Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bhanu Prakash Gollapudi | 9548 | 87.71% | 18 | 50.00% |
Vladislav Zolotarov | 646 | 5.93% | 1 | 2.78% |
Javed Hasan | 307 | 2.82% | 1 | 2.78% |
Thomas Gleixner | 119 | 1.09% | 1 | 2.78% |
Maurizio Lombardi | 113 | 1.04% | 2 | 5.56% |
Nithin Nayak Sujir | 65 | 0.60% | 1 | 2.78% |
Robert Love | 48 | 0.44% | 1 | 2.78% |
Julia Lawall | 15 | 0.14% | 1 | 2.78% |
Luis R. Rodriguez | 7 | 0.06% | 1 | 2.78% |
Michael Chan | 5 | 0.05% | 1 | 2.78% |
Colin Ian King | 4 | 0.04% | 1 | 2.78% |
kbuild test robot | 3 | 0.03% | 1 | 2.78% |
Lee Jones | 2 | 0.02% | 2 | 5.56% |
Baoyou Xie | 1 | 0.01% | 1 | 2.78% |
Christoph Hellwig | 1 | 0.01% | 1 | 2.78% |
Chad Dupuis | 1 | 0.01% | 1 | 2.78% |
Masanari Iida | 1 | 0.01% | 1 | 2.78% |
Total | 10886 | 36 |
/* bnx2fc_hwi.c: QLogic Linux FCoE offload driver. * This file contains the code that low level functions that interact * with 57712 FCoE firmware. * * Copyright (c) 2008-2013 Broadcom Corporation * Copyright (c) 2014-2016 QLogic Corporation * Copyright (c) 2016-2017 Cavium Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com) */ #include "bnx2fc.h" DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu); static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba, struct fcoe_kcqe *new_cqe_kcqe); static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *ofld_kcqe); static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *ofld_kcqe); static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code); static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *destroy_kcqe); int bnx2fc_send_stat_req(struct bnx2fc_hba *hba) { struct fcoe_kwqe_stat stat_req; struct kwqe *kwqe_arr[2]; int num_kwqes = 1; int rc = 0; memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat)); stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT; stat_req.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma; stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32); kwqe_arr[0] = (struct kwqe *) &stat_req; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } /** * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w * * @hba: adapter structure pointer * * Send down FCoE firmware init KWQEs which initiates the initial handshake * with the f/w. * */ int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba) { struct fcoe_kwqe_init1 fcoe_init1; struct fcoe_kwqe_init2 fcoe_init2; struct fcoe_kwqe_init3 fcoe_init3; struct kwqe *kwqe_arr[3]; int num_kwqes = 3; int rc = 0; if (!hba->cnic) { printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n"); return -ENODEV; } /* fill init1 KWQE */ memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1)); fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1; fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); fcoe_init1.num_tasks = hba->max_tasks; fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX; fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX; fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ; fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX; fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma; fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32); fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma; fcoe_init1.task_list_pbl_addr_hi = (u32) ((u64) hba->task_ctx_bd_dma >> 32); fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU; fcoe_init1.flags = (PAGE_SHIFT << FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT); fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG; /* fill init2 KWQE */ memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2)); fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2; fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION; fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION; fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma; fcoe_init2.hash_tbl_pbl_addr_hi = (u32) ((u64) hba->hash_tbl_pbl_dma >> 32); fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma; fcoe_init2.t2_hash_tbl_addr_hi = (u32) ((u64) hba->t2_hash_tbl_dma >> 32); fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma; fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32) ((u64) hba->t2_hash_tbl_ptr_dma >> 32); fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS; /* fill init3 KWQE */ memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3)); fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3; fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); fcoe_init3.error_bit_map_lo = 0xffffffff; fcoe_init3.error_bit_map_hi = 0xffffffff; /* * enable both cached connection and cached tasks * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both */ fcoe_init3.perf_config = 3; kwqe_arr[0] = (struct kwqe *) &fcoe_init1; kwqe_arr[1] = (struct kwqe *) &fcoe_init2; kwqe_arr[2] = (struct kwqe *) &fcoe_init3; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba) { struct fcoe_kwqe_destroy fcoe_destroy; struct kwqe *kwqe_arr[2]; int num_kwqes = 1; int rc = -1; /* fill destroy KWQE */ memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy)); fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY; fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); kwqe_arr[0] = (struct kwqe *) &fcoe_destroy; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } /** * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process * * @port: port structure pointer * @tgt: bnx2fc_rport structure pointer */ int bnx2fc_send_session_ofld_req(struct fcoe_port *port, struct bnx2fc_rport *tgt) { struct fc_lport *lport = port->lport; struct bnx2fc_interface *interface = port->priv; struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface); struct bnx2fc_hba *hba = interface->hba; struct kwqe *kwqe_arr[4]; struct fcoe_kwqe_conn_offload1 ofld_req1; struct fcoe_kwqe_conn_offload2 ofld_req2; struct fcoe_kwqe_conn_offload3 ofld_req3; struct fcoe_kwqe_conn_offload4 ofld_req4; struct fc_rport_priv *rdata = tgt->rdata; struct fc_rport *rport = tgt->rport; int num_kwqes = 4; u32 port_id; int rc = 0; u16 conn_id; /* Initialize offload request 1 structure */ memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1)); ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1; ofld_req1.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); conn_id = (u16)tgt->fcoe_conn_id; ofld_req1.fcoe_conn_id = conn_id; ofld_req1.sq_addr_lo = (u32) tgt->sq_dma; ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32); ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma; ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32); ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma; ofld_req1.rq_first_pbe_addr_hi = (u32)((u64) tgt->rq_dma >> 32); ofld_req1.rq_prod = 0x8000; /* Initialize offload request 2 structure */ memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2)); ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2; ofld_req2.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size; ofld_req2.cq_addr_lo = (u32) tgt->cq_dma; ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32); ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma; ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32); ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma; ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32); /* Initialize offload request 3 structure */ memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3)); ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3; ofld_req3.