Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
James Smart | 26670 | 88.81% | 229 | 87.74% |
James Bottomley | 2370 | 7.89% | 1 | 0.38% |
Gaurav Srivastava | 565 | 1.88% | 2 | 0.77% |
Jamie Wellnitz | 191 | 0.64% | 5 | 1.92% |
Dick Kennedy | 78 | 0.26% | 3 | 1.15% |
Hannes Reinecke | 44 | 0.15% | 1 | 0.38% |
Dan Carpenter | 16 | 0.05% | 1 | 0.38% |
Kees Cook | 14 | 0.05% | 1 | 0.38% |
Adrian Bunk | 14 | 0.05% | 2 | 0.77% |
Johannes Thumshirn | 11 | 0.04% | 1 | 0.38% |
Fuqian Huang | 10 | 0.03% | 1 | 0.38% |
Peter Zijlstra | 10 | 0.03% | 1 | 0.38% |
Lee Jones | 8 | 0.03% | 2 | 0.77% |
Gustavo A. R. Silva | 6 | 0.02% | 1 | 0.38% |
Lucas De Marchi | 6 | 0.02% | 1 | 0.38% |
Tomas Jasek | 3 | 0.01% | 1 | 0.38% |
Tejun Heo | 3 | 0.01% | 1 | 0.38% |
Rashika Kheria | 3 | 0.01% | 1 | 0.38% |
Sakari Ailus | 2 | 0.01% | 1 | 0.38% |
Akinobu Mita | 2 | 0.01% | 1 | 0.38% |
Andrew Vasquez | 1 | 0.00% | 1 | 0.38% |
Stefan Weil | 1 | 0.00% | 1 | 0.38% |
Uwe Kleine-König | 1 | 0.00% | 1 | 0.38% |
Dongsheng Yang | 1 | 0.00% | 1 | 0.38% |
Total | 30030 | 261 |
/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/kthread.h> #include <linux/interrupt.h> #include <linux/lockdep.h> #include <linux/utsname.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_transport_fc.h> #include <scsi/fc/fc_fs.h> #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_nvme.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #include "lpfc_debugfs.h" /* AlpaArray for assignment of scsid for scan-down and bind_method */ static uint8_t lpfcAlpaArray[] = { 0xEF, 0xE8, 0xE4, 0xE2, 0xE1, 0xE0, 0xDC, 0xDA, 0xD9, 0xD6, 0xD5, 0xD4, 0xD3, 0xD2, 0xD1, 0xCE, 0xCD, 0xCC, 0xCB, 0xCA, 0xC9, 0xC7, 0xC6, 0xC5, 0xC3, 0xBC, 0xBA, 0xB9, 0xB6, 0xB5, 0xB4, 0xB3, 0xB2, 0xB1, 0xAE, 0xAD, 0xAC, 0xAB, 0xAA, 0xA9, 0xA7, 0xA6, 0xA5, 0xA3, 0x9F, 0x9E, 0x9D, 0x9B, 0x98, 0x97, 0x90, 0x8F, 0x88, 0x84, 0x82, 0x81, 0x80, 0x7C, 0x7A, 0x79, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x67, 0x66, 0x65, 0x63, 0x5C, 0x5A, 0x59, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51, 0x4E, 0x4D, 0x4C, 0x4B, 0x4A, 0x49, 0x47, 0x46, 0x45, 0x43, 0x3C, 0x3A, 0x39, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x2E, 0x2D, 0x2C, 0x2B, 0x2A, 0x29, 0x27, 0x26, 0x25, 0x23, 0x1F, 0x1E, 0x1D, 0x1B, 0x18, 0x17, 0x10, 0x0F, 0x08, 0x04, 0x02, 0x01 }; static void lpfc_disc_timeout_handler(struct lpfc_vport *); static void lpfc_disc_flush_list(struct lpfc_vport *vport); static void lpfc_unregister_fcfi_cmpl(struct lpfc_hba *, LPFC_MBOXQ_t *); static int lpfc_fcf_inuse(struct lpfc_hba *); static void lpfc_mbx_cmpl_read_sparam(struct lpfc_hba *, LPFC_MBOXQ_t *); static void lpfc_check_inactive_vmid(struct lpfc_hba *phba); static void lpfc_check_vmid_qfpa_issue(struct lpfc_hba *phba); static int lpfc_valid_xpt_node(struct lpfc_nodelist *ndlp) { if (ndlp->nlp_fc4_type || ndlp->nlp_type & NLP_FABRIC) return 1; return 0; } /* The source of a terminate rport I/O is either a dev_loss_tmo * event or a call to fc_remove_host. While the rport should be * valid during these downcalls, the transport can call twice * in a single event. This routine provides somoe protection * as the NDLP isn't really free, just released to the pool. */ static int lpfc_rport_invalid(struct fc_rport *rport) { struct lpfc_rport_data *rdata; struct lpfc_nodelist *ndlp; if (!rport) { pr_err("**** %s: NULL rport, exit.\n", __func__); return -EINVAL; } rdata = rport->dd_data; if (!rdata) { pr_err("**** %s: NULL dd_data on rport x%px SID x%x\n", __func__, rport, rport->scsi_target_id); return -EINVAL; } ndlp = rdata->pnode; if (!rdata->pnode) { pr_err("**** %s: NULL ndlp on rport x%px SID x%x\n", __func__, rport, rport->scsi_target_id); return -EINVAL; } if (!ndlp->vport) { pr_err("**** %s: Null vport on ndlp x%px, DID x%x rport x%px " "SID x%x\n", __func__, ndlp, ndlp->nlp_DID, rport, rport->scsi_target_id); return -EINVAL; } return 0; } void lpfc_terminate_rport_io(struct fc_rport *rport) { struct lpfc_rport_data *rdata; struct lpfc_nodelist *ndlp; struct lpfc_vport *vport; if (lpfc_rport_invalid(rport)) return; rdata = rport->dd_data; ndlp = rdata->pnode; vport = ndlp->vport; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT, "rport terminate: sid:x%x did:x%x flg:x%x", ndlp->nlp_sid, ndlp->nlp_DID, ndlp->nlp_flag); if (ndlp->nlp_sid != NLP_NO_SID) lpfc_sli_abort_iocb(vport, ndlp->nlp_sid, 0, LPFC_CTX_TGT); } /* * This function will be called when dev_loss_tmo fire. */ void lpfc_dev_loss_tmo_callbk(struct fc_rport *rport) { struct lpfc_nodelist *ndlp; struct lpfc_vport *vport; struct lpfc_hba *phba; struct lpfc_work_evt *evtp; unsigned long iflags; ndlp = ((struct lpfc_rport_data *)rport->dd_data)->pnode; if (!ndlp) return; vport = ndlp->vport; phba = vport->phba; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT, "rport devlosscb: sid:x%x did:x%x flg:x%x", ndlp->nlp_sid, ndlp->nlp_DID, ndlp->nlp_flag); lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE, "3181 dev_loss_callbk x%06x, rport x%px flg x%x " "load_flag x%x refcnt %d\n", ndlp->nlp_DID, ndlp->rport, ndlp->nlp_flag, vport->load_flag, kref_read(&ndlp->kref)); /* Don't schedule a worker thread event if the vport is going down. * The teardown process cleans up the node via lpfc_drop_node. */ if (vport->load_flag & FC_UNLOADING) { ((struct lpfc_rport_data *)rport->dd_data)->pnode = NULL; ndlp->rport = NULL; ndlp->fc4_xpt_flags &= ~SCSI_XPT_REGD; /* Remove the node reference from remote_port_add now. * The driver will not call remote_port_delete. */ lpfc_nlp_put(ndlp); return; } if (ndlp->nlp_state == NLP_STE_MAPPED_NODE) return; if (rport->port_name != wwn_to_u64(ndlp->nlp_portname.u.wwn)) lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6789 rport name %llx != node port name %llx", rport->port_name, wwn_to_u64(ndlp->nlp_portname.u.wwn)); evtp = &ndlp->dev_loss_evt; if (!list_empty(&evtp->evt_listp)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6790 rport name %llx dev_loss_evt pending\n", rport->port_name); return; } spin_lock_irqsave(&ndlp->lock, iflags); ndlp->nlp_flag |= NLP_IN_DEV_LOSS; ndlp->nlp_flag &= ~NLP_NPR_2B_DISC; /* * The backend does not expect any more calls associated with this * rport. Remove the association between rport and ndlp. */ ndlp->fc4_xpt_flags &= ~SCSI_XPT_REGD; ((struct lpfc_rport_data *)rport->dd_data)->pnode = NULL; ndlp->rport = NULL; spin_unlock_irqrestore(&ndlp->lock, iflags); /* We need to hold the node by incrementing the reference * count until this queued work is done */ evtp->evt_arg1 = lpfc_nlp_get(ndlp); spin_lock_irqsave(&phba->hbalock, iflags); if (evtp->evt_arg1) { evtp->evt = LPFC_EVT_DEV_LOSS; list_add_tail(&evtp->evt_listp, &phba->work_list); lpfc_worker_wake_up(phba); } spin_unlock_irqrestore(&phba->hbalock, iflags); return; } /** * lpfc_check_inactive_vmid_one - VMID inactivity checker for a vport * @vport: Pointer to vport context object. * * This function checks for idle VMID entries related to a particular vport. If * found unused/idle, free them accordingly. **/ static void lpfc_check_inactive_vmid_one(struct lpfc_vport *vport) { u16 keep; u32 difftime = 0, r, bucket; u64 *lta; int cpu; struct lpfc_vmid *vmp; write_lock(&vport->vmid_lock); if (!vport->cur_vmid_cnt) goto out; /* iterate through the table */ hash_for_each(vport->hash_table, bucket, vmp, hnode) { keep = 0; if (vmp->flag & LPFC_VMID_REGISTERED) { /* check if the particular VMID is in use */ /* for all available per cpu variable */ for_each_possible_cpu(cpu) { /* if last access time is less than timeout */ lta = per_cpu_ptr(vmp->last_io_time, cpu); if (!lta) continue; difftime = (jiffies) - (*lta); if ((vport->vmid_inactivity_timeout * JIFFIES_PER_HR) > difftime) { keep = 1; break; } } /* if none of the cpus have been used by the vm, */ /* remove the entry if already registered */ if (!keep) { /* mark the entry for deregistration */ vmp->flag = LPFC_VMID_DE_REGISTER; write_unlock(&vport->vmid_lock); if (vport->vmid_priority_tagging) r = lpfc_vmid_uvem(vport, vmp, false); else r = lpfc_vmid_cmd(vport, SLI_CTAS_DAPP_IDENT, vmp); /* decrement number of active vms and mark */ /* entry in slot as free */ write_lock(&vport->vmid_lock); if (!r) { struct lpfc_vmid *ht = vmp; vport->cur_vmid_cnt--; ht->flag = LPFC_VMID_SLOT_FREE; free_percpu(ht->last_io_time); ht->last_io_time = NULL; hash_del(&ht->hnode); } } } } out: write_unlock(&vport->vmid_lock); } /** * lpfc_check_inactive_vmid - VMID inactivity checker * @phba: Pointer to hba context object. * * This function is called from the worker thread to determine if an entry in * the VMID table can be released since there was no I/O activity seen from that * particular VM for the specified time. When this happens, the entry in the * table is released and also the resources on the switch cleared. **/ static void lpfc_check_inactive_vmid(struct lpfc_hba *phba) { struct lpfc_vport *vport; struct lpfc_vport **vports; int i; vports = lpfc_create_vport_work_array(phba); if (!vports) return; for (i = 0; i <= phba->max_vports; i++) { if ((!vports[i]) && (i == 0)) vport = phba->pport; else vport = vports[i]; if (!vport) break; lpfc_check_inactive_vmid_one(vport); } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_dev_loss_tmo_handler - Remote node devloss timeout handler * @ndlp: Pointer to remote node object. * * This function is called from the worker thread when devloss timeout timer * expires. For SLI4 host, this routine shall return 1 when at lease one * remote node, including this @ndlp, is still in use of FCF; otherwise, this * routine shall return 0 when there is no remote node is still in use of FCF * when devloss timeout happened to this @ndlp. **/ static int lpfc_dev_loss_tmo_handler(struct lpfc_nodelist *ndlp) { struct lpfc_vport *vport; struct lpfc_hba *phba; uint8_t *name; int warn_on = 0; int fcf_inuse = 0; unsigned long iflags; vport = ndlp->vport; name = (uint8_t *)&ndlp->nlp_portname; phba = vport->phba; spin_lock_irqsave(&ndlp->lock, iflags); ndlp->nlp_flag &= ~NLP_IN_DEV_LOSS; spin_unlock_irqrestore(&ndlp->lock, iflags); if (phba->sli_rev == LPFC_SLI_REV4) fcf_inuse = lpfc_fcf_inuse(phba); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT, "rport devlosstmo:did:x%x type:x%x id:x%x", ndlp->nlp_DID, ndlp->nlp_type, ndlp->nlp_sid); lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE, "3182 %s x%06x, nflag x%x xflags x%x refcnt %d\n", __func__, ndlp->nlp_DID, ndlp->nlp_flag, ndlp->fc4_xpt_flags, kref_read(&ndlp->kref)); /* If the driver is recovering the rport, ignore devloss. */ if (ndlp->nlp_state == NLP_STE_MAPPED_NODE) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0284 Devloss timeout Ignored on " "WWPN %x:%x:%x:%x:%x:%x:%x:%x " "NPort x%x\n", *name, *(name+1), *(name+2), *(name+3), *(name+4), *(name+5), *(name+6), *(name+7), ndlp->nlp_DID); return fcf_inuse; } /* Fabric nodes are done. */ if (ndlp->nlp_type & NLP_FABRIC) { lpfc_nlp_put(ndlp); return fcf_inuse; } if (ndlp->nlp_sid != NLP_NO_SID) { warn_on = 1; lpfc_sli_abort_iocb(vport, ndlp->nlp_sid, 0, LPFC_CTX_TGT); } if (warn_on) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0203 Devloss timeout on " "WWPN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x " "NPort x%06x Data: x%x x%x x%x\n", *name, *(name+1), *(name+2), *(name+3), *(name+4), *(name+5), *(name+6), *(name+7), ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, ndlp->nlp_rpi); } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_TRACE_EVENT, "0204 Devloss timeout on " "WWPN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x " "NPort x%06x Data: x%x x%x x%x\n", *name, *(name+1), *(name+2), *(name+3), *(name+4), *(name+5), *(name+6), *(name+7), ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, ndlp->nlp_rpi); } if (!(ndlp->fc4_xpt_flags & NVME_XPT_REGD)) lpfc_disc_state_machine(vport, ndlp, NULL, NLP_EVT_DEVICE_RM); return fcf_inuse; } static void lpfc_check_vmid_qfpa_issue(struct lpfc_hba *phba) { struct lpfc_vport *vport; struct lpfc_vport **vports; int i; vports = lpfc_create_vport_work_array(phba); if (!vports) return; for (i = 0; i <= phba->max_vports; i++) { if ((!vports[i]) && (i == 0)) vport = phba->pport; else vport = vports[i]; if (!vport) break; if (vport->vmid_flag & LPFC_VMID_ISSUE_QFPA) { if (!lpfc_issue_els_qfpa(vport)) vport->vmid_flag &= ~LPFC_VMID_ISSUE_QFPA; } } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_sli4_post_dev_loss_tmo_handler - SLI4 post devloss timeout handler * @phba: Pointer to hba context object. * @fcf_inuse: SLI4 FCF in-use state reported from devloss timeout handler. * @nlp_did: remote node identifer with devloss timeout. * * This function is called from the worker thread after invoking devloss * timeout handler and releasing the reference count for the ndlp with * which the devloss timeout was handled for SLI4 host. For the devloss * timeout of the last remote node which had been in use of FCF, when this * routine is invoked, it shall be guaranteed that none of the remote are * in-use of FCF. When devloss timeout to the last remote using the FCF, * if the FIP engine is neither in FCF table scan process nor roundrobin * failover process, the in-use FCF shall be unregistered. If the FIP * engine is in FCF discovery process, the devloss timeout state shall * be set for either the FCF table scan process or roundrobin failover * process to unregister the in-use FCF. **/ static void lpfc_sli4_post_dev_loss_tmo_handler(struct lpfc_hba *phba, int fcf_inuse, uint32_t nlp_did) { /* If devloss timeout happened to a remote node when FCF had no * longer been in-use, do nothing. */ if (!fcf_inuse) return; if ((phba->hba_flag & HBA_FIP_SUPPORT) && !lpfc_fcf_inuse(phba)) { spin_lock_irq(&phba->hbalock); if (phba->fcf.fcf_flag & FCF_DISCOVERY) { if (phba->hba_flag & HBA_DEVLOSS_TMO) { spin_unlock_irq(&phba->hbalock); return; } phba->hba_flag |= HBA_DEVLOSS_TMO; lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2847 Last remote node (x%x) using " "FCF devloss tmo\n", nlp_did); } if (phba->fcf.fcf_flag & FCF_REDISC_PROG) { spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2868 Devloss tmo to FCF rediscovery " "in progress\n"); return; } if (!(phba->hba_flag & (FCF_TS_INPROG | FCF_RR_INPROG))) { spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2869 Devloss tmo to idle FIP engine, " "unreg in-use FCF and rescan.\n"); /* Unregister in-use FCF and rescan */ lpfc_unregister_fcf_rescan(phba); return; } spin_unlock_irq(&phba->hbalock); if (phba->hba_flag & FCF_TS_INPROG) lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2870 FCF table scan in progress\n"); if (phba->hba_flag & FCF_RR_INPROG) lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2871 FLOGI roundrobin FCF failover " "in progress\n"); } lpfc_unregister_unused_fcf(phba); } /** * lpfc_alloc_fast_evt - Allocates data structure for posting event * @phba: Pointer to hba context object. * * This function is called from the functions which need to post * events from interrupt context. This function allocates data * structure required for posting event. It also keeps track of * number of events pending and prevent event storm when there are * too many events. **/ struct lpfc_fast_path_event * lpfc_alloc_fast_evt(struct lpfc_hba *phba) { struct lpfc_fast_path_event *ret; /* If there are lot of fast event do not exhaust memory due to this */ if (atomic_read(&phba->fast_event_count) > LPFC_MAX_EVT_COUNT) return NULL; ret = kzalloc(sizeof(struct lpfc_fast_path_event), GFP_ATOMIC); if (ret) { atomic_inc(&phba->fast_event_count); INIT_LIST_HEAD(&ret->work_evt.evt_listp); ret->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; } return ret; } /** * lpfc_free_fast_evt - Frees event data structure * @phba: Pointer to hba context object. * @evt: Event object which need to be freed. * * This function frees the data structure required for posting * events. **/ void lpfc_free_fast_evt(struct lpfc_hba *phba, struct lpfc_fast_path_event *evt) { atomic_dec(&phba->fast_event_count); kfree(evt); } /** * lpfc_send_fastpath_evt - Posts events generated from fast path * @phba: Pointer to hba context object. * @evtp: Event data structure. * * This function is called from worker thread, when the interrupt * context need to post an event. This function posts the event * to fc transport netlink interface. **/ static void lpfc_send_fastpath_evt(struct lpfc_hba *phba, struct lpfc_work_evt *evtp) { unsigned long evt_category, evt_sub_category; struct lpfc_fast_path_event *fast_evt_data; char *evt_data; uint32_t evt_data_size; struct Scsi_Host *shost; fast_evt_data = container_of(evtp, struct lpfc_fast_path_event, work_evt); evt_category = (unsigned