_ocp_ext_src { void __iomem *mem; struct ptp_ocp *bp; struct ptp_ocp_ext_info *info; int irq_vec; }; struct ptp_ocp { struct pci_dev *pdev; struct device dev; spinlock_t lock; struct ocp_reg __iomem *reg; struct tod_reg __iomem *tod; struct pps_reg __iomem *pps_to_ext; struct pps_reg __iomem *pps_to_clk; struct ptp_ocp_ext_src *pps; struct ptp_ocp_ext_src *ts0; struct ptp_ocp_ext_src *ts1; struct img_reg __iomem *image; struct ptp_clock *ptp; struct ptp_clock_info ptp_info; struct platform_device *i2c_ctrl; struct platform_device *spi_flash; struct clk_hw *i2c_clk; struct timer_list watchdog; time64_t gnss_lost; int id; int n_irqs; int gnss_port; int mac_port; /* miniature atomic clock */ u8 serial[6]; int flash_start; bool has_serial; }; struct ocp_resource { unsigned long offset; int size; int irq_vec; int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); void *extra; unsigned long bp_offset; }; static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); static int ptp_ocp_ts_enable(void *priv, bool enable); #define bp_assign_entry(bp, res, val) ({ \ uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ *(typeof(val) *)addr = val; \ }) #define OCP_RES_LOCATION(member) \ .bp_offset = offsetof(struct ptp_ocp, member) #define OCP_MEM_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem #define OCP_SERIAL_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial #define OCP_I2C_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c #define OCP_SPI_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi #define OCP_EXT_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext /* This is the MSI vector mapping used. * 0: N/C * 1: TS0 * 2: TS1 * 3: GPS * 4: GPS2 (n/c) * 5: MAC * 6: SPI IMU (inertial measurement unit) * 7: I2C oscillator * 8: HWICAP * 9: SPI Flash */ static struct ocp_resource ocp_fb_resource[] = { { OCP_MEM_RESOURCE(reg), .offset = 0x01000000, .size = 0x10000, }, { OCP_EXT_RESOURCE(ts0), .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, .extra = &(struct ptp_ocp_ext_info) { .name = "ts0", .index = 0, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts1), .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, .extra = &(struct ptp_ocp_ext_info) { .name = "ts1", .index = 1, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_MEM_RESOURCE(pps_to_ext), .offset = 0x01030000, .size = 0x10000, }, { OCP_MEM_RESOURCE(pps_to_clk), .offset = 0x01040000, .size = 0x10000, }, { OCP_MEM_RESOURCE(tod), .offset = 0x01050000, .size = 0x10000, }, { OCP_MEM_RESOURCE(image), .offset = 0x00020000, .size = 0x1000, }, { OCP_I2C_RESOURCE(i2c_ctrl), .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, }, { OCP_SERIAL_RESOURCE(gnss_port), .offset = 0x00160000 + 0x1000, .irq_vec = 3, }, { OCP_SERIAL_RESOURCE(mac_port), .offset = 0x00180000 + 0x1000, .irq_vec = 5, }, { OCP_SPI_RESOURCE(spi_flash), .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, .extra = &(struct ptp_ocp_flash_info) { .name = "xilinx_spi", .pci_offset = 0, .data_size = sizeof(struct xspi_platform_data), .data = &(struct xspi_platform_data) { .num_chipselect = 1, .bits_per_word = 8, .num_devices = 1, .devices = &(struct spi_board_info) { .modalias = "spi-nor", }, }, }, }, { .setup = ptp_ocp_fb_board_init, }, { } }; static const struct pci_device_id ptp_ocp_pcidev_id[] = { { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, { 0 } }; MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); static DEFINE_MUTEX(ptp_ocp_lock); static DEFINE_IDR(ptp_ocp_idr); static struct { const char *name; int value; } ptp_ocp_clock[] = { { .name = "NONE", .value = 0 }, { .name = "TOD", .value = 1 }, { .name = "IRIG", .value = 2 }, { .name = "PPS", .value = 3 }, { .name = "PTP", .value = 4 }, { .name = "RTC", .value = 5 }, { .name = "DCF", .value = 6 }, { .name = "REGS", .value = 0xfe }, { .name = "EXT", .value = 0xff }, }; static const char * ptp_ocp_clock_name_from_val(int val) { int i; for (i = 0; i < ARRAY_SIZE(ptp_ocp_clock); i++) if (ptp_ocp_clock[i].value == val) return ptp_ocp_clock[i].name; return NULL; } static int ptp_ocp_clock_val_from_name(const