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); ofld_req3.vlan_tag = interface->vlan_id << FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT; ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT; port_id = fc_host_port_id(lport->host); if (port_id == 0) { BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n"); return -EINVAL; } /* * Store s_id of the initiator for further reference. This will * be used during disable/destroy during linkdown processing as * when the lport is reset, the port_id also is reset to 0 */ tgt->sid = port_id; ofld_req3.s_id[0] = (port_id & 0x000000FF); ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8; ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16; port_id = rport->port_id; ofld_req3.d_id[0] = (port_id & 0x000000FF); ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8; ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16; ofld_req3.tx_total_conc_seqs = rdata->max_seq; ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq; ofld_req3.rx_max_fc_pay_len = lport->mfs; ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS; ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS; ofld_req3.rx_open_seqs_exch_c3 = 1; ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma; ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32); /* set mul_n_port_ids supported flag to 0, until it is supported */ ofld_req3.flags = 0; /* ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) << FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT); */ /* Info from PLOGI response */ ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) << FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT); ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) << FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT); /* * Info from PRLI response, this info is used for sequence level error * recovery support */ if (tgt->dev_type == TYPE_TAPE) { ofld_req3.flags |= 1 << FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT; ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED) ? 1 : 0) << FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT); } /* vlan flag */ ofld_req3.flags |= (interface->vlan_enabled << FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT); /* C2_VALID and ACK flags are not set as they are not supported */ /* Initialize offload request 4 structure */ memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4)); ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4; ofld_req4.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20; ofld_req4.src_mac_addr_lo[0] = port->data_src_addr[5]; /* local mac */ ofld_req4.src_mac_addr_lo[1] = port->data_src_addr[4]; ofld_req4.src_mac_addr_mid[0] = port->data_src_addr[3]; ofld_req4.src_mac_addr_mid[1] = port->data_src_addr[2]; ofld_req4.src_mac_addr_hi[0] = port->data_src_addr[1]; ofld_req4.src_mac_addr_hi[1] = port->data_src_addr[0]; ofld_req4.dst_mac_addr_lo[0] = ctlr->dest_addr[5]; /* fcf mac */ ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4]; ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3]; ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2]; ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1]; ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0]; ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma; ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32); ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma; ofld_req4.confq_pbl_base_addr_hi = (u32)((u64) tgt->confq_pbl_dma >> 32); kwqe_arr[0] = (struct kwqe *) &ofld_req1; kwqe_arr[1] = (struct kwqe *) &ofld_req2; kwqe_arr[2] = (struct kwqe *) &ofld_req3; kwqe_arr[3] = (struct kwqe *) &ofld_req4; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } /** * bnx2fc_send_session_enable_req - initiates FCoE Session enablement * * @port: port structure pointer * @tgt: bnx2fc_rport structure pointer */ int bnx2fc_send_session_enable_req(struct fcoe_port *port, struct bnx2fc_rport *tgt) { struct kwqe *kwqe_arr[2]; struct bnx2fc_interface *interface = port->priv; struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface); struct bnx2fc_hba *hba = interface->hba; struct fcoe_kwqe_conn_enable_disable enbl_req; struct fc_lport *lport = port->lport; struct fc_rport *rport = tgt->rport; int num_kwqes = 1; int rc = 0; u32 port_id; memset(&enbl_req, 0x00, sizeof(struct fcoe_kwqe_conn_enable_disable)); enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN; enbl_req.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); enbl_req.src_mac_addr_lo[0] = port->data_src_addr[5]; /* local mac */ enbl_req.src_mac_addr_lo[1] = port->data_src_addr[4]; enbl_req.src_mac_addr_mid[0] = port->data_src_addr[3]; enbl_req.src_mac_addr_mid[1] = port->data_src_addr[2]; enbl_req.src_mac_addr_hi[0] = port->data_src_addr[1]; enbl_req.src_mac_addr_hi[1] = port->data_src_addr[0]; memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN); enbl_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5]; enbl_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4]; enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3]; enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2]; enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1]; enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0]; port_id = fc_host_port_id(lport->host); if (port_id != tgt->sid) { printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x," "sid = 0x%x\n", port_id, tgt->sid); port_id = tgt->sid; } enbl_req.s_id[0] = (port_id & 0x000000FF); enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8; enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16; port_id = rport->port_id; enbl_req.d_id[0] = (port_id & 0x000000FF); enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8; enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16; enbl_req.vlan_tag = interface->vlan_id << FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT; enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT; enbl_req.vlan_flag = interface->vlan_enabled; enbl_req.context_id = tgt->context_id; enbl_req.conn_id = tgt->fcoe_conn_id; kwqe_arr[0] = (struct kwqe *) &enbl_req; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } /** * bnx2fc_send_session_disable_req - initiates FCoE Session disable * * @port: port structure pointer * @tgt: bnx2fc_rport structure pointer */ int bnx2fc_send_session_disable_req(struct fcoe_port *port, struct bnx2fc_rport *tgt) { struct bnx2fc_interface *interface = port->priv; struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface); struct bnx2fc_hba *hba = interface->hba; struct fcoe_kwqe_conn_enable_disable disable_req; struct kwqe *kwqe_arr[2]; struct fc_rport *rport = tgt->rport; int num_kwqes = 1; int rc = 0; u32 port_id; memset(&disable_req, 0x00, sizeof(struct fcoe_kwqe_conn_enable_disable)); disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN; disable_req.