long) fast_evt_data->un.fabric_evt.event_type; evt_sub_category = (unsigned long) fast_evt_data->un. fabric_evt.subcategory; shost = lpfc_shost_from_vport(fast_evt_data->vport); if (evt_category == FC_REG_FABRIC_EVENT) { if (evt_sub_category == LPFC_EVENT_FCPRDCHKERR) { evt_data = (char *) &fast_evt_data->un.read_check_error; evt_data_size = sizeof(fast_evt_data->un. read_check_error); } else if ((evt_sub_category == LPFC_EVENT_FABRIC_BUSY) || (evt_sub_category == LPFC_EVENT_PORT_BUSY)) { evt_data = (char *) &fast_evt_data->un.fabric_evt; evt_data_size = sizeof(fast_evt_data->un.fabric_evt); } else { lpfc_free_fast_evt(phba, fast_evt_data); return; } } else if (evt_category == FC_REG_SCSI_EVENT) { switch (evt_sub_category) { case LPFC_EVENT_QFULL: case LPFC_EVENT_DEVBSY: evt_data = (char *) &fast_evt_data->un.scsi_evt; evt_data_size = sizeof(fast_evt_data->un.scsi_evt); break; case LPFC_EVENT_CHECK_COND: evt_data = (char *) &fast_evt_data->un.check_cond_evt; evt_data_size = sizeof(fast_evt_data->un. check_cond_evt); break; case LPFC_EVENT_VARQUEDEPTH: evt_data = (char *) &fast_evt_data->un.queue_depth_evt; evt_data_size = sizeof(fast_evt_data->un. queue_depth_evt); break; default: lpfc_free_fast_evt(phba, fast_evt_data); return; } } else { lpfc_free_fast_evt(phba, fast_evt_data); return; } if (phba->cfg_enable_fc4_type != LPFC_ENABLE_NVME) fc_host_post_vendor_event(shost, fc_get_event_number(), evt_data_size, evt_data, LPFC_NL_VENDOR_ID); lpfc_free_fast_evt(phba, fast_evt_data); return; } static void lpfc_work_list_done(struct lpfc_hba *phba) { struct lpfc_work_evt *evtp = NULL; struct lpfc_nodelist *ndlp; int free_evt; int fcf_inuse; uint32_t nlp_did; spin_lock_irq(&phba->hbalock); while (!list_empty(&phba->work_list)) { list_remove_head((&phba->work_list), evtp, typeof(*evtp), evt_listp); spin_unlock_irq(&phba->hbalock); free_evt = 1; switch (evtp->evt) { case LPFC_EVT_ELS_RETRY: ndlp = (struct lpfc_nodelist *) (evtp->evt_arg1); lpfc_els_retry_delay_handler(ndlp); free_evt = 0; /* evt is part of ndlp */ /* decrement the node reference count held * for this queued work */ lpfc_nlp_put(ndlp); break; case LPFC_EVT_DEV_LOSS: ndlp = (struct lpfc_nodelist *)(evtp->evt_arg1); fcf_inuse = lpfc_dev_loss_tmo_handler(ndlp); free_evt = 0; /* decrement the node reference count held for * this queued work */ nlp_did = ndlp->nlp_DID; lpfc_nlp_put(ndlp); if (phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_post_dev_loss_tmo_handler(phba, fcf_inuse, nlp_did); break; case LPFC_EVT_RECOVER_PORT: ndlp = (struct lpfc_nodelist *)(evtp->evt_arg1); lpfc_sli_abts_recover_port(ndlp->vport, ndlp); free_evt = 0; /* decrement the node reference count held for * this queued work */ lpfc_nlp_put(ndlp); break; case LPFC_EVT_ONLINE: if (phba->link_state < LPFC_LINK_DOWN) *(int *) (evtp->evt_arg1) = lpfc_online(phba); else *(int *) (evtp->evt_arg1) = 0; complete((struct completion *)(evtp->evt_arg2)); break; case LPFC_EVT_OFFLINE_PREP: if (phba->link_state >= LPFC_LINK_DOWN) lpfc_offline_prep(phba, LPFC_MBX_WAIT); *(int *)(evtp->evt_arg1) = 0; complete((struct completion *)(evtp->evt_arg2)); break; case LPFC_EVT_OFFLINE: lpfc_offline(phba); lpfc_sli_brdrestart(phba); *(int *)(evtp->evt_arg1) = lpfc_sli_brdready(phba, HS_FFRDY | HS_MBRDY); lpfc_unblock_mgmt_io(phba); complete((struct completion *)(evtp->evt_arg2)); break; case LPFC_EVT_WARM_START: lpfc_offline(phba); lpfc_reset_barrier(phba); lpfc_sli_brdreset(phba); lpfc_hba_down_post(phba); *(int *)(evtp->evt_arg1) = lpfc_sli_brdready(phba, HS_MBRDY); lpfc_unblock_mgmt_io(phba); complete((struct completion *)(evtp->evt_arg2)); break; case LPFC_EVT_KILL: lpfc_offline(phba); *(int *)(evtp->evt_arg1) = (phba->pport->stopped) ? 0 : lpfc_sli_brdkill(phba); lpfc_unblock_mgmt_io(phba); complete((struct completion *)(evtp->evt_arg2)); break; case LPFC_EVT_FASTPATH_MGMT_EVT: lpfc_send_fastpath_evt(phba, evtp); free_evt = 0; break; case LPFC_EVT_RESET_HBA: if (!(phba->pport->load_flag & FC_UNLOADING)) lpfc_reset_hba(phba); break; } if (free_evt) kfree(evtp); spin_lock_irq(&phba->hbalock); } spin_unlock_irq(&phba->hbalock); } static void lpfc_work_done(struct lpfc_hba *phba) { struct lpfc_sli_ring *pring; uint32_t ha_copy, status, control, work_port_events; struct lpfc_vport **vports; struct lpfc_vport *vport; int i; spin_lock_irq(&phba->hbalock); ha_copy = phba->work_ha; phba->work_ha = 0; spin_unlock_irq(&phba->hbalock); /* First, try to post the next mailbox command to SLI4 device */ if (phba->pci_dev_grp == LPFC_PCI_DEV_OC) lpfc_sli4_post_async_mbox(phba); if (ha_copy & HA_ERATT) /* Handle the error attention event */ lpfc_handle_eratt(phba); if (ha_copy & HA_MBATT) lpfc_sli_handle_mb_event(phba); if (ha_copy & HA_LATT) lpfc_handle_latt(phba); /* Handle VMID Events */ if (lpfc_is_vmid_enabled(phba)) { if (phba->pport->work_port_events & WORKER_CHECK_VMID_ISSUE_QFPA) { lpfc_check_vmid_qfpa_issue(phba); phba->pport->work_port_events &= ~WORKER_CHECK_VMID_ISSUE_QFPA; } if (phba->pport->work_port_events & WORKER_CHECK_INACTIVE_VMID) { lpfc_check_inactive_vmid(phba); phba->pport->work_port_events &= ~WORKER_CHECK_INACTIVE_VMID; } } /* Process SLI4 events */ if (phba->pci_dev_grp == LPFC_PCI_DEV_OC) { if (phba->hba_flag & HBA_RRQ_ACTIVE) lpfc_handle_rrq_active(phba); if (phba->hba_flag & ELS_XRI_ABORT_EVENT) lpfc_sli4_els_xri_abort_event_proc(phba); if (phba->hba_flag & ASYNC_EVENT) lpfc_sli4_async_event_proc(phba); if (phba->hba_flag & HBA_POST_RECEIVE_BUFFER) { spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~HBA_POST_RECEIVE_BUFFER; spin_unlock_irq(&phba->hbalock); lpfc_sli_hbqbuf_add_hbqs(phba, LPFC_ELS_HBQ); } if (phba->fcf.fcf_flag & FCF_REDISC_EVT) lpfc_sli4_fcf_redisc_event_proc(phba); } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports; i++) { /* * We could have no vports in array if unloading, so if * this happens then just use the pport */ if (vports[i] == NULL && i == 0) vport = phba->pport; else vport = vports[i]; if (vport == NULL) break; spin_lock_irq(&vport->work_port_lock); work_port_events = vport->work_port_events; vport->work_port_events &= ~work_port_events; spin_unlock_irq(&vport->work_port_lock); if (work_port_events & WORKER_DISC_TMO) lpfc_disc_timeout_handler(vport); if (work_port_events & WORKER_ELS_TMO) lpfc_els_timeout_handler(vport); if (work_port_events & WORKER_HB_TMO) lpfc_hb_timeout_handler(phba); if (work_port_events & WORKER_MBOX_TMO) lpfc_mbox_timeout_handler(phba); if (work_port_events & WORKER_FABRIC_BLOCK_TMO) lpfc_unblock_fabric_iocbs(phba); if (work_port_events & WORKER_RAMP_DOWN_QUEUE) lpfc_ramp_down_queue_handler(phba); if (work_port_events & WORKER_DELAYED_DISC_TMO) lpfc_delayed_disc_timeout_handler(vport); } lpfc_destroy_vport_work_array(phba, vports); pring = lpfc_phba_elsring(phba); status = (ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); status >>= (4*LPFC_ELS_RING); if (pring && (status & HA_RXMASK || pring->flag & LPFC_DEFERRED_RING_EVENT || phba->hba_flag & HBA_SP_QUEUE_EVT)) { if (pring->flag & LPFC_STOP_IOCB_EVENT) { pring->flag |= LPFC_DEFERRED_RING_EVENT; /* Preserve legacy behavior. */ if (!(phba->hba_flag & HBA_SP_QUEUE_EVT)) set_bit(LPFC_DATA_READY, &phba->data_flags); } else { /* Driver could have abort request completed in queue * when link goes down. Allow for this transition. */ if (phba->link_state >= LPFC_LINK_DOWN || phba->link_flag & LS_MDS_LOOPBACK) { pring->flag &= ~LPFC_DEFERRED_RING_EVENT; lpfc_sli_handle_slow_ring_event(phba, pring, (status & HA_RXMASK)); } } if (phba->sli_rev == LPFC_SLI_REV4) lpfc_drain_txq(phba); /* * Turn on Ring interrupts */ if (phba->sli_rev <= LPFC_SLI_REV3) { spin_lock_irq(&phba->hbalock); control = readl(phba->HCregaddr); if (!(control & (HC_R0INT_ENA << LPFC_ELS_RING))) { lpfc_debugfs_slow_ring_trc(phba, "WRK Enable ring: cntl:x%x hacopy:x%x", control, ha_copy, 0); control |= (HC_R0INT_ENA << LPFC_ELS_RING); writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } else { lpfc_debugfs_slow_ring_trc(phba, "WRK Ring ok: cntl:x%x hacopy:x%x", control, ha_copy, 0); } spin_unlock_irq(&phba->hbalock); } } lpfc_work_list_done(phba); } int lpfc_do_work(void *p) { struct lpfc_hba *phba = p; int rc; set_user_nice(current, MIN_NICE); current->flags |= PF_NOFREEZE; phba->data_flags = 0; while (!kthread_should_stop()) { /* wait and check worker queue activities */ rc = wait_event_interruptible(phba->work_waitq, (test_and_clear_bit(LPFC_DATA_READY, &phba->data_flags) || kthread_should_stop())); /* Signal wakeup shall terminate the worker thread */ if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0433 Wakeup on signal: rc=x%x\n", rc); break; } /* Attend pending lpfc data processing */ lpfc_work_done(phba); } phba->worker_thread = NULL; lpfc_printf_log(phba, KERN_INFO, LOG_ELS, "0432 Worker thread stopped.