char *name) { const char *clk; int i; for (i = 0; i < ARRAY_SIZE(ptp_ocp_clock); i++) { clk = ptp_ocp_clock[i].name; if (!strncasecmp(name, clk, strlen(clk))) return ptp_ocp_clock[i].value; } return -EINVAL; } static int __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { u32 ctrl, time_sec, time_ns; int i; ctrl = ioread32(&bp->reg->ctrl); ctrl |= OCP_CTRL_READ_TIME_REQ; ptp_read_system_prets(sts); iowrite32(ctrl, &bp->reg->ctrl); for (i = 0; i < 100; i++) { ctrl = ioread32(&bp->reg->ctrl); if (ctrl & OCP_CTRL_READ_TIME_DONE) break; } ptp_read_system_postts(sts); time_ns = ioread32(&bp->reg->time_ns); time_sec = ioread32(&bp->reg->time_sec); ts->tv_sec = time_sec; ts->tv_nsec = time_ns; return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; } static int ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; int err; spin_lock_irqsave(&bp->lock, flags); err = __ptp_ocp_gettime_locked(bp, ts, sts); spin_unlock_irqrestore(&bp->lock, flags); return err; } static void __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) { u32 ctrl, time_sec, time_ns; u32 select; time_ns = ts->tv_nsec; time_sec = ts->tv_sec; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(time_ns, &bp->reg->adjust_ns); iowrite32(time_sec, &bp->reg->adjust_sec); ctrl = ioread32(&bp->reg->ctrl); ctrl |= OCP_CTRL_ADJUST_TIME; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static int ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; if (ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC) return 0; spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_settime_locked(bp, ts); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static int ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); struct timespec64 ts; unsigned long flags; int err; if (ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC) return 0; spin_lock_irqsave(&bp->lock, flags); err = __ptp_ocp_gettime_locked(bp, &ts, NULL); if (likely(!err)) { timespec64_add_ns(&ts, delta_ns); __ptp_ocp_settime_locked(bp, &ts); } spin_unlock_irqrestore(&bp->lock, flags); return err; } static int ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) { if (scaled_ppm == 0) return 0; return -EOPNOTSUPP; } static int ptp_ocp_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) { return -EOPNOTSUPP; } static int ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, int on) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); struct ptp_ocp_ext_src *ext = NULL; int err; switch (rq->type) { case PTP_CLK_REQ_EXTTS: switch (rq->extts.index) { case 0: ext = bp->ts0; break; case 1: ext = bp->ts1; break; } break; case PTP_CLK_REQ_PPS: ext = bp->pps; break; default: return -EOPNOTSUPP; } err = -ENXIO; if (ext) err = ext->info->enable(ext, on); return err; } static const struct ptp_clock_info ptp_ocp_clock_info = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .max_adj = 100000000, .gettimex64 = ptp_ocp_gettimex, .settime64 = ptp_ocp_settime, .adjtime = ptp_ocp_adjtime, .adjfine = ptp_ocp_null_adjfine, .adjphase = ptp_ocp_adjphase, .enable = ptp_ocp_enable, .pps = true, .n_ext_ts = 2, }; static void __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) { u32 ctrl, select; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(0, &bp->reg->drift_ns); ctrl = ioread32(&bp->reg->ctrl); ctrl |= OCP_CTRL_ADJUST_DRIFT; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static void ptp_ocp_watchdog(struct timer_list *t) { struct ptp_ocp *bp = from_timer(bp, t, watchdog); unsigned long flags; u32 status; status = ioread32(&bp->pps_to_clk->status); if (status & PPS_STATUS_SUPERV_ERR) { iowrite32(status, &bp->pps_to_clk->status); if (!bp->gnss_lost) { spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_clear_drift_locked(bp); spin_unlock_irqrestore(&bp->lock, flags); bp->gnss_lost = ktime_get_real_seconds(); } } else if (bp->gnss_lost) { bp->gnss_lost = 0; } mod_timer(&bp->watchdog, jiffies + HZ); } static int ptp_ocp_init_clock(struct ptp_ocp *bp) { struct timespec64 ts; bool sync; u32 ctrl; /* make sure clock is enabled */ ctrl = ioread32(&bp->reg->ctrl); ctrl |= OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* NO DRIFT Correction */ /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */ iowrite32(0x2000, &bp->reg->servo_offset_p); iowrite32(0x1000, &bp->reg->servo_offset_i); iowrite32(0, &bp->reg->servo_drift_p); iowrite32(0, &bp->reg->servo_drift_i); /* latch servo values */ ctrl |= OCP_CTRL_ADJUST_SERVO; iowrite32(ctrl, &bp->reg->ctrl); if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { dev_err(&bp->pdev->dev, "clock not enabled\n"); return -ENODEV; } sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; if (!sync) { ktime_get_real_ts64(&ts); ptp_ocp_settime(&bp->ptp_info, &ts); } if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", ts.tv_sec, ts.tv_nsec, sync ? "in-sync" : "UNSYNCED"); timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); mod_timer(&bp->watchdog, jiffies + HZ); return 0; } static void ptp_ocp_tod_info(struct ptp_ocp *bp) { static const char * const proto_name[] = { "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", "UBX", "UBX_UTC", "UBX_LS", "UBX_none" }; static const char * const gnss_name[] = { "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", }; u32 version, ctrl, reg; int idx; version = ioread32(&bp->tod->version); dev_info(&bp->pdev->dev, "TOD Version %d.%d.%d\n", version >> 24, (version >> 16) & 0xff, version & 0xffff); ctrl = ioread32(&bp->tod->ctrl); ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); iowrite32(ctrl, &bp->tod->ctrl); ctrl = ioread32(&bp->tod->ctrl); idx = ctrl & TOD_CTRL_PROTOCOL ? 4 : 0; idx += (ctrl >> 16) & 3; dev_info(&bp->pdev->dev, "control: %x\n", ctrl); dev_info(&bp->pdev->dev, "TOD Protocol %s %s\n", proto_name[idx], ctrl & TOD_CTRL_ENABLE ? "enabled" : ""); idx = (ctrl >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; if (idx < ARRAY_SIZE(gnss_name)) dev_info(&bp->pdev->dev, "GNSS %s\n", gnss_name[idx]); reg = ioread32(&bp->tod->status); dev_info(&bp->pdev->dev, "status: %x\n", reg); reg = ioread32(&bp->tod->correction_sec); dev_info(&bp->pdev->dev, "correction: %d\n", reg); reg = ioread32(&bp->tod->utc_status); dev_info(&bp->pdev->dev, "utc_status: %x\n", reg); dev_info(&bp->pdev->dev, "utc_offset: %d valid:%d leap_valid:%d\n", reg & TOD_STATUS_UTC_MASK, reg & TOD_STATUS_UTC_VALID ? 1 : 0, reg & TOD_STATUS_LEAP_VALID ? 1 : 0); } static int ptp_ocp_firstchild(struct device *dev, void *data) { return 1; } static int ptp_ocp_read_i2c(struct i2c_adapter *adap, u8 addr, u8 reg, u8 sz, u8 *data) { struct i2c_msg msgs[2] = { { .addr = addr, .len = 1, .buf = ®, }, { .addr = addr, .flags = I2C_M_RD, .len = 2, .buf = data, }, }; int err; u8 len; /* xiic-i2c for some stupid reason only does 2 byte reads. */ while (sz) { len = min_t(u8, sz, 2); msgs[1].len = len; err = i2c_transfer(adap, msgs, 2); if (err != msgs[1].len) return err; msgs[1].buf += len; reg += len; sz -= len; } return 0; } static void ptp_ocp_get_serial_number(struct ptp_ocp *bp) { struct i2c_adapter *adap; struct device *dev; int err; dev = device_find_child(&bp->i2c_ctrl->dev, NULL, ptp_ocp_firstchild); if (!dev) { dev_err(&bp->pdev->dev, "Can't find I2C adapter\n"); return; } adap = i2c_verify_adapter(dev); if (!adap) { dev_err(&bp->pdev->dev, "device '%s' isn't an I2C adapter\n", dev_name(dev)); goto out; } err = ptp_ocp_read_i2c(adap, 0x58, 0x9A, 6, bp->serial); if (err) { dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", err); goto out; } bp->has_serial = true; out: put_device(dev); } static void ptp_ocp_info(struct ptp_ocp *bp) { u32 version, select; version = ioread32(&bp->reg->version); select = ioread32(&bp->reg->select); dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", version >> 24, (version >> 16) & 0xff, version & 0xffff, ptp_ocp_clock_name_from_val(select >> 16), ptp_clock_index(bp->ptp)); ptp_ocp_tod_info(bp); } static struct device * ptp_ocp_find_flash(struct ptp_ocp *bp) { struct device *dev, *last; last = NULL; dev = &bp->spi_flash->dev; while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) { if (!strcmp("mtd", dev_bus_name(dev))) break; put_device(last); last = dev; } put_device(last); return dev; } static int ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, const struct firmware *fw) { struct mtd_info *mtd = dev_get_drvdata(dev); struct ptp_ocp *bp = devlink_priv(devlink); size_t off, len, resid, wrote; struct erase_info erase; size_t base, blksz; int err = 0; off = 0; base = bp->flash_start; blksz = 4096; resid = fw->size; while (resid) { devlink_flash_update_status_notify(devlink, "Flashing", NULL, off, fw->size); len = min_t(size_t, resid, blksz); erase.addr = base + off; erase.len = blksz; err = mtd_erase(mtd, &erase); if (err) goto out; err = mtd_write(mtd, base + off, len, &wrote, &fw->data[off]); if (err) goto out; off += blksz; resid -= len; } out: return err; } static int ptp_ocp_devlink_flash_update(struct devlink *devlink, struct devlink_flash_update_params *params, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = devlink_priv(devlink); struct device *dev; const char *msg; int err; dev = ptp_ocp_find_flash(bp); if (!dev) { dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); return -ENODEV; } devlink_flash_update_status_notify(devlink, "Preparing to flash", NULL, 0, 0); err = ptp_ocp_devlink_flash(devlink, dev, params->fw); msg = err ? "Flash error" : "Flash complete"; devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); put_device(dev); return err; } static int ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = devlink_priv(devlink); char buf[32]; int err; err = devlink_info_driver_name_put(req, KBUILD_MODNAME); if (err) return err; if (bp->image) { u32 ver = ioread32(&bp->image->version); if (ver & 0xffff) { sprintf(buf, "%d", ver); err = devlink_info_version_running_put(req, "fw", buf); } else { sprintf(buf, "%d", ver >> 16); err = devlink_info_version_running_put(req, "loader", buf); } if (err) return err; } if (!bp->has_serial) ptp_ocp_get_serial_number(bp); if (bp->has_serial) { sprintf(buf, "%pM", bp->serial); err = devlink_info_serial_number_put(req, buf); if (err) return err; } return 0; } static const struct devlink_ops ptp_ocp_devlink_ops = { .flash_update = ptp_ocp_devlink_flash_update, .info_get = ptp_ocp_devlink_info_get, }; static void __iomem * __ptp_ocp_get_mem(struct ptp_ocp *bp, unsigned long start, int size) { struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); return devm_ioremap_resource(&bp->pdev->dev, &res); } static void __iomem * ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) { unsigned long start; start = pci_resource_start(bp->pdev, 0) + r->offset; return __ptp_ocp_get_mem(bp, start, r->size); } static void ptp_ocp_set_irq_resource(struct resource *res, int irq) { struct resource r = DEFINE_RES_IRQ(irq); *res = r; } static void ptp_ocp_set_mem_resource(struct resource *res, unsigned long start, int size) { struct resource r = DEFINE_RES_MEM(start, size); *res = r; } static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) { struct ptp_ocp_flash_info *info; struct pci_dev *pdev = bp->pdev; struct platform_device *p; struct resource res[2]; unsigned long start; int id; /* XXX hack to work around old FPGA */ if (bp->n_irqs < 10) { dev_err(&bp->pdev->dev, "FPGA does not have SPI devices\n"); return 0; } if (r->irq_vec > bp->n_irqs) { dev_err(&bp->pdev->dev, "spi device irq %d out of range\n", r->irq_vec); return 0; } start = pci_resource_start(pdev, 0) + r->offset; ptp_ocp_set_mem_resource(&res[0], start, r->size); ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); info = r->extra; id = pci_dev_id(pdev) << 1; id += info->pci_offset; p = platform_device_register_resndata(&pdev->dev, info->name, id, res, 2, info->data, info->data_size); if (IS_ERR(p)) return PTR_ERR(p); bp_assign_entry(bp, r, p); return 0; } static struct platform_device * ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) { struct resource res[2]; unsigned long start; start = pci_resource_start(pdev, 0) + r->offset; ptp_ocp_set_mem_resource(&res[0], start, r->size); ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); return platform_device_register_resndata(&pdev->dev, "xiic-i2c", id, res, 2, NULL, 0); } static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct platform_device *p; struct clk_hw *clk; char buf[32]; int id; if (r->irq_vec > bp->n_irqs) { dev_err(&bp->pdev->dev, "i2c device irq %d out of range\n", r->irq_vec); return 0; } id = pci_dev_id(bp->pdev); sprintf(buf, "AXI.