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); disable_req.src_mac_addr_lo[0] = tgt->src_addr[5]; disable_req.src_mac_addr_lo[1] = tgt->src_addr[4]; disable_req.src_mac_addr_mid[0] = tgt->src_addr[3]; disable_req.src_mac_addr_mid[1] = tgt->src_addr[2]; disable_req.src_mac_addr_hi[0] = tgt->src_addr[1]; disable_req.src_mac_addr_hi[1] = tgt->src_addr[0]; disable_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5]; disable_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4]; disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3]; disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2]; disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1]; disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0]; port_id = tgt->sid; disable_req.s_id[0] = (port_id & 0x000000FF); disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8; disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16; port_id = rport->port_id; disable_req.d_id[0] = (port_id & 0x000000FF); disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8; disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16; disable_req.context_id = tgt->context_id; disable_req.conn_id = tgt->fcoe_conn_id; disable_req.vlan_tag = interface->vlan_id << FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT; disable_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT; disable_req.vlan_flag = interface->vlan_enabled; kwqe_arr[0] = (struct kwqe *) &disable_req; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } /** * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy * * @hba: adapter structure pointer * @tgt: bnx2fc_rport structure pointer */ int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba, struct bnx2fc_rport *tgt) { struct fcoe_kwqe_conn_destroy destroy_req; struct kwqe *kwqe_arr[2]; int num_kwqes = 1; int rc = 0; memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy)); destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN; destroy_req.hdr.flags = (FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT); destroy_req.context_id = tgt->context_id; destroy_req.conn_id = tgt->fcoe_conn_id; kwqe_arr[0] = (struct kwqe *) &destroy_req; if (hba->cnic && hba->cnic->submit_kwqes) rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes); return rc; } static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport) { struct bnx2fc_lport *blport; spin_lock_bh(&hba->hba_lock); list_for_each_entry(blport, &hba->vports, list) { if (blport->lport == lport) { spin_unlock_bh(&hba->hba_lock); return true; } } spin_unlock_bh(&hba->hba_lock); return false; } static void bnx2fc_unsol_els_work(struct work_struct *work) { struct bnx2fc_unsol_els *unsol_els; struct fc_lport *lport; struct bnx2fc_hba *hba; struct fc_frame *fp; unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work); lport = unsol_els->lport; fp = unsol_els->fp; hba = unsol_els->hba; if (is_valid_lport(hba, lport)) fc_exch_recv(lport, fp); kfree(unsol_els); } void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt, unsigned char *buf, u32 frame_len, u16 l2_oxid) { struct fcoe_port *port = tgt->port; struct fc_lport *lport = port->lport; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_unsol_els *unsol_els; struct fc_frame_header *fh; struct fc_frame *fp; struct sk_buff *skb; u32 payload_len; u32 crc; u8 op; unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC); if (!unsol_els) { BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n"); return; } BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n", l2_oxid, frame_len); payload_len = frame_len - sizeof(struct fc_frame_header); fp = fc_frame_alloc(lport, payload_len); if (!fp) { printk(KERN_ERR PFX "fc_frame_alloc failure\n"); kfree(unsol_els); return; } fh = (struct fc_frame_header *) fc_frame_header_get(fp); /* Copy FC Frame header and payload into the frame */ memcpy(fh, buf, frame_len); if (l2_oxid != FC_XID_UNKNOWN) fh->fh_ox_id = htons(l2_oxid); skb = fp_skb(fp); if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) || (fh->fh_r_ctl == FC_RCTL_ELS_REP)) { if (fh->fh_type == FC_TYPE_ELS) { op = fc_frame_payload_op(fp); if ((op == ELS_TEST) || (op == ELS_ESTC) || (op == ELS_FAN) || (op == ELS_CSU)) { /* * No need to reply for these * ELS requests */ printk(KERN_ERR PFX "dropping ELS 0x%x\n", op); kfree_skb(skb); kfree(unsol_els); return; } } crc = fcoe_fc_crc(fp); fc_frame_init(fp); fr_dev(fp) = lport; fr_sof(fp) = FC_SOF_I3; fr_eof(fp) = FC_EOF_T; fr_crc(fp) = cpu_to_le32(~crc); unsol_els->lport = lport; unsol_els->hba = interface->hba; unsol_els->fp = fp; INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work); queue_work(bnx2fc_wq, &unsol_els->unsol_els_work); } else { BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl); kfree_skb(skb); kfree(unsol_els); } } static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe) { u8 num_rq; struct fcoe_err_report_entry *err_entry; unsigned char *rq_data; unsigned char *buf = NULL, *buf1; int i; u16 xid; u32 frame_len, len; struct bnx2fc_cmd *io_req = NULL; struct bnx2fc_interface *interface = tgt->port->priv; struct bnx2fc_hba *hba = interface->hba; int rc = 0; u64 err_warn_bit_map; u8 err_warn = 0xff; BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe); switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) { case FCOE_UNSOLICITED_FRAME_CQE_TYPE: frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >> FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT; num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ; spin_lock_bh(&tgt->tgt_lock); rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq); spin_unlock_bh(&tgt->tgt_lock); if (rq_data) { buf = rq_data; } else { buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ), GFP_ATOMIC); if (!buf1) { BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n"); break; } for (i = 0; i < num_rq; i++) { spin_lock_bh(&tgt->tgt_lock); rq_data = (unsigned char *) bnx2fc_get_next_rqe(tgt, 1); spin_unlock_bh(&tgt->tgt_lock); len = BNX2FC_RQ_BUF_SZ; memcpy(buf1, rq_data, len); buf1 += len; } } bnx2fc_process_l2_frame_compl(tgt, buf, frame_len, FC_XID_UNKNOWN); if (buf != rq_data) kfree(buf); spin_lock_bh(&tgt->tgt_lock); bnx2fc_return_rqe(tgt, num_rq); spin_unlock_bh(&tgt->tgt_lock); break; case FCOE_ERROR_DETECTION_CQE_TYPE: /* * In case of error reporting CQE a single RQ entry * is consumed. */ spin_lock_bh(&tgt->tgt_lock); num_rq = 1; err_entry = (struct fcoe_err_report_entry *) bnx2fc_get_next_rqe(tgt, 1); xid = err_entry->fc_hdr.ox_id; BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid); BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n", err_entry->data.err_warn_bitmap_hi, err_entry->data.err_warn_bitmap_lo); BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n", err_entry->data.tx_buf_off, err_entry->data.rx_buf_off); if (xid > hba->max_xid) { BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid); goto ret_err_rqe; } io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid]; if (!io_req) goto ret_err_rqe; if (io_req->cmd_type != BNX2FC_SCSI_CMD) { printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n"); goto ret_err_rqe; } if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in " "progress.. ignore unsol err\n"); goto ret_err_rqe; } err_warn_bit_map = (u64) ((u64)err_entry->data.err_warn_bitmap_hi << 32) | (u64)err_entry->data.err_warn_bitmap_lo; for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) { if (err_warn_bit_map & (u64)((u64)1 << i)) { err_warn = i; break; } } /* * If ABTS is already in progress, and FW error is * received after that, do not cancel the timeout_work * and let the error recovery continue by explicitly * logging out the target, when the ABTS eventually * times out. */ if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { printk(KERN_ERR PFX "err_warn: io_req (0x%x) already " "in ABTS processing\n", xid); goto ret_err_rqe; } BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn); if (tgt->dev_type != TYPE_TAPE) goto skip_rec; switch (err_warn) { case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION: case FCOE_ERROR_CODE_DATA_OOO_RO: case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT: case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET: case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ: case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET: BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n", xid); memcpy(&io_req->err_entry, err_entry, sizeof(struct fcoe_err_report_entry)); if (!test_bit(BNX2FC_FLAG_SRR_SENT, &io_req->req_flags)) { spin_unlock_bh(&tgt->tgt_lock); rc = bnx2fc_send_rec(io_req); spin_lock_bh(&tgt->tgt_lock); if (rc) goto skip_rec; } else printk(KERN_ERR PFX "SRR in progress\n"); goto ret_err_rqe; default: break; } skip_rec: set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags); /* * Cancel the timeout_work, as we received IO * completion with FW error. */ if (cancel_delayed_work(&io_req->timeout_work)) kref_put(&io_req->refcount, bnx2fc_cmd_release); rc = bnx2fc_initiate_abts(io_req); if (rc != SUCCESS) { printk(KERN_ERR PFX "err_warn: initiate_abts " "failed xid = 0x%x. issue cleanup\n", io_req->xid); bnx2fc_initiate_cleanup(io_req); } ret_err_rqe: bnx2fc_return_rqe(tgt, 1); spin_unlock_bh(&tgt->tgt_lock); break; case FCOE_WARNING_DETECTION_CQE_TYPE: /* *In case of warning reporting CQE a single RQ entry * is consumes. */ spin_lock_bh(&tgt->tgt_lock); num_rq = 1; err_entry = (struct fcoe_err_report_entry *) bnx2fc_get_next_rqe(tgt, 1); xid = cpu_to_be16(err_entry->fc_hdr.ox_id); BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid); BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x", err_entry->data.err_warn_bitmap_hi, err_entry->data.err_warn_bitmap_lo); BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x", err_entry->data.tx_buf_off, err_entry->data.rx_buf_off); if (xid > hba->max_xid) { BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid); goto ret_warn_rqe; } err_warn_bit_map = (u64) ((u64)err_entry->data.err_warn_bitmap_hi << 32) | (u64)err_entry->data.err_warn_bitmap_lo; for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) { if (err_warn_bit_map & ((u64)1 << i)) { err_warn = i; break; } } BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn); io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid]; if (!io_req) goto ret_warn_rqe; if (io_req->cmd_type != BNX2FC_SCSI_CMD) { printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n"); goto ret_warn_rqe; } memcpy(&io_req->err_entry, err_entry, sizeof(struct fcoe_err_report_entry)); if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION) /* REC_TOV is not a warning code */ BUG_ON(1); else BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n"); ret_warn_rqe: bnx2fc_return_rqe(tgt, 1); spin_unlock_bh(&tgt->tgt_lock); break; default: printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n"); break; } } void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe, unsigned char *rq_data, u8 num_rq, struct fcoe_task_ctx_entry *task) { struct fcoe_port *port = tgt->port; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_hba *hba = interface->hba; struct bnx2fc_cmd *io_req; u16 xid; u8 cmd_type; u8 rx_state = 0; spin_lock_bh(&tgt->tgt_lock); xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID; io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid]; if (io_req == NULL) { printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n"); spin_unlock_bh(&tgt->tgt_lock); return; } /* Timestamp IO completion time */ cmd_type = io_req->cmd_type; rx_state = ((task->rxwr_txrd.var_ctx.rx_flags & FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >> FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT); /* Process other IO completion types */ switch (cmd_type) { case BNX2FC_SCSI_CMD: if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) { bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq, rq_data); spin_unlock_bh(&tgt->tgt_lock); return; } if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED) bnx2fc_process_abts_compl(io_req, task, num_rq); else if (rx_state == FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED) bnx2fc_process_cleanup_compl(io_req, task, num_rq); else printk(KERN_ERR PFX "Invalid rx state - %d\n", rx_state); break; case BNX2FC_TASK_MGMT_CMD: BNX2FC_IO_DBG(io_req, "Processing TM complete\n"); bnx2fc_process_tm_compl(io_req, task, num_rq, rq_data); break; case BNX2FC_ABTS: /* * ABTS request received by firmware. ABTS response * will be delivered to the task belonging to the IO * that was aborted */ BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n"); kref_put(&io_req->refcount, bnx2fc_cmd_release); break; case BNX2FC_ELS: if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) bnx2fc_process_els_compl(io_req, task, num_rq); else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED) bnx2fc_process_abts_compl(io_req, task, num_rq); else if (rx_state == FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED) bnx2fc_process_cleanup_compl(io_req, task, num_rq); else printk(KERN_ERR PFX "Invalid rx state = %d\n", rx_state); break; case BNX2FC_CLEANUP: BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n"); kref_put(&io_req->refcount, bnx2fc_cmd_release); break; case BNX2FC_SEQ_CLEANUP: BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n", io_req->xid); bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state); kref_put(&io_req->refcount, bnx2fc_cmd_release); break; default: printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type); break; } spin_unlock_bh(&tgt->tgt_lock); } void bnx2fc_arm_cq(struct bnx2fc_rport *tgt) { struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db; u32 msg; wmb(); rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit << FCOE_CQE_TOGGLE_BIT_SHIFT); msg = *((u32 *)rx_db); writel(cpu_to_le32(msg), tgt->ctx_base); } static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe, unsigned char *rq_data, u8 num_rq, struct fcoe_task_ctx_entry *task) { struct bnx2fc_work *work; work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC); if (!work) return NULL; INIT_LIST_HEAD(&work->list); work->tgt = tgt; work->wqe = wqe; work->num_rq = num_rq; work->task = task; if (rq_data) memcpy(work->rq_data, rq_data, BNX2FC_RQ_BUF_SZ); return work; } /* Pending work request completion */ static bool bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe) { unsigned int cpu = wqe % num_possible_cpus(); struct bnx2fc_percpu_s *fps; struct bnx2fc_work *work; struct fcoe_task_ctx_entry *task; struct fcoe_task_ctx_entry *task_page; struct fcoe_port *port = tgt->port; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_hba *hba = interface->hba; unsigned char *rq_data = NULL; unsigned char rq_data_buff[BNX2FC_RQ_BUF_SZ]; int task_idx, index; u16 xid; u8 num_rq; int i; xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID; if (xid >= hba->max_tasks) { pr_err(PFX "ERROR:xid out of range\n"); return false; } task_idx = xid / BNX2FC_TASKS_PER_PAGE; index = xid % BNX2FC_TASKS_PER_PAGE; task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx]; task = &task_page[index]; num_rq = ((task->rxwr_txrd.var_ctx.rx_flags & FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >> FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT); memset(rq_data_buff, 0, BNX2FC_RQ_BUF_SZ); if (!num_rq) goto num_rq_zero; rq_data = bnx2fc_get_next_rqe(tgt, 1); if (num_rq > 1) { /* We do not need extra sense data */ for (i = 1; i < num_rq; i++) bnx2fc_get_next_rqe(tgt, 1); } if (rq_data) memcpy(rq_data_buff, rq_data, BNX2FC_RQ_BUF_SZ); /* return RQ entries */ for (i = 0; i < num_rq; i++) bnx2fc_return_rqe(tgt, 1); num_rq_zero: fps = &per_cpu(bnx2fc_percpu, cpu); spin_lock_bh(&fps->fp_work_lock); if (fps->iothread) { work = bnx2fc_alloc_work(tgt, wqe, rq_data_buff, num_rq, task); if (work) { list_add_tail(&work->list, &fps->work_list); wake_up_process(fps->iothread); spin_unlock_bh(&fps->fp_work_lock); return