\n"); return 0; } /* * This is only called to handle FC worker events. Since this a rare * occurrence, we allocate a struct lpfc_work_evt structure here instead of * embedding it in the IOCB. */ int lpfc_workq_post_event(struct lpfc_hba *phba, void *arg1, void *arg2, uint32_t evt) { struct lpfc_work_evt *evtp; unsigned long flags; /* * All Mailbox completions and LPFC_ELS_RING rcv ring IOCB events will * be queued to worker thread for processing */ evtp = kmalloc(sizeof(struct lpfc_work_evt), GFP_ATOMIC); if (!evtp) return 0; evtp->evt_arg1 = arg1; evtp->evt_arg2 = arg2; evtp->evt = evt; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&evtp->evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); return 1; } void lpfc_cleanup_rpis(struct lpfc_vport *vport, int remove) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; struct lpfc_nodelist *ndlp, *next_ndlp; list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) continue; if ((phba->sli3_options & LPFC_SLI3_VPORT_TEARDOWN) || ((vport->port_type == LPFC_NPIV_PORT) && ((ndlp->nlp_DID == NameServer_DID) || (ndlp->nlp_DID == FDMI_DID) || (ndlp->nlp_DID == Fabric_Cntl_DID)))) lpfc_unreg_rpi(vport, ndlp); /* Leave Fabric nodes alone on link down */ if ((phba->sli_rev < LPFC_SLI_REV4) && (!remove && ndlp->nlp_type & NLP_FABRIC)) continue; /* Notify transport of connectivity loss to trigger cleanup. */ if (phba->nvmet_support && ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) lpfc_nvmet_invalidate_host(phba, ndlp); lpfc_disc_state_machine(vport, ndlp, NULL, remove ? NLP_EVT_DEVICE_RM : NLP_EVT_DEVICE_RECOVERY); } if (phba->sli3_options & LPFC_SLI3_VPORT_TEARDOWN) { if (phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_unreg_all_rpis(vport); lpfc_mbx_unreg_vpi(vport); spin_lock_irq(shost->host_lock); vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; spin_unlock_irq(shost->host_lock); } } void lpfc_port_link_failure(struct lpfc_vport *vport) { lpfc_vport_set_state(vport, FC_VPORT_LINKDOWN); /* Cleanup any outstanding received buffers */ lpfc_cleanup_rcv_buffers(vport); /* Cleanup any outstanding RSCN activity */ lpfc_els_flush_rscn(vport); /* Cleanup any outstanding ELS commands */ lpfc_els_flush_cmd(vport); lpfc_cleanup_rpis(vport, 0); /* Turn off discovery timer if its running */ lpfc_can_disctmo(vport); } void lpfc_linkdown_port(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); if (vport->cfg_enable_fc4_type != LPFC_ENABLE_NVME) fc_host_post_event(shost, fc_get_event_number(), FCH_EVT_LINKDOWN, 0); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_ELS_CMD, "Link Down: state:x%x rtry:x%x flg:x%x", vport->port_state, vport->fc_ns_retry, vport->fc_flag); lpfc_port_link_failure(vport); /* Stop delayed Nport discovery */ spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_DISC_DELAYED; spin_unlock_irq(shost->host_lock); del_timer_sync(&vport->delayed_disc_tmo); } int lpfc_linkdown(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_vport **vports; LPFC_MBOXQ_t *mb; int i; if (phba->link_state == LPFC_LINK_DOWN) return 0; /* Block all SCSI stack I/Os */ lpfc_scsi_dev_block(phba); phba->defer_flogi_acc_flag = false; spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); spin_unlock_irq(&phba->hbalock); if (phba->link_state > LPFC_LINK_DOWN) { phba->link_state = LPFC_LINK_DOWN; if (phba->sli4_hba.conf_trunk) { phba->trunk_link.link0.state = 0; phba->trunk_link.link1.state = 0; phba->trunk_link.link2.state = 0; phba->trunk_link.link3.state = 0; phba->sli4_hba.link_state.logical_speed = LPFC_LINK_SPEED_UNKNOWN; } spin_lock_irq(shost->host_lock); phba->pport->fc_flag &= ~FC_LBIT; spin_unlock_irq(shost->host_lock); } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) { for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { /* Issue a LINK DOWN event to all nodes */ lpfc_linkdown_port(vports[i]); vports[i]->fc_myDID = 0; if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) { if (phba->nvmet_support) lpfc_nvmet_update_targetport(phba); else lpfc_nvme_update_localport(vports[i]); } } } lpfc_destroy_vport_work_array(phba, vports); /* Clean up any SLI3 firmware default rpi's */ if (phba->sli_rev > LPFC_SLI_REV3) goto skip_unreg_did; mb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (mb) { lpfc_unreg_did(phba, 0xffff, LPFC_UNREG_ALL_DFLT_RPIS, mb); mb->vport = vport; mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; if (lpfc_sli_issue_mbox(phba, mb, MBX_NOWAIT) == MBX_NOT_FINISHED) { mempool_free(mb, phba->mbox_mem_pool); } } skip_unreg_did: /* Setup myDID for link up if we are in pt2pt mode */ if (phba->pport->fc_flag & FC_PT2PT) { mb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (mb) { lpfc_config_link(phba, mb); mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mb->vport = vport; if (lpfc_sli_issue_mbox(phba, mb, MBX_NOWAIT) == MBX_NOT_FINISHED) { mempool_free(mb, phba->mbox_mem_pool); } } spin_lock_irq(shost->host_lock); phba->pport->fc_flag &= ~(FC_PT2PT | FC_PT2PT_PLOGI); phba->pport->rcv_flogi_cnt = 0; spin_unlock_irq(shost->host_lock); } return 0; } static void lpfc_linkup_cleanup_nodes(struct lpfc_vport *vport) { struct lpfc_nodelist *ndlp; list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { ndlp->nlp_fc4_type &= ~(NLP_FC4_FCP | NLP_FC4_NVME); if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) continue; if (ndlp->nlp_type & NLP_FABRIC) { /* On Linkup its safe to clean up the ndlp * from Fabric connections. */ if (ndlp->nlp_DID != Fabric_DID) lpfc_unreg_rpi(vport, ndlp); lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE); } else if (!(ndlp->nlp_flag & NLP_NPR_ADISC)) { /* Fail outstanding IO now since device is * marked for PLOGI. */ lpfc_unreg_rpi(vport, ndlp); } } } static void lpfc_linkup_port(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; if ((vport->load_flag & FC_UNLOADING) != 0) return; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_ELS_CMD, "Link Up: top:x%x speed:x%x flg:x%x", phba->fc_topology, phba->fc_linkspeed, phba->link_flag); /* If NPIV is not enabled, only bring the physical port up */ if (!(phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && (vport != phba->pport)) return; if (vport->cfg_enable_fc4_type != LPFC_ENABLE_NVME) fc_host_post_event(shost, fc_get_event_number(), FCH_EVT_LINKUP, 0); spin_lock_irq(shost->host_lock); vport->fc_flag &= ~(FC_PT2PT | FC_PT2PT_PLOGI | FC_ABORT_DISCOVERY | FC_RSCN_MODE | FC_NLP_MORE | FC_RSCN_DISCOVERY); vport->fc_flag |= FC_NDISC_ACTIVE; vport->fc_ns_retry = 0; spin_unlock_irq(shost->host_lock); lpfc_linkup_cleanup_nodes(vport); } static int lpfc_linkup(struct lpfc_hba *phba) { struct lpfc_vport **vports; int i; struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); phba->link_state = LPFC_LINK_UP; /* Unblock fabric iocbs if they are blocked */ clear_bit(FABRIC_COMANDS_BLOCKED, &phba->bit_flags); del_timer_sync(&phba->fabric_block_timer); vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) lpfc_linkup_port(vports[i]); lpfc_destroy_vport_work_array(phba, vports); /* Clear the pport flogi counter in case the link down was * absorbed without an ACQE. No lock here - in worker thread * and discovery is synchronized. */ spin_lock_irq(shost->host_lock); phba->pport->rcv_flogi_cnt = 0; spin_unlock_irq(shost->host_lock); /* reinitialize initial FLOGI flag */ phba->hba_flag &= ~(HBA_FLOGI_ISSUED); phba->defer_flogi_acc_flag = false; return 0; } /* * This routine handles processing a CLEAR_LA mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is * handed off to the SLI layer. SLI3 only. */ static void lpfc_mbx_cmpl_clear_la(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_sli *psli = &phba->sli; MAILBOX_t *mb = &pmb->u.mb; uint32_t control; /* Since we don't do discovery right now, turn these off here */ psli->sli3_ring[LPFC_EXTRA_RING].flag &= ~LPFC_STOP_IOCB_EVENT; psli->sli3_ring[LPFC_FCP_RING].flag &= ~LPFC_STOP_IOCB_EVENT; /* Check for error */ if ((mb->mbxStatus) && (mb->mbxStatus != 0x1601)) { /* CLEAR_LA mbox error <mbxStatus> state <hba_state> */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0320 CLEAR_LA mbxStatus error x%x hba " "state x%x\n", mb->mbxStatus, vport->port_state); phba->link_state = LPFC_HBA_ERROR; goto out; } if (vport->port_type == LPFC_PHYSICAL_PORT) phba->link_state = LPFC_HBA_READY; spin_lock_irq(&phba->hbalock); psli->sli_flag |= LPFC_PROCESS_LA; control = readl(phba->HCregaddr); control |= HC_LAINT_ENA; writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ spin_unlock_irq(&phba->hbalock); mempool_free(pmb, phba->mbox_mem_pool); return; out: /* Device Discovery completes */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0225 Device Discovery completes\n"); mempool_free(pmb, phba->mbox_mem_pool); spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_ABORT_DISCOVERY; spin_unlock_irq(shost->host_lock); lpfc_can_disctmo(vport); /* turn on Link Attention interrupts */ spin_lock_irq(&phba->hbalock); psli->sli_flag |= LPFC_PROCESS_LA; control = readl(phba->HCregaddr); control |= HC_LAINT_ENA; writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ spin_unlock_irq(&phba->hbalock); return; } void lpfc_mbx_cmpl_local_config_link(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; LPFC_MBOXQ_t *sparam_mb; struct lpfc_dmabuf *sparam_mp; u16 status = pmb->u.mb.mbxStatus; int rc; mempool_free(pmb, phba->mbox_mem_pool); if (status) goto out; /* don't perform discovery for SLI4 loopback diagnostic test */ if ((phba->sli_rev == LPFC_SLI_REV4) && !(phba->hba_flag & HBA_FCOE_MODE) && (phba->link_flag & LS_LOOPBACK_MODE)) return; if (phba->fc_topology == LPFC_TOPOLOGY_LOOP && vport->fc_flag & FC_PUBLIC_LOOP && !(vport->fc_flag & FC_LBIT)) { /* Need to wait for FAN - use discovery timer * for timeout. port_state is identically * LPFC_LOCAL_CFG_LINK while waiting for FAN */ lpfc_set_disctmo(vport); return; } /* Start discovery by sending a FLOGI. port_state is identically * LPFC_FLOGI while waiting for FLOGI cmpl. */ if (vport->port_state != LPFC_FLOGI) { /* Issue MBX_READ_SPARAM to update CSPs before FLOGI if * bb-credit recovery is in place. */ if (phba->bbcredit_support && phba->cfg_enable_bbcr && !(phba->link_flag & LS_LOOPBACK_MODE)) { sparam_mb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!sparam_mb) goto sparam_out; rc = lpfc_read_sparam(phba, sparam_mb, 0); if (rc) { mempool_free(sparam_mb, phba->mbox_mem_pool); goto sparam_out; } sparam_mb->vport = vport; sparam_mb->mbox_cmpl = lpfc_mbx_cmpl_read_sparam; rc = lpfc_sli_issue_mbox(phba, sparam_mb, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { sparam_mp = (struct lpfc_dmabuf *) sparam_mb->ctx_buf; lpfc_mbuf_free(phba, sparam_mp->virt, sparam_mp->phys); kfree(sparam_mp); sparam_mb->ctx_buf = NULL; mempool_free(sparam_mb, phba->mbox_mem_pool); goto sparam_out; } phba->hba_flag |= HBA_DEFER_FLOGI; } else { lpfc_initial_flogi(vport); } } else { if (vport->fc_flag & FC_PT2PT) lpfc_disc_start(vport); } return; out: lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0306 CONFIG_LINK mbxStatus error x%x HBA state x%x\n", status, vport->port_state); sparam_out: lpfc_linkdown(phba); lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0200 CONFIG_LINK bad hba state x%x\n", vport->port_state); lpfc_issue_clear_la(phba, vport); return; } /** * lpfc_sli4_clear_fcf_rr_bmask * @phba: pointer to the struct lpfc_hba for this port. * This fucnction resets the round robin bit mask and clears the * fcf priority list. The list deletions are done while holding the * hbalock. The ON_LIST flag and the FLOGI_FAILED flags are cleared * from the lpfc_fcf_pri record. **/ void lpfc_sli4_clear_fcf_rr_bmask(struct lpfc_hba *phba) { struct lpfc_fcf_pri *fcf_pri; struct lpfc_fcf_pri *next_fcf_pri; memset(phba->fcf.fcf_rr_bmask, 0, sizeof(*phba->fcf.fcf_rr_bmask)); spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(fcf_pri, next_fcf_pri, &phba->fcf.fcf_pri_list, list) { list_del_init(&fcf_pri->list); fcf_pri->fcf_rec.flag = 0; } spin_unlock_irq(&phba->hbalock); } static void lpfc_mbx_cmpl_reg_fcfi(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct lpfc_vport *vport = mboxq->vport; if (mboxq->u.mb.mbxStatus) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2017 REG_FCFI mbxStatus error x%x " "HBA state x%x\n", mboxq->u.mb.mbxStatus, vport->port_state); goto fail_out; } /* Start FCoE discovery by sending a FLOGI. */ phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, &mboxq->u.mqe.un.reg_fcfi); /* Set the FCFI registered flag */ spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag |= FCF_REGISTERED; spin_unlock_irq(&phba->hbalock); /* If there is a pending FCoE event, restart FCF table scan. */ if ((!(phba->hba_flag & FCF_RR_INPROG)) && lpfc_check_pending_fcoe_event(phba, LPFC_UNREG_FCF)) goto fail_out; /* Mark successful completion of FCF table scan */ spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag |= (FCF_SCAN_DONE | FCF_IN_USE); phba->hba_flag &= ~FCF_TS_INPROG; if (vport->port_state != LPFC_FLOGI) { phba->hba_flag |= FCF_RR_INPROG; spin_unlock_irq(&phba->hbalock); lpfc_issue_init_vfi(vport); goto out; } spin_unlock_irq(&phba->hbalock); goto out; fail_out: spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~FCF_RR_INPROG; spin_unlock_irq(&phba->hbalock); out: mempool_free(mboxq, phba->mbox_mem_pool); } /** * lpfc_fab_name_match - Check if the fcf fabric name match. * @fab_name: pointer to fabric name. * @new_fcf_record: pointer to fcf record. * * This routine compare the fcf record's fabric name with provided * fabric name. If the fabric name are identical this function * returns 1 else return 0. **/ static uint32_t lpfc_fab_name_match(uint8_t *fab_name, struct fcf_record *new_fcf_record) { if (fab_name[0] != bf_get(lpfc_fcf_record_fab_name_0, new_fcf_record)) return 0; if (fab_name[1] != bf_get(lpfc_fcf_record_fab_name_1, new_fcf_record)) return 0; if (fab_name[2] != bf_get(lpfc_fcf_record_fab_name_2, new_fcf_record)) return 0; if (fab_name[3] != bf_get(lpfc_fcf_record_fab_name_3, new_fcf_record)) return 0; if (fab_name[4] != bf_get(lpfc_fcf_record_fab_name_4, new_fcf_record)) return 0; if (fab_name[5] != bf_get(lpfc_fcf_record_fab_name_5, new_fcf_record)) return 0; if (fab_name[6] != bf_get(lpfc_fcf_record_fab_name_6, new_fcf_record)) return 0; if (fab_name[7] != bf_get(lpfc_fcf_record_fab_name_7, new_fcf_record)) return 0; return 1; } /** * lpfc_sw_name_match - Check if the fcf switch name match. * @sw_name: pointer to switch name. * @new_fcf_record: pointer to fcf record. * * This routine compare the fcf record's switch name with provided * switch name. If the switch name are identical this function * returns 1 else return 0. **/ static uint32_t lpfc_sw_name_match(uint8_t *sw_name, struct fcf_record *new_fcf_record) { if (sw_name[0] != bf_get(lpfc_fcf_record_switch_name_0, new_fcf_record)) return 0; if (sw_name[1] != bf_get(lpfc_fcf_record_switch_name_1, new_fcf_record)) return 0; if (sw_name[2] != bf_get(lpfc_fcf_record_switch_name_2, new_fcf_record)) return 0; if (sw_name[3] != bf_get(lpfc_fcf_record_switch_name_3, new_fcf_record)) return 0; if (sw_name[4] != bf_get(lpfc_fcf_record_switch_name_4, new_fcf_record)) return 0; if (sw_name[5] != bf_get(lpfc_fcf_record_switch_name_5, new_fcf_record)) return 0; if (sw_name[6] != bf_get(lpfc_fcf_record_switch_name_6, new_fcf_record)) return 0; if (sw_name[7] != bf_get(lpfc_fcf_record_switch_name_7, new_fcf_record)) return 0; return 1; } /** * lpfc_mac_addr_match - Check if the fcf mac address match. * @mac_addr: pointer to mac address. * @new_fcf_record: pointer to fcf record. * * This routine compare the fcf record's mac address with HBA's * FCF mac address. If the mac addresses are identical this function * returns 1 else return 0. **/ static uint32_t lpfc_mac_addr_match(uint8_t *mac_addr, struct fcf_record *new_fcf_record) { if (mac_addr[0] != bf_get(lpfc_fcf_record_mac_0, new_fcf_record)) return 0; if (mac_addr[1] != bf_get(lpfc_fcf_record_mac_1, new_fcf_record)) return 0; if (mac_addr[2] != bf_get(lpfc_fcf_record_mac_2, new_fcf_record)) return 0; if (mac_addr[3] != bf_get(lpfc_fcf_record_mac_3, new_fcf_record)) return 0; if (mac_addr[4] != bf_get(lpfc_fcf_record_mac_4, new_fcf_record)) return 