%d", id); clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, 50000000); if (IS_ERR(clk)) return PTR_ERR(clk); bp->i2c_clk = clk; sprintf(buf, "xiic-i2c.%d", id); devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); p = ptp_ocp_i2c_bus(bp->pdev, r, id); if (IS_ERR(p)) return PTR_ERR(p); bp_assign_entry(bp, r, p); return 0; } static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv) { struct ptp_ocp_ext_src *ext = priv; struct ts_reg __iomem *reg = ext->mem; struct ptp_clock_event ev; u32 sec, nsec; /* XXX should fix API - this converts s/ns -> ts -> s/ns */ sec = ioread32(®->time_sec); nsec = ioread32(®->time_ns); ev.type = PTP_CLOCK_EXTTS; ev.index = ext->info->index; ev.timestamp = sec * 1000000000ULL + nsec; ptp_clock_event(ext->bp->ptp, &ev); iowrite32(1, ®->intr); /* write 1 to ack */ return IRQ_HANDLED; } static int ptp_ocp_ts_enable(void *priv, bool enable) { struct ptp_ocp_ext_src *ext = priv; struct ts_reg __iomem *reg = ext->mem; if (enable) { iowrite32(1, ®->enable); iowrite32(1, ®->intr_mask); iowrite32(1, ®->intr); } else { iowrite32(0, ®->intr_mask); iowrite32(0, ®->enable); } return 0; } static void ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) { ext->info->enable(ext, false); pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); kfree(ext); } static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct ptp_ocp_ext_src *ext; int err; ext = kzalloc(sizeof(*ext), GFP_KERNEL); if (!ext) return -ENOMEM; err = -EINVAL; ext->mem = ptp_ocp_get_mem(bp, r); if (!ext->mem) goto out; ext->bp = bp; ext->info = r->extra; ext->irq_vec = r->irq_vec; err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, ext, "ocp%d.%s", bp->id, ext->info->name); if (err) { dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); goto out; } bp_assign_entry(bp, r, ext); return 0; out: kfree(ext); return err; } static int ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct uart_8250_port uart; /* Setting UPF_IOREMAP and leaving port.membase unspecified lets * the serial port device claim and release the pci resource. */ memset(&uart, 0, sizeof(uart)); uart.port.dev = &pdev->dev; uart.port.iotype = UPIO_MEM; uart.port.regshift = 2; uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; uart.port.irq = pci_irq_vector(pdev, r->irq_vec); uart.port.uartclk = 50000000; uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP; uart.port.type = PORT_16550A; return serial8250_register_8250_port(&uart); } static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) { int port; if (r->irq_vec > bp->n_irqs) { dev_err(&bp->pdev->dev, "serial device irq %d out of range\n", r->irq_vec); return 0; } port = ptp_ocp_serial_line(bp, r); if (port < 0) return port; bp_assign_entry(bp, r, port); return 0; } static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) { void __iomem *mem; mem = ptp_ocp_get_mem(bp, r); if (!mem) return -EINVAL; bp_assign_entry(bp, r, mem); return 0; } /* FB specific board initializers; last "resource" registered. */ static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) { bp->flash_start = 1024 * 4096; return ptp_ocp_init_clock(bp); } static int ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) { struct ocp_resource *r, *table; int err = 0; table = (struct ocp_resource *)driver_data; for (r = table; r->setup; r++) { err = r->setup(bp, r); if (err) break; } return err; } static ssize_t serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); if (!bp->has_serial) ptp_ocp_get_serial_number(bp); return sysfs_emit(buf, "%pM\n", bp->serial); } static DEVICE_ATTR_RO(serialnum); static ssize_t gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); ssize_t ret; if (bp->gnss_lost) ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); else ret = sysfs_emit(buf, "SYNC\n"); return ret; } static