true; } } spin_unlock_bh(&fps->fp_work_lock); bnx2fc_process_cq_compl(tgt, wqe, rq_data_buff, num_rq, task); return true; } int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt) { struct fcoe_cqe *cq; u32 cq_cons; struct fcoe_cqe *cqe; u32 num_free_sqes = 0; u32 num_cqes = 0; u16 wqe; /* * cq_lock is a low contention lock used to protect * the CQ data structure from being freed up during * the upload operation */ spin_lock_bh(&tgt->cq_lock); if (!tgt->cq) { printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n"); spin_unlock_bh(&tgt->cq_lock); return 0; } cq = tgt->cq; cq_cons = tgt->cq_cons_idx; cqe = &cq[cq_cons]; while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) == (tgt->cq_curr_toggle_bit << FCOE_CQE_TOGGLE_BIT_SHIFT)) { /* new entry on the cq */ if (wqe & FCOE_CQE_CQE_TYPE) { /* Unsolicited event notification */ bnx2fc_process_unsol_compl(tgt, wqe); } else { if (bnx2fc_pending_work(tgt, wqe)) num_free_sqes++; } cqe++; tgt->cq_cons_idx++; num_cqes++; if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) { tgt->cq_cons_idx = 0; cqe = cq; tgt->cq_curr_toggle_bit = 1 - tgt->cq_curr_toggle_bit; } } if (num_cqes) { /* Arm CQ only if doorbell is mapped */ if (tgt->ctx_base) bnx2fc_arm_cq(tgt); atomic_add(num_free_sqes, &tgt->free_sqes); } spin_unlock_bh(&tgt->cq_lock); return 0; } /** * bnx2fc_fastpath_notification - process global event queue (KCQ) * * @hba: adapter structure pointer * @new_cqe_kcqe: pointer to newly DMA'd KCQ entry * * Fast path event notification handler */ static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba, struct fcoe_kcqe *new_cqe_kcqe) { u32 conn_id = new_cqe_kcqe->fcoe_conn_id; struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id]; if (!tgt) { printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id); return; } bnx2fc_process_new_cqes(tgt); } /** * bnx2fc_process_ofld_cmpl - process FCoE session offload completion * * @hba: adapter structure pointer * @ofld_kcqe: connection offload kcqe pointer * * handle session offload completion, enable the session if offload is * successful. */ static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *ofld_kcqe) { struct bnx2fc_rport *tgt; struct bnx2fc_interface *interface; u32 conn_id; u32 context_id; conn_id = ofld_kcqe->fcoe_conn_id; context_id = ofld_kcqe->fcoe_conn_context_id; tgt = hba->tgt_ofld_list[conn_id]; if (!tgt) { printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n"); return; } BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n", ofld_kcqe->fcoe_conn_context_id); interface = tgt->port->priv; if (hba != interface->hba) { printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n"); goto ofld_cmpl_err; } /* * cnic has allocated a context_id for this session; use this * while enabling the session. */ tgt->context_id = context_id; if (ofld_kcqe->completion_status) { if (ofld_kcqe->completion_status == FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) { printk(KERN_ERR PFX "unable to allocate FCoE context " "resources\n"); set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags); } } else { /* FW offload request successfully completed */ set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags); } ofld_cmpl_err: set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags); wake_up_interruptible(&tgt->ofld_wait); } /** * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion * * @hba: adapter structure pointer * @ofld_kcqe: connection offload kcqe pointer * * handle session enable completion, mark the rport as ready */ static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *ofld_kcqe) { struct bnx2fc_rport *tgt; struct bnx2fc_interface *interface; u32 conn_id; u32 context_id; context_id = ofld_kcqe->fcoe_conn_context_id; conn_id = ofld_kcqe->fcoe_conn_id; tgt = hba->tgt_ofld_list[conn_id]; if (!tgt) { printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n"); return; } BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n", ofld_kcqe->fcoe_conn_context_id); /* * context_id should be the same for this target during offload * and enable */ if (tgt->context_id != context_id) { printk(KERN_ERR PFX "context id mis-match\n"); return; } interface = tgt->port->priv; if (hba != interface->hba) { printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n"); goto enbl_cmpl_err; } if (!ofld_kcqe->completion_status) /* enable successful - rport ready for issuing IOs */ set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags); enbl_cmpl_err: set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags); wake_up_interruptible(&tgt->ofld_wait); } static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *disable_kcqe) { struct bnx2fc_rport *tgt; u32 conn_id; conn_id = disable_kcqe->fcoe_conn_id; tgt = hba->tgt_ofld_list[conn_id]; if (!tgt) { printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n"); return; } BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id); if (disable_kcqe->completion_status) { printk(KERN_ERR PFX "Disable failed with cmpl status %d\n", disable_kcqe->completion_status); set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags); set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags); wake_up_interruptible(&tgt->upld_wait); } else { /* disable successful */ BNX2FC_TGT_DBG(tgt, "disable successful\n"); clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags); clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags); set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags); set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags); wake_up_interruptible(&tgt->upld_wait); } } static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba, struct fcoe_kcqe *destroy_kcqe) { struct bnx2fc_rport *tgt; u32 conn_id; conn_id = destroy_kcqe->fcoe_conn_id; tgt = hba->tgt_ofld_list[conn_id]; if (!tgt) { printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n"); return; } BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id); if (destroy_kcqe->completion_status) { printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n", destroy_kcqe->completion_status); return; } else { /* destroy successful */ BNX2FC_TGT_DBG(tgt, "upload successful\n"); clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags); set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags); set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags); wake_up_interruptible(&tgt->upld_wait); } } static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code) { switch (err_code) { case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE: printk(KERN_ERR PFX "init_failure due to invalid opcode\n"); break; case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE: printk(KERN_ERR PFX "init failed due to ctx alloc failure\n"); break; case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR: printk(KERN_ERR PFX "init_failure due to NIC error\n"); break; case FCOE_KCQE_COMPLETION_STATUS_ERROR: printk(KERN_ERR PFX "init failure due to compl status err\n"); break; case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION: printk(KERN_ERR PFX "init failure due to HSI mismatch\n"); break; default: printk(KERN_ERR PFX "Unknown Error code %d\n", err_code); } } /** * bnx2fc_indicate_kcqe() - process KCQE * * @context: adapter structure pointer * @kcq: kcqe pointer * @num_cqe: Number of completion queue elements * * Generic KCQ event handler */ void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[], u32 num_cqe) { struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context; int