0; if (mac_addr[5] != bf_get(lpfc_fcf_record_mac_5, new_fcf_record)) return 0; return 1; } static bool lpfc_vlan_id_match(uint16_t curr_vlan_id, uint16_t new_vlan_id) { return (curr_vlan_id == new_vlan_id); } /** * __lpfc_update_fcf_record_pri - update the lpfc_fcf_pri record. * @phba: pointer to lpfc hba data structure. * @fcf_index: Index for the lpfc_fcf_record. * @new_fcf_record: pointer to hba fcf record. * * This routine updates the driver FCF priority record from the new HBA FCF * record. The hbalock is asserted held in the code path calling this * routine. **/ static void __lpfc_update_fcf_record_pri(struct lpfc_hba *phba, uint16_t fcf_index, struct fcf_record *new_fcf_record ) { struct lpfc_fcf_pri *fcf_pri; fcf_pri = &phba->fcf.fcf_pri[fcf_index]; fcf_pri->fcf_rec.fcf_index = fcf_index; /* FCF record priority */ fcf_pri->fcf_rec.priority = new_fcf_record->fip_priority; } /** * lpfc_copy_fcf_record - Copy fcf information to lpfc_hba. * @fcf_rec: pointer to driver fcf record. * @new_fcf_record: pointer to fcf record. * * This routine copies the FCF information from the FCF * record to lpfc_hba data structure. **/ static void lpfc_copy_fcf_record(struct lpfc_fcf_rec *fcf_rec, struct fcf_record *new_fcf_record) { /* Fabric name */ fcf_rec->fabric_name[0] = bf_get(lpfc_fcf_record_fab_name_0, new_fcf_record); fcf_rec->fabric_name[1] = bf_get(lpfc_fcf_record_fab_name_1, new_fcf_record); fcf_rec->fabric_name[2] = bf_get(lpfc_fcf_record_fab_name_2, new_fcf_record); fcf_rec->fabric_name[3] = bf_get(lpfc_fcf_record_fab_name_3, new_fcf_record); fcf_rec->fabric_name[4] = bf_get(lpfc_fcf_record_fab_name_4, new_fcf_record); fcf_rec->fabric_name[5] = bf_get(lpfc_fcf_record_fab_name_5, new_fcf_record); fcf_rec->fabric_name[6] = bf_get(lpfc_fcf_record_fab_name_6, new_fcf_record); fcf_rec->fabric_name[7] = bf_get(lpfc_fcf_record_fab_name_7, new_fcf_record); /* Mac address */ fcf_rec->mac_addr[0] = bf_get(lpfc_fcf_record_mac_0, new_fcf_record); fcf_rec->mac_addr[1] = bf_get(lpfc_fcf_record_mac_1, new_fcf_record); fcf_rec->mac_addr[2] = bf_get(lpfc_fcf_record_mac_2, new_fcf_record); fcf_rec->mac_addr[3] = bf_get(lpfc_fcf_record_mac_3, new_fcf_record); fcf_rec->mac_addr[4] = bf_get(lpfc_fcf_record_mac_4, new_fcf_record); fcf_rec->mac_addr[5] = bf_get(lpfc_fcf_record_mac_5, new_fcf_record); /* FCF record index */ fcf_rec->fcf_indx = bf_get(lpfc_fcf_record_fcf_index, new_fcf_record); /* FCF record priority */ fcf_rec->priority = new_fcf_record->fip_priority; /* Switch name */ fcf_rec->switch_name[0] = bf_get(lpfc_fcf_record_switch_name_0, new_fcf_record); fcf_rec->switch_name[1] = bf_get(lpfc_fcf_record_switch_name_1, new_fcf_record); fcf_rec->switch_name[2] = bf_get(lpfc_fcf_record_switch_name_2, new_fcf_record); fcf_rec->switch_name[3] = bf_get(lpfc_fcf_record_switch_name_3, new_fcf_record); fcf_rec->switch_name[4] = bf_get(lpfc_fcf_record_switch_name_4, new_fcf_record); fcf_rec->switch_name[5] = bf_get(lpfc_fcf_record_switch_name_5, new_fcf_record); fcf_rec->switch_name[6] = bf_get(lpfc_fcf_record_switch_name_6, new_fcf_record); fcf_rec->switch_name[7] = bf_get(lpfc_fcf_record_switch_name_7, new_fcf_record); } /** * __lpfc_update_fcf_record - Update driver fcf record * @phba: pointer to lpfc hba data structure. * @fcf_rec: pointer to driver fcf record. * @new_fcf_record: pointer to hba fcf record. * @addr_mode: address mode to be set to the driver fcf record. * @vlan_id: vlan tag to be set to the driver fcf record. * @flag: flag bits to be set to the driver fcf record. * * This routine updates the driver FCF record from the new HBA FCF record * together with the address mode, vlan_id, and other informations. This * routine is called with the hbalock held. **/ static void __lpfc_update_fcf_record(struct lpfc_hba *phba, struct lpfc_fcf_rec *fcf_rec, struct fcf_record *new_fcf_record, uint32_t addr_mode, uint16_t vlan_id, uint32_t flag) { lockdep_assert_held(&phba->hbalock); /* Copy the fields from the HBA's FCF record */ lpfc_copy_fcf_record(fcf_rec, new_fcf_record); /* Update other fields of driver FCF record */ fcf_rec->addr_mode = addr_mode; fcf_rec->vlan_id = vlan_id; fcf_rec->flag |= (flag | RECORD_VALID); __lpfc_update_fcf_record_pri(phba, bf_get(lpfc_fcf_record_fcf_index, new_fcf_record), new_fcf_record); } /** * lpfc_register_fcf - Register the FCF with hba. * @phba: pointer to lpfc hba data structure. * * This routine issues a register fcfi mailbox command to register * the fcf with HBA. **/ static void lpfc_register_fcf(struct lpfc_hba *phba) { LPFC_MBOXQ_t *fcf_mbxq; int rc; spin_lock_irq(&phba->hbalock); /* If the FCF is not available do nothing. */ if (!(phba->fcf.fcf_flag & FCF_AVAILABLE)) { phba->hba_flag &= ~(FCF_TS_INPROG | FCF_RR_INPROG); spin_unlock_irq(&phba->hbalock); return; } /* The FCF is already registered, start discovery */ if (phba->fcf.fcf_flag & FCF_REGISTERED) { phba->fcf.fcf_flag |= (FCF_SCAN_DONE | FCF_IN_USE); phba->hba_flag &= ~FCF_TS_INPROG; if (phba->pport->port_state != LPFC_FLOGI && phba->pport->fc_flag & FC_FABRIC) { phba->hba_flag |= FCF_RR_INPROG; spin_unlock_irq(&phba->hbalock); lpfc_initial_flogi(phba->pport); return; } spin_unlock_irq(&phba->hbalock); return; } spin_unlock_irq(&phba->hbalock); fcf_mbxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!fcf_mbxq) { spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~(FCF_TS_INPROG | FCF_RR_INPROG); spin_unlock_irq(&phba->hbalock); return; } lpfc_reg_fcfi(phba, fcf_mbxq); fcf_mbxq->vport = phba->pport; fcf_mbxq->mbox_cmpl = lpfc_mbx_cmpl_reg_fcfi; rc = lpfc_sli_issue_mbox(phba, fcf_mbxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~(FCF_TS_INPROG | FCF_RR_INPROG); spin_unlock_irq(&phba->hbalock); mempool_free(fcf_mbxq, phba->mbox_mem_pool); } return; } /** * lpfc_match_fcf_conn_list - Check if the FCF record can be used for discovery. * @phba: pointer to lpfc hba data structure. * @new_fcf_record: pointer to fcf record. * @boot_flag: Indicates if this record used by boot bios. * @addr_mode: The address mode to be used by this FCF * @vlan_id: The vlan id to be used as vlan tagging by this FCF. * * This routine compare the fcf record with connect list obtained from the * config region to decide if this FCF can be used for SAN discovery. It returns * 1 if this record can be used for SAN discovery else return zero. If this FCF * record can be used for SAN discovery, the boot_flag will indicate if this FCF * is used by boot bios and addr_mode will indicate the addressing mode to be * used for this FCF when the function returns. * If the FCF record need to be used with a particular vlan id, the vlan is * set in the vlan_id on return of the function. If not VLAN tagging need to * be used with the FCF vlan_id will be set to LPFC_FCOE_NULL_VID; **/ static int lpfc_match_fcf_conn_list(struct lpfc_hba *phba, struct fcf_record *new_fcf_record, uint32_t *boot_flag, uint32_t *addr_mode, uint16_t *vlan_id) { struct lpfc_fcf_conn_entry *conn_entry; int i, j, fcf_vlan_id = 0; /* Find the lowest VLAN id in the FCF record */ for (i = 0; i < 512; i++) { if (new_fcf_record->vlan_bitmap[i]) { fcf_vlan_id = i * 8; j = 0; while (!((new_fcf_record->vlan_bitmap[i] >> j) & 1)) { j++; fcf_vlan_id++; } break; } } /* FCF not valid/available or solicitation in progress */ if (!bf_get(lpfc_fcf_record_fcf_avail, new_fcf_record) || !bf_get(lpfc_fcf_record_fcf_valid, new_fcf_record) || bf_get(lpfc_fcf_record_fcf_sol, new_fcf_record)) return 0; if (!(phba->hba_flag & HBA_FIP_SUPPORT)) { *boot_flag = 0; *addr_mode = bf_get(lpfc_fcf_record_mac_addr_prov, new_fcf_record); if (phba->valid_vlan) *vlan_id = phba->vlan_id; else *vlan_id = LPFC_FCOE_NULL_VID; return 1; } /* * If there are no FCF connection table entry, driver connect to all * FCFs. */ if (list_empty(&phba->fcf_conn_rec_list)) { *boot_flag = 0; *addr_mode = bf_get(lpfc_fcf_record_mac_addr_prov, new_fcf_record); /* * When there are no FCF connect entries, use driver's default * addressing mode - FPMA. */ if (*addr_mode & LPFC_FCF_FPMA) *addr_mode = LPFC_FCF_FPMA; /* If FCF record report a vlan id use that vlan id */ if (fcf_vlan_id) *vlan_id = fcf_vlan_id; else *vlan_id = LPFC_FCOE_NULL_VID; return 1; } list_for_each_entry(conn_entry, &phba->fcf_conn_rec_list, list) { if (!