DEVICE_ATTR_RO(gnss_sync); static ssize_t clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); const char *p; u32 select; select = ioread32(&bp->reg->select); p = ptp_ocp_clock_name_from_val(select >> 16); return sysfs_emit(buf, "%s\n", p); } static ssize_t clock_source_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int val; val = ptp_ocp_clock_val_from_name(buf); if (val < 0) return val; spin_lock_irqsave(&bp->lock, flags); iowrite32(val, &bp->reg->select); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(clock_source); static ssize_t available_clock_sources_show(struct device *dev, struct device_attribute *attr, char *buf) { const char *clk; ssize_t count; int i; count = 0; for (i = 0; i < ARRAY_SIZE(ptp_ocp_clock); i++) { clk = ptp_ocp_clock[i].name; count += sysfs_emit_at(buf, count, "%s ", clk); } if (count) count--; count += sysfs_emit_at(buf, count, "\n"); return count; } static DEVICE_ATTR_RO(available_clock_sources); static struct attribute *timecard_attrs[] = { &dev_attr_serialnum.attr, &dev_attr_gnss_sync.attr, &dev_attr_clock_source.attr, &dev_attr_available_clock_sources.attr, NULL, }; ATTRIBUTE_GROUPS(timecard); static void ptp_ocp_dev_release(struct device *dev) { struct ptp_ocp *bp = dev_get_drvdata(dev); mutex_lock(&ptp_ocp_lock); idr_remove(&ptp_ocp_idr, bp->id); mutex_unlock(&ptp_ocp_lock); } static int ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) { int err; mutex_lock(&ptp_ocp_lock); err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); mutex_unlock(&ptp_ocp_lock); if (err < 0) { dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); return err; } bp->id = err; bp->ptp_info = ptp_ocp_clock_info; spin_lock_init(&bp->lock); bp->gnss_port = -1; bp->mac_port = -1; bp->pdev = pdev; device_initialize(&bp->dev); dev_set_name(&bp->dev, "ocp%d", bp->id); bp->dev.class = &timecard_class; bp->dev.parent = &pdev->dev; bp->dev.release = ptp_ocp_dev_release; dev_set_drvdata(&bp->dev, bp); err = device_add(&bp->dev); if (err) { dev_err(&bp->dev, "device add failed: %d\n", err); goto out; } pci_set_drvdata(pdev, bp); return 0; out: ptp_ocp_dev_release(&bp->dev); put_device(&bp->dev); return err; } static void ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) { struct device *dev = &bp->dev; if (sysfs_create_link(&dev->kobj, &child->kobj, link)) dev_err(dev, "%s symlink failed\n", link); } static void ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) { struct device *dev, *child; dev = &bp->pdev->dev; child = device_find_child_by_name(dev, name); if (!child) { dev_err(dev, "Could not find device %s\n", name); return; } ptp_ocp_symlink(bp, child, link); put_device(child); } static int ptp_ocp_complete(struct ptp_ocp *bp) { struct pps_device *pps; char buf[32]; if (bp->gnss_port != -1) { sprintf(buf, "ttyS%d", bp->gnss_port); ptp_ocp_link_child(bp, buf, "ttyGNSS"); } if (bp->mac_port != -1) { sprintf(buf, "ttyS%d", bp->mac_port); ptp_ocp_link_child(bp, buf, "ttyMAC"); } sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); ptp_ocp_link_child(bp, buf, "ptp"); pps = pps_lookup_dev(bp->ptp); if (pps) ptp_ocp_symlink(bp, pps->dev, "pps"); if (device_add_groups(&bp->dev, timecard_groups)) pr_err("device add groups failed\n"); return 0; } static void ptp_ocp_resource_summary(struct ptp_ocp *bp) { struct device *dev = &bp->pdev->dev; if (bp->image) { u32 ver = ioread32(&bp->image->version); dev_info(dev, "version %x\n", ver); if (ver & 0xffff) dev_info(dev, "regular image, version %d\n", ver & 0xffff); else dev_info(dev, "golden image, version %d\n", ver >> 16); } if (bp->gnss_port != -1) dev_info(dev, "GNSS @ /dev/ttyS%d 115200\n", bp->gnss_port); if (bp->mac_port != -1) dev_info(dev, "MAC @ /dev/ttyS%d 57600\n", bp->mac_port); } static void ptp_ocp_detach_sysfs(struct ptp_ocp *bp) { struct device *dev = &bp->dev; sysfs_remove_link(&dev->kobj, "ttyGNSS"); sysfs_remove_link(&dev->kobj, "ttyMAC"); sysfs_remove_link(&dev->kobj, "ptp"); sysfs_remove_link(&dev->kobj, "pps"); device_remove_groups(dev, timecard_groups); } static void ptp_ocp_detach(struct ptp_ocp *bp) { ptp_ocp_detach_sysfs(bp); if (timer_pending(&bp->watchdog)) del_timer_sync(&bp->watchdog); if (bp->ts0) ptp_ocp_unregister_ext(bp->ts0); if (bp->ts1) ptp_ocp_unregister_ext(bp->ts1); if (bp->pps) ptp_ocp_unregister_ext(bp->pps); if (bp->gnss_port != -1) serial8250_unregister_port(bp->gnss_port); if (bp->mac_port != -1) serial8250_unregister_port(bp->mac_port); if (bp->spi_flash) platform_device_unregister(bp->spi_flash); if (bp->i2c_ctrl) platform_device_unregister(bp->i2c_ctrl); if (bp->i2c_clk) clk_hw_unregister_fixed_rate(bp->i2c_clk); if (bp->n_irqs) pci_free_irq_vectors(bp->pdev); if (bp->ptp) ptp_clock_unregister(bp->ptp); device_unregister(&bp->dev); } static int ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct devlink *devlink; struct ptp_ocp *bp; int err; devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); if (!devlink) { dev_err(&pdev->dev, "devlink_alloc failed\n"); return -ENOMEM; } err = devlink_register(devlink); if (err) goto out_free; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "pci_enable_device\n"); goto out_unregister; } bp = devlink_priv(devlink); err = ptp_ocp_device_init(bp, pdev); if (err) goto out_disable; /* compat mode. * Older FPGA firmware only returns 2 irq's. * allow this - if not all of the IRQ's are returned, skip the * extra devices and just register the clock. */ err = pci_alloc_irq_vectors(pdev, 1, 10, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (err < 0) { dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); goto out; } bp->n_irqs = err; pci_set_master(pdev); err = ptp_ocp_register_resources(bp, id->driver_data); if (err) goto out; bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); if (IS_ERR(bp->ptp)) { err = PTR_ERR(bp->ptp); dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); bp->ptp = NULL; goto out; } err = ptp_ocp_complete(bp); if (err) goto out; ptp_ocp_info(bp); ptp_ocp_resource_summary(bp); return 0; out: ptp_ocp_detach(bp); pci_set_drvdata(pdev, NULL); out_disable: pci_disable_device(pdev); out_unregister: devlink_unregister(devlink); out_free: devlink_free(devlink); return err; } static void ptp_ocp_remove(struct pci_dev *pdev) { struct ptp_ocp *bp = pci_get_drvdata(pdev); struct devlink *devlink = priv_to_devlink(bp); ptp_ocp_detach(bp); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); devlink_unregister(devlink); devlink_free(devlink); } static struct pci_driver ptp_ocp_driver = { .name = KBUILD_MODNAME, .id_table = ptp_ocp_pcidev_id, .probe = ptp_ocp_probe, .remove = ptp_ocp_remove, }; static int ptp_ocp_i2c_notifier_call(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev, *child = data; struct ptp_ocp *bp; bool add; switch (action) { case BUS_NOTIFY_ADD_DEVICE: case BUS_NOTIFY_DEL_DEVICE: add = action == BUS_NOTIFY_ADD_DEVICE; break; default: return 0; } if (!i2c_verify_adapter(child)) return 0; dev = child; while ((dev = dev->parent)) if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) goto found; return 0; found: bp = dev_get_drvdata(dev); if (add) ptp_ocp_symlink(bp, child, "i2c"); else sysfs_remove_link(&bp->dev.kobj, "i2c"); return 0; } static struct notifier_block ptp_ocp_i2c_notifier = { .notifier_call = ptp_ocp_i2c_notifier_call, }; static int __init ptp_ocp_init(void) { const char *what; int err; what = "timecard class"; err = class_register(&timecard_class); if (err) goto out; what = "i2c notifier"; err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); if (err) goto out_notifier; what = "ptp_ocp driver"; err = pci_register_driver(&ptp_ocp_driver); if (err) goto out_register; return 0; out_register: bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); out_notifier: class_unregister(&timecard_class); out: pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); return err; } static void __exit ptp_ocp_fini(void) { bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); pci_unregister_driver(&ptp_ocp_driver); class_unregister(&timecard_class); } module_init(ptp_ocp_init); module_exit(ptp_ocp_fini); MODULE_DESCRIPTION("OpenCompute TimeCard driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1