i = 0; struct fcoe_kcqe *kcqe = NULL; while (i < num_cqe) { kcqe = (struct fcoe_kcqe *) kcq[i++]; switch (kcqe->op_code) { case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION: bnx2fc_fastpath_notification(hba, kcqe); break; case FCOE_KCQE_OPCODE_OFFLOAD_CONN: bnx2fc_process_ofld_cmpl(hba, kcqe); break; case FCOE_KCQE_OPCODE_ENABLE_CONN: bnx2fc_process_enable_conn_cmpl(hba, kcqe); break; case FCOE_KCQE_OPCODE_INIT_FUNC: if (kcqe->completion_status != FCOE_KCQE_COMPLETION_STATUS_SUCCESS) { bnx2fc_init_failure(hba, kcqe->completion_status); } else { set_bit(ADAPTER_STATE_UP, &hba->adapter_state); bnx2fc_get_link_state(hba); printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n", (u8)hba->pcidev->bus->number); } break; case FCOE_KCQE_OPCODE_DESTROY_FUNC: if (kcqe->completion_status != FCOE_KCQE_COMPLETION_STATUS_SUCCESS) { printk(KERN_ERR PFX "DESTROY failed\n"); } else { printk(KERN_ERR PFX "DESTROY success\n"); } set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags); wake_up_interruptible(&hba->destroy_wait); break; case FCOE_KCQE_OPCODE_DISABLE_CONN: bnx2fc_process_conn_disable_cmpl(hba, kcqe); break; case FCOE_KCQE_OPCODE_DESTROY_CONN: bnx2fc_process_conn_destroy_cmpl(hba, kcqe); break; case FCOE_KCQE_OPCODE_STAT_FUNC: if (kcqe->completion_status != FCOE_KCQE_COMPLETION_STATUS_SUCCESS) printk(KERN_ERR PFX "STAT failed\n"); complete(&hba->stat_req_done); break; case FCOE_KCQE_OPCODE_FCOE_ERROR: default: printk(KERN_ERR PFX "unknown opcode 0x%x\n", kcqe->op_code); } } } void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid) { struct fcoe_sqe *sqe; sqe = &tgt->sq[tgt->sq_prod_idx]; /* Fill SQ WQE */ sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT; sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT; /* Advance SQ Prod Idx */ if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) { tgt->sq_prod_idx = 0; tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit; } } void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt) { struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db; u32 msg; wmb(); sq_db->prod = tgt->sq_prod_idx | (tgt->sq_curr_toggle_bit << 15); msg = *((u32 *)sq_db); writel(cpu_to_le32(msg), tgt->ctx_base); } int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt) { u32 context_id = tgt->context_id; struct fcoe_port *port = tgt->port; u32 reg_off; resource_size_t reg_base; struct bnx2fc_interface *interface = port->priv; struct bnx2fc_hba *hba = interface->hba; reg_base = pci_resource_start(hba->pcidev, BNX2X_DOORBELL_PCI_BAR); reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF); tgt->ctx_base = ioremap(reg_base + reg_off, 4); if (!tgt->ctx_base) return -ENOMEM; return 0; } char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items) { char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ); if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX) return NULL; tgt->rq_cons_idx += num_items; if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX) tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX; return buf; } void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items) { /* return the rq buffer */ u32 next_prod_idx = tgt->rq_prod_idx + num_items; if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) { /* Wrap around RQ */ next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX; } tgt->rq_prod_idx = next_prod_idx; tgt->conn_db->rq_prod = tgt->rq_prod_idx; } void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req, struct fcoe_task_ctx_entry *task, struct bnx2fc_cmd *orig_io_req, u32 offset) { struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd; struct bnx2fc_rport *tgt = seq_clnp_req->tgt; struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl; struct fcoe_ext_mul_sges_ctx *sgl; u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP; u8 orig_task_type; u16 orig_xid = orig_io_req->xid; u32 context_id = tgt->context_id; u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma; u32 orig_offset = offset; int bd_count; int i; memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) orig_task_type = FCOE_TASK_TYPE_WRITE; else orig_task_type = FCOE_TASK_TYPE_READ; /* Tx flags */ task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP << FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; /* init flags */ task->txwr_rxrd.const_ctx.init_flags = task_type << FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; task->rxwr_txrd.const_ctx.init_flags = context_id << FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; task->rxwr_txrd.const_ctx.init_flags = context_id << FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid; task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0; task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset; bd_count = orig_io_req->bd_tbl->bd_valid; /* obtain the appropriate bd entry from relative offset */ for (i = 0; i < bd_count; i++) { if (offset < bd[i].buf_len) break; offset -= bd[i].buf_len; } phys_addr += (i * sizeof(struct fcoe_bd_ctx)); if (orig_task_type == FCOE_TASK_TYPE_WRITE) { task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo = (u32)phys_addr; task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32); task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = bd_count; task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off = offset; /* adjusted offset */ task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i; } else { /* Multiple SGEs were used for this IO */ sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl; sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr; sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32); sgl->mul_sgl.sgl_size = bd_count; sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */ sgl->mul_sgl.cur_sge_idx = i; memset(&task->rxwr_only.rx_seq_ctx, 0, sizeof(struct fcoe_rx_seq_ctx)); task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset; task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset; } } void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task, u16 orig_xid) { u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP; struct bnx2fc_rport *tgt = io_req->tgt; u32 context_id = tgt->context_id; memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); /* Tx Write Rx Read */ /* init flags */ task->txwr_rxrd.const_ctx.init_flags = task_type << FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; if (tgt->dev_type == TYPE_TAPE) task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_DEV_TYPE_TAPE << FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; else task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_DEV_TYPE_DISK << FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid; /* Tx flags */ task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP << FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; /* Rx Read Tx Write */ task->rxwr_txrd.const_ctx.init_flags = context_id << FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; task->rxwr_txrd.var_ctx.rx_flags |= 1 << FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT; } void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task) { struct bnx2fc_mp_req *mp_req = &(io_req->mp_req); struct bnx2fc_rport *tgt = io_req->tgt; struct fc_frame_header *fc_hdr; struct fcoe_ext_mul_sges_ctx *sgl; u8 task_type = 0; u64 *hdr; u64 temp_hdr[3]; u32 context_id; /* Obtain task_type */ if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) || (io_req->cmd_type == BNX2FC_ELS)) { task_type = FCOE_TASK_TYPE_MIDPATH; } else if (io_req->cmd_type == BNX2FC_ABTS) { task_type = FCOE_TASK_TYPE_ABTS; } memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); /* Setup the task from io_req for easy reference */ io_req->task = task; BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n", io_req->cmd_type, task_type); /* Tx only */ if ((task_type == FCOE_TASK_TYPE_MIDPATH) || (task_type == FCOE_TASK_TYPE_UNSOLICITED)) { task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_req_bd_dma; task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi = (u32)((u64)mp_req->mp_req_bd_dma >> 32); task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1; } /* Tx Write Rx Read */ /* init flags */ task->txwr_rxrd.const_ctx.init_flags = task_type << FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; if (tgt->dev_type == TYPE_TAPE) task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_DEV_TYPE_TAPE << FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; else task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_DEV_TYPE_DISK << FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; /* tx flags */ task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT << FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; /* Rx Write Tx Read */ task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len; /* rx flags */ task->rxwr_txrd.var_ctx.rx_flags |= 1 << FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT; context_id = tgt->context_id; task->rxwr_txrd.const_ctx.init_flags = context_id << FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; fc_hdr = &(mp_req->req_fc_hdr); if (task_type == FCOE_TASK_TYPE_MIDPATH) { fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid); fc_hdr->fh_rx_id = htons(0xffff); task->rxwr_txrd.var_ctx.rx_id = 0xffff; } else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) { fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid); } /* Fill FC Header into middle path buffer */ hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr; memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr)); hdr[0] = cpu_to_be64(temp_hdr[0]); hdr[1] = cpu_to_be64(temp_hdr[1]); hdr[2] = cpu_to_be64(temp_hdr[2]); /* Rx Only */ if (task_type == FCOE_TASK_TYPE_MIDPATH) { sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl; sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma; sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)mp_req->mp_resp_bd_dma >> 32); sgl->mul_sgl.sgl_size = 1; } } void bnx2fc_init_task(struct bnx2fc_cmd *io_req, struct fcoe_task_ctx_entry *task) { u8 task_type; struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct io_bdt *bd_tbl = io_req->bd_tbl; struct bnx2fc_rport *tgt = io_req->tgt; struct fcoe_cached_sge_ctx *cached_sge; struct fcoe_ext_mul_sges_ctx *sgl; int dev_type = tgt->dev_type; u64 *fcp_cmnd; u64 tmp_fcp_cmnd[4]; u32 context_id; int cnt, i; int bd_count; memset(task, 0, sizeof(struct fcoe_task_ctx_entry)); /* Setup the task from io_req for easy reference */ io_req->task = task; if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) task_type = FCOE_TASK_TYPE_WRITE; else task_type = FCOE_TASK_TYPE_READ; /* Tx only */ bd_count = bd_tbl->bd_valid; cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge; if (task_type == FCOE_TASK_TYPE_WRITE) { if ((dev_type == TYPE_DISK) && (bd_count == 1)) { struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl; task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo = cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo; task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi = cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi; task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem = cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len; task->txwr_rxrd.const_ctx.init_flags |= 1 << FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT; } else { task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma; task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi = (u32)((u64)bd_tbl->bd_tbl_dma >> 32); task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = bd_tbl->bd_valid; } } /*Tx Write Rx Read */ /* Init state to NORMAL */ task->txwr_rxrd.const_ctx.init_flags |= task_type << FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT; if (dev_type == TYPE_TAPE) { task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_DEV_TYPE_TAPE << FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; io_req->rec_retry = 0; io_req->rec_retry = 0; } else task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_DEV_TYPE_DISK << FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT; task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 << FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT; /* tx flags */ task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL << FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT; /* Set initial seq counter */ task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1; /* Fill FCP_CMND IU */ fcp_cmnd = (u64 *) task->txwr_rxrd.union_ctx.fcp_cmd.opaque; bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd); /* swap fcp_cmnd */ cnt = sizeof(struct fcp_cmnd) / sizeof(u64); for (i = 0; i < cnt; i++) { *fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]); fcp_cmnd++; } /* Rx Write Tx Read */ task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len; context_id = tgt->context_id; task->rxwr_txrd.const_ctx.init_flags = context_id << FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT; /* rx flags */ /* Set state to "waiting for the first packet" */ task->rxwr_txrd.var_ctx.rx_flags |= 1 << FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT; task->rxwr_txrd.var_ctx.rx_id = 0xffff; /* Rx Only */ if (task_type != FCOE_TASK_TYPE_READ) return; sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl; bd_count = bd_tbl->bd_valid; if (dev_type == TYPE_DISK) { if (bd_count == 1) { struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl; cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo; cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi; cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len; task->txwr_rxrd.const_ctx.init_flags |= 1 << FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT; } else if (bd_count == 2) { struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl; cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo; cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi; cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len; fcoe_bd_tbl++; cached_sge->second_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo; cached_sge->second_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi; cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len; task->txwr_rxrd.const_ctx.init_flags |= 1 << FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT; } else { sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma; sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)bd_tbl->bd_tbl_dma >> 32); sgl->mul_sgl.sgl_size = bd_count; } } else { sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma; sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)bd_tbl->bd_tbl_dma >> 32); sgl->mul_sgl.sgl_size = bd_count; } } /** * bnx2fc_setup_task_ctx - allocate and map task context * * @hba: pointer to adapter structure * * allocate memory for task context, and associated BD table to be used * by firmware * */ int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba) { int rc = 0; struct regpair *task_ctx_bdt; dma_addr_t addr; int task_ctx_arr_sz; int i; /* * Allocate task context bd table. A page size of bd table * can map 256 buffers. Each