(conn_entry->conn_rec.flags & FCFCNCT_VALID)) continue; if ((conn_entry->conn_rec.flags & FCFCNCT_FBNM_VALID) && !lpfc_fab_name_match(conn_entry->conn_rec.fabric_name, new_fcf_record)) continue; if ((conn_entry->conn_rec.flags & FCFCNCT_SWNM_VALID) && !lpfc_sw_name_match(conn_entry->conn_rec.switch_name, new_fcf_record)) continue; if (conn_entry->conn_rec.flags & FCFCNCT_VLAN_VALID) { /* * If the vlan bit map does not have the bit set for the * vlan id to be used, then it is not a match. */ if (!(new_fcf_record->vlan_bitmap [conn_entry->conn_rec.vlan_tag / 8] & (1 << (conn_entry->conn_rec.vlan_tag % 8)))) continue; } /* * If connection record does not support any addressing mode, * skip the FCF record. */ if (!(bf_get(lpfc_fcf_record_mac_addr_prov, new_fcf_record) & (LPFC_FCF_FPMA | LPFC_FCF_SPMA))) continue; /* * Check if the connection record specifies a required * addressing mode. */ if ((conn_entry->conn_rec.flags & FCFCNCT_AM_VALID) && !(conn_entry->conn_rec.flags & FCFCNCT_AM_PREFERRED)) { /* * If SPMA required but FCF not support this continue. */ if ((conn_entry->conn_rec.flags & FCFCNCT_AM_SPMA) && !(bf_get(lpfc_fcf_record_mac_addr_prov, new_fcf_record) & LPFC_FCF_SPMA)) continue; /* * If FPMA required but FCF not support this continue. */ if (!(conn_entry->conn_rec.flags & FCFCNCT_AM_SPMA) && !(bf_get(lpfc_fcf_record_mac_addr_prov, new_fcf_record) & LPFC_FCF_FPMA)) continue; } /* * This fcf record matches filtering criteria. */ if (conn_entry->conn_rec.flags & FCFCNCT_BOOT) *boot_flag = 1; else *boot_flag = 0; /* * If user did not specify any addressing mode, or if the * preferred addressing mode specified by user is not supported * by FCF, allow fabric to pick the addressing mode. */ *addr_mode = bf_get(lpfc_fcf_record_mac_addr_prov, new_fcf_record); /* * If the user specified a required address mode, assign that * address mode */ if ((conn_entry->conn_rec.flags & FCFCNCT_AM_VALID) && (!(conn_entry->conn_rec.flags & FCFCNCT_AM_PREFERRED))) *addr_mode = (conn_entry->conn_rec.flags & FCFCNCT_AM_SPMA) ? LPFC_FCF_SPMA : LPFC_FCF_FPMA; /* * If the user specified a preferred address mode, use the * addr mode only if FCF support the addr_mode. */ else if ((conn_entry->conn_rec.flags & FCFCNCT_AM_VALID) && (conn_entry->conn_rec.flags & FCFCNCT_AM_PREFERRED) && (conn_entry->conn_rec.flags & FCFCNCT_AM_SPMA) && (*addr_mode & LPFC_FCF_SPMA)) *addr_mode = LPFC_FCF_SPMA; else if ((conn_entry->conn_rec.flags & FCFCNCT_AM_VALID) && (conn_entry->conn_rec.flags & FCFCNCT_AM_PREFERRED) && !(conn_entry->conn_rec.flags & FCFCNCT_AM_SPMA) && (*addr_mode & LPFC_FCF_FPMA)) *addr_mode = LPFC_FCF_FPMA; /* If matching connect list has a vlan id, use it */ if (conn_entry->conn_rec.flags & FCFCNCT_VLAN_VALID) *vlan_id = conn_entry->conn_rec.vlan_tag; /* * If no vlan id is specified in connect list, use the vlan id * in the FCF record */ else if (fcf_vlan_id) *vlan_id = fcf_vlan_id; else *vlan_id = LPFC_FCOE_NULL_VID; return 1; } return 0; } /** * lpfc_check_pending_fcoe_event - Check if there is pending fcoe event. * @phba: pointer to lpfc hba data structure. * @unreg_fcf: Unregister FCF if FCF table need to be re-scaned. * * This function check if there is any fcoe event pending while driver * scan FCF entries. If there is any pending event, it will restart the * FCF saning and return 1 else return 0. */ int lpfc_check_pending_fcoe_event(struct lpfc_hba *phba, uint8_t unreg_fcf) { /* * If the Link is up and no FCoE events while in the * FCF discovery, no need to restart FCF discovery. */ if ((phba->link_state >= LPFC_LINK_UP) && (phba->fcoe_eventtag == phba->fcoe_eventtag_at_fcf_scan)) return 0; lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2768 Pending link or FCF event during current " "handling of the previous event: link_state:x%x, " "evt_tag_at_scan:x%x, evt_tag_current:x%x\n", phba->link_state, phba->fcoe_eventtag_at_fcf_scan, phba->fcoe_eventtag); spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_AVAILABLE; spin_unlock_irq(&phba->hbalock); if (phba->link_state >= LPFC_LINK_UP) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2780 Restart FCF table scan due to " "pending FCF event:evt_tag_at_scan:x%x, " "evt_tag_current:x%x\n", phba->fcoe_eventtag_at_fcf_scan, phba->fcoe_eventtag); lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); } else { /* * Do not continue FCF discovery and clear FCF_TS_INPROG * flag */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2833 Stop FCF discovery process due to link " "state change (x%x)\n", phba->link_state); spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~(FCF_TS_INPROG | FCF_RR_INPROG); phba->fcf.fcf_flag &= ~(FCF_REDISC_FOV | FCF_DISCOVERY); spin_unlock_irq(&phba->hbalock); } /* Unregister the currently registered FCF if required */ if (unreg_fcf) { spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_REGISTERED; spin_unlock_irq(&phba->hbalock); lpfc_sli4_unregister_fcf(phba); } return 1; } /** * lpfc_sli4_new_fcf_random_select - Randomly select an eligible new fcf record * @phba: pointer to lpfc hba data structure. * @fcf_cnt: number of eligible fcf record seen so far. * * This function makes an running random selection decision on FCF record to * use through a sequence of @fcf_cnt eligible FCF records with equal * probability. To perform integer manunipulation of random numbers with * size unit32_t, the lower 16 bits of the 32-bit random number returned * from prandom_u32() are taken as the random random number generated. * * Returns true when outcome is for the newly read FCF record should be * chosen; otherwise, return false when outcome is for keeping the previously * chosen FCF record. **/ static bool lpfc_sli4_new_fcf_random_select(struct lpfc_hba *phba, uint32_t fcf_cnt) { uint32_t rand_num; /* Get 16-bit uniform random number */ rand_num = 0xFFFF & prandom_u32(); /* Decision with probability 1/fcf_cnt */ if ((fcf_cnt * rand_num) < 0xFFFF) return true; else return false; } /** * lpfc_sli4_fcf_rec_mbox_parse - Parse read_fcf mbox command. * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to mailbox object. * @next_fcf_index: pointer to holder of next fcf index. * * This routine parses the non-embedded fcf mailbox command by performing the * necessarily error checking, non-embedded read FCF record mailbox command * SGE parsing, and endianness swapping. * * Returns the pointer to the new FCF record in the non-embedded mailbox * command DMA memory if successfully, other NULL. */ static struct fcf_record * lpfc_sli4_fcf_rec_mbox_parse(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, uint16_t *next_fcf_index) { void *virt_addr; struct lpfc_mbx_sge sge; struct lpfc_mbx_read_fcf_tbl *read_fcf; uint32_t shdr_status, shdr_add_status, if_type; union lpfc_sli4_cfg_shdr *shdr; struct fcf_record *new_fcf_record; /* Get the first SGE entry from the non-embedded DMA memory. This * routine only uses a single SGE. */ lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); if (unlikely(!mboxq->sge_array)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2524 Failed to get the non-embedded SGE " "virtual address\n"); return NULL; } virt_addr = mboxq->sge_array->addr[0]; shdr = (union lpfc_sli4_cfg_shdr *)virt_addr; lpfc_sli_pcimem_bcopy(shdr, shdr, sizeof(union lpfc_sli4_cfg_shdr)); shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status) { if (shdr_status == STATUS_FCF_TABLE_EMPTY || if_type == LPFC_SLI_INTF_IF_TYPE_2) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2726 READ_FCF_RECORD Indicates empty " "FCF table.