buffer contains 32 task context * entries. Hence the limit with one page is 8192 task context * entries. */ hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, &hba->task_ctx_bd_dma, GFP_KERNEL); if (!hba->task_ctx_bd_tbl) { printk(KERN_ERR PFX "unable to allocate task context BDT\n"); rc = -1; goto out; } /* * Allocate task_ctx which is an array of pointers pointing to * a page containing 32 task contexts */ task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE); hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)), GFP_KERNEL); if (!hba->task_ctx) { printk(KERN_ERR PFX "unable to allocate task context array\n"); rc = -1; goto out1; } /* * Allocate task_ctx_dma which is an array of dma addresses */ hba->task_ctx_dma = kmalloc((task_ctx_arr_sz * sizeof(dma_addr_t)), GFP_KERNEL); if (!hba->task_ctx_dma) { printk(KERN_ERR PFX "unable to alloc context mapping array\n"); rc = -1; goto out2; } task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl; for (i = 0; i < task_ctx_arr_sz; i++) { hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, &hba->task_ctx_dma[i], GFP_KERNEL); if (!hba->task_ctx[i]) { printk(KERN_ERR PFX "unable to alloc task context\n"); rc = -1; goto out3; } addr = (u64)hba->task_ctx_dma[i]; task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32); task_ctx_bdt->lo = cpu_to_le32((u32)addr); task_ctx_bdt++; } return 0; out3: for (i = 0; i < task_ctx_arr_sz; i++) { if (hba->task_ctx[i]) { dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->task_ctx[i], hba->task_ctx_dma[i]); hba->task_ctx[i] = NULL; } } kfree(hba->task_ctx_dma); hba->task_ctx_dma = NULL; out2: kfree(hba->task_ctx); hba->task_ctx = NULL; out1: dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma); hba->task_ctx_bd_tbl = NULL; out: return rc; } void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba) { int task_ctx_arr_sz; int i; if (hba->task_ctx_bd_tbl) { dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma); hba->task_ctx_bd_tbl = NULL; } task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE); if (hba->task_ctx) { for (i = 0; i < task_ctx_arr_sz; i++) { if (hba->task_ctx[i]) { dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->task_ctx[i], hba->task_ctx_dma[i]); hba->task_ctx[i] = NULL; } } kfree(hba->task_ctx); hba->task_ctx = NULL; } kfree(hba->task_ctx_dma); hba->task_ctx_dma = NULL; } static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba) { int i; int segment_count; u32 *pbl; if (hba->hash_tbl_segments) { pbl = hba->hash_tbl_pbl; if (pbl) { segment_count = hba->hash_tbl_segment_count; for (i = 0; i < segment_count; ++i) { dma_addr_t dma_address; dma_address = le32_to_cpu(*pbl); ++pbl; dma_address += ((u64)le32_to_cpu(*pbl)) << 32; ++pbl; dma_free_coherent(&hba->pcidev->dev, BNX2FC_HASH_TBL_CHUNK_SIZE, hba->hash_tbl_segments[i], dma_address); } } kfree(hba->hash_tbl_segments); hba->hash_tbl_segments = NULL; } if (hba->hash_tbl_pbl) { dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->hash_tbl_pbl, hba->hash_tbl_pbl_dma); hba->hash_tbl_pbl = NULL; } } static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba) { int i; int hash_table_size; int segment_count; int segment_array_size; int dma_segment_array_size; dma_addr_t *dma_segment_array; u32 *pbl; hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL * sizeof(struct fcoe_hash_table_entry); segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1; segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE; hba->hash_tbl_segment_count = segment_count; segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments); hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL); if (!hba->hash_tbl_segments) { printk(KERN_ERR PFX "hash table pointers alloc failed\n"); return -ENOMEM; } dma_segment_array_size = segment_count * sizeof(*dma_segment_array); dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL); if (!dma_segment_array) { printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n"); goto cleanup_ht; } for (i = 0; i < segment_count; ++i) { hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev, BNX2FC_HASH_TBL_CHUNK_SIZE, &dma_segment_array[i], GFP_KERNEL); if (!hba->hash_tbl_segments[i]) { printk(KERN_ERR PFX "hash segment alloc failed\n"); goto cleanup_dma; } } hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, &hba->hash_tbl_pbl_dma, GFP_KERNEL); if (!hba->hash_tbl_pbl) { printk(KERN_ERR PFX "hash table pbl alloc failed\n"); goto cleanup_dma; } pbl = hba->hash_tbl_pbl; for (i = 0; i < segment_count; ++i) { u64 paddr = dma_segment_array[i]; *pbl = cpu_to_le32((u32) paddr); ++pbl; *pbl = cpu_to_le32((u32) (paddr >> 32)); ++pbl; } pbl = hba->hash_tbl_pbl; i = 0; while (*pbl && *(pbl + 1)) { ++pbl; ++pbl; ++i; } kfree(dma_segment_array); return 0; cleanup_dma: for (i = 0; i < segment_count; ++i) { if (hba->hash_tbl_segments[i]) dma_free_coherent(&hba->pcidev->dev, BNX2FC_HASH_TBL_CHUNK_SIZE, hba->hash_tbl_segments[i], dma_segment_array[i]); } kfree(dma_segment_array); cleanup_ht: kfree(hba->hash_tbl_segments); hba->hash_tbl_segments = NULL; return -ENOMEM; } /** * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer * * @hba: Pointer to adapter structure * */ int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba) { u64 addr; u32 mem_size; int i; if (bnx2fc_allocate_hash_table(hba)) return -ENOMEM; mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair); hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size, &hba->t2_hash_tbl_ptr_dma, GFP_KERNEL); if (!hba->t2_hash_tbl_ptr) { printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n"); bnx2fc_free_fw_resc(hba); return -ENOMEM; } mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct fcoe_t2_hash_table_entry); hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size, &hba->t2_hash_tbl_dma, GFP_KERNEL); if (!hba->t2_hash_tbl) { printk(KERN_ERR PFX "unable to allocate t2 hash table\n"); bnx2fc_free_fw_resc(hba); return -ENOMEM; } for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) { addr = (unsigned long) hba->t2_hash_tbl_dma + ((i+1) * sizeof(struct fcoe_t2_hash_table_entry)); hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff; hba->t2_hash_tbl[i].next.hi = addr >> 32; } hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, &hba->dummy_buf_dma, GFP_KERNEL); if (!hba->dummy_buffer) { printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n"); bnx2fc_free_fw_resc(hba); return -ENOMEM; } hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE, &hba->stats_buf_dma, GFP_KERNEL); if (!hba->stats_buffer) { printk(KERN_ERR PFX "unable to alloc Stats Buffer\n"); bnx2fc_free_fw_resc(hba); return -ENOMEM; } return 0; } void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba) { u32 mem_size; if (hba->stats_buffer) { dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->stats_buffer, hba->stats_buf_dma); hba->stats_buffer = NULL; } if (hba->dummy_buffer) { dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE, hba->dummy_buffer, hba->dummy_buf_dma); hba->dummy_buffer = NULL; } if (hba->t2_hash_tbl_ptr) { mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair); dma_free_coherent(&hba->pcidev->dev, mem_size, hba->t2_hash_tbl_ptr, hba->t2_hash_tbl_ptr_dma); hba->t2_hash_tbl_ptr = NULL; } if (hba->t2_hash_tbl) { mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct fcoe_t2_hash_table_entry); dma_free_coherent(&hba->pcidev->dev, mem_size, hba->t2_hash_tbl, hba->t2_hash_tbl_dma); hba->t2_hash_tbl = NULL; } bnx2fc_free_hash_table(hba); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1