\n"); else lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2521 READ_FCF_RECORD mailbox failed " "with status x%x add_status x%x, " "mbx\n", shdr_status, shdr_add_status); return NULL; } /* Interpreting the returned information of the FCF record */ read_fcf = (struct lpfc_mbx_read_fcf_tbl *)virt_addr; lpfc_sli_pcimem_bcopy(read_fcf, read_fcf, sizeof(struct lpfc_mbx_read_fcf_tbl)); *next_fcf_index = bf_get(lpfc_mbx_read_fcf_tbl_nxt_vindx, read_fcf); new_fcf_record = (struct fcf_record *)(virt_addr + sizeof(struct lpfc_mbx_read_fcf_tbl)); lpfc_sli_pcimem_bcopy(new_fcf_record, new_fcf_record, offsetof(struct fcf_record, vlan_bitmap)); new_fcf_record->word137 = le32_to_cpu(new_fcf_record->word137); new_fcf_record->word138 = le32_to_cpu(new_fcf_record->word138); return new_fcf_record; } /** * lpfc_sli4_log_fcf_record_info - Log the information of a fcf record * @phba: pointer to lpfc hba data structure. * @fcf_record: pointer to the fcf record. * @vlan_id: the lowest vlan identifier associated to this fcf record. * @next_fcf_index: the index to the next fcf record in hba's fcf table. * * This routine logs the detailed FCF record if the LOG_FIP loggin is * enabled. **/ static void lpfc_sli4_log_fcf_record_info(struct lpfc_hba *phba, struct fcf_record *fcf_record, uint16_t vlan_id, uint16_t next_fcf_index) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2764 READ_FCF_RECORD:\n" "\tFCF_Index : x%x\n" "\tFCF_Avail : x%x\n" "\tFCF_Valid : x%x\n" "\tFCF_SOL : x%x\n" "\tFIP_Priority : x%x\n" "\tMAC_Provider : x%x\n" "\tLowest VLANID : x%x\n" "\tFCF_MAC Addr : x%x:%x:%x:%x:%x:%x\n" "\tFabric_Name : x%x:%x:%x:%x:%x:%x:%x:%x\n" "\tSwitch_Name : x%x:%x:%x:%x:%x:%x:%x:%x\n" "\tNext_FCF_Index: x%x\n", bf_get(lpfc_fcf_record_fcf_index, fcf_record), bf_get(lpfc_fcf_record_fcf_avail, fcf_record), bf_get(lpfc_fcf_record_fcf_valid, fcf_record), bf_get(lpfc_fcf_record_fcf_sol, fcf_record), fcf_record->fip_priority, bf_get(lpfc_fcf_record_mac_addr_prov, fcf_record), vlan_id, bf_get(lpfc_fcf_record_mac_0, fcf_record), bf_get(lpfc_fcf_record_mac_1, fcf_record), bf_get(lpfc_fcf_record_mac_2, fcf_record), bf_get(lpfc_fcf_record_mac_3, fcf_record), bf_get(lpfc_fcf_record_mac_4, fcf_record), bf_get(lpfc_fcf_record_mac_5, fcf_record), bf_get(lpfc_fcf_record_fab_name_0, fcf_record), bf_get(lpfc_fcf_record_fab_name_1, fcf_record), bf_get(lpfc_fcf_record_fab_name_2, fcf_record), bf_get(lpfc_fcf_record_fab_name_3, fcf_record), bf_get(lpfc_fcf_record_fab_name_4, fcf_record), bf_get(lpfc_fcf_record_fab_name_5, fcf_record), bf_get(lpfc_fcf_record_fab_name_6, fcf_record), bf_get(lpfc_fcf_record_fab_name_7, fcf_record), bf_get(lpfc_fcf_record_switch_name_0, fcf_record), bf_get(lpfc_fcf_record_switch_name_1, fcf_record), bf_get(lpfc_fcf_record_switch_name_2, fcf_record), bf_get(lpfc_fcf_record_switch_name_3, fcf_record), bf_get(lpfc_fcf_record_switch_name_4, fcf_record), bf_get(lpfc_fcf_record_switch_name_5, fcf_record), bf_get(lpfc_fcf_record_switch_name_6, fcf_record), bf_get(lpfc_fcf_record_switch_name_7, fcf_record), next_fcf_index); } /** * lpfc_sli4_fcf_record_match - testing new FCF record for matching existing FCF * @phba: pointer to lpfc hba data structure. * @fcf_rec: pointer to an existing FCF record. * @new_fcf_record: pointer to a new FCF record. * @new_vlan_id: vlan id from the new FCF record. * * This function performs matching test of a new FCF record against an existing * FCF record. If the new_vlan_id passed in is LPFC_FCOE_IGNORE_VID, vlan id * will not be used as part of the FCF record matching criteria. * * Returns true if all the fields matching, otherwise returns false. */ static bool lpfc_sli4_fcf_record_match(struct lpfc_hba *phba, struct lpfc_fcf_rec *fcf_rec, struct fcf_record *new_fcf_record, uint16_t new_vlan_id) { if (new_vlan_id != LPFC_FCOE_IGNORE_VID) if (!lpfc_vlan_id_match(fcf_rec->vlan_id, new_vlan_id)) return false; if (!lpfc_mac_addr_match(fcf_rec->mac_addr, new_fcf_record)) return false; if (!lpfc_sw_name_match(fcf_rec->switch_name, new_fcf_record)) return false; if (!lpfc_fab_name_match(fcf_rec->fabric_name, new_fcf_record)) return false; if (fcf_rec->priority != new_fcf_record->fip_priority) return false; return true; } /** * lpfc_sli4_fcf_rr_next_proc - processing next roundrobin fcf * @vport: Pointer to vport object. * @fcf_index: index to next fcf. * * This function processing the roundrobin fcf failover to next fcf index. * When this function is invoked, there will be a current fcf registered * for flogi. * Return: 0 for continue retrying flogi on currently registered fcf; * 1 for stop flogi on currently registered fcf; */ int lpfc_sli4_fcf_rr_next_proc(struct lpfc_vport *vport, uint16_t fcf_index) { struct lpfc_hba *phba = vport->phba; int rc; if (fcf_index == LPFC_FCOE_FCF_NEXT_NONE) { spin_lock_irq(&phba->hbalock); if (phba->hba_flag & HBA_DEVLOSS_TMO) { spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2872 Devloss tmo with no eligible " "FCF, unregister in-use FCF (x%x) " "and rescan FCF table\n", phba->fcf.current_rec.fcf_indx); lpfc_unregister_fcf_rescan(phba); goto stop_flogi_current_fcf; } /* Mark the end to FLOGI roundrobin failover */ phba->hba_flag &= ~FCF_RR_INPROG; /* Allow action to new fcf asynchronous event */ phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2865 No FCF available, stop roundrobin FCF " "failover and change port state:x%x/x%x\n", phba->pport->port_state, LPFC_VPORT_UNKNOWN); phba->pport->port_state = LPFC_VPORT_UNKNOWN; if (!phba->fcf.fcf_redisc_attempted) { lpfc_unregister_fcf(phba); rc = lpfc_sli4_redisc_fcf_table(phba); if (!rc) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "3195 Rediscover FCF table\n"); phba->fcf.fcf_redisc_attempted = 1; lpfc_sli4_clear_fcf_rr_bmask(phba); } else { lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "3196 Rediscover FCF table " "failed. Status:x%x\n", rc); } } else { lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "3197 Already rediscover FCF table " "attempted. No more retry\n"); } goto stop_flogi_current_fcf; } else { lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_ELS, "2794 Try FLOGI roundrobin FCF failover to " "(x%x)\n", fcf_index); rc = lpfc_sli4_fcf_rr_read_fcf_rec(phba, fcf_index); if (rc) lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | LOG_ELS, "2761 FLOGI roundrobin FCF failover " "failed (rc:x%x) to read FCF (x%x)\n", rc, phba->fcf.current_rec.fcf_indx); else goto stop_flogi_current_fcf; } return 0; stop_flogi_current_fcf: lpfc_can_disctmo(vport); return 1; } /** * lpfc_sli4_fcf_pri_list_del * @phba: pointer to lpfc hba data structure. * @fcf_index: the index of the fcf record to delete * This routine checks the on list flag of the fcf_index to be deleted. * If it is one the list then it is removed from the list, and the flag * is cleared. This routine grab the hbalock before removing the fcf * record from the list. **/ static void lpfc_sli4_fcf_pri_list_del(struct lpfc_hba *phba, uint16_t fcf_index) { struct lpfc_fcf_pri *new_fcf_pri; new_fcf_pri = &phba->fcf.fcf_pri[fcf_index]; lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "3058 deleting idx x%x pri x%x flg x%x\n", fcf_index, new_fcf_pri->fcf_rec.priority, new_fcf_pri->fcf_rec.flag); spin_lock_irq(&phba->hbalock); if (new_fcf_pri->fcf_rec.flag & LPFC_FCF_ON_PRI_LIST) { if (phba->fcf.current_rec.priority == new_fcf_pri->fcf_rec.priority) phba->fcf.eligible_fcf_cnt--; list_del_init(&new_fcf_pri->list); new_fcf_pri->fcf_rec.flag &= ~LPFC_FCF_ON_PRI_LIST; } spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli4_set_fcf_flogi_fail * @phba: pointer to lpfc hba data structure. * @fcf_index: the index of the fcf record to update * This routine acquires the hbalock and then set the LPFC_FCF_FLOGI_FAILED * flag so the the round robin slection for the particular priority level * will try a different fcf record that does not have this bit set. * If the fcf record is re-read for any reason this flag is cleared brfore * adding it to the priority list. **/ void lpfc_sli4_set_fcf_flogi_fail(struct lpfc_hba *phba, uint16_t fcf_index) { struct lpfc_fcf_pri *new_fcf_pri; new_fcf_pri = &phba->fcf.fcf_pri[fcf_index]; spin_lock_irq(&phba->hbalock); new_fcf_pri->fcf_rec.flag |= LPFC_FCF_FLOGI_FAILED; spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli4_fcf_pri_list_add * @phba: pointer to lpfc hba data structure. * @fcf_index: the index of the fcf record to add * @new_fcf_record: pointer to a new FCF record. * This routine checks the priority of the fcf_index to be added. * If it is a lower priority than the current head of the fcf_pri list * then it is added to the list in the right order. * If it is the same priority as the current head of the list then it * is added to the head of the list and its bit in the rr_bmask is set. * If the fcf_index to be added is of a higher priority than the current * head of the list then the rr_bmask is cleared, its bit is set in the * rr_bmask and it is added to the head of the list. * returns: * 0=success 1=failure **/ static int lpfc_sli4_fcf_pri_list_add(struct lpfc_hba *phba, uint16_t fcf_index, struct fcf_record *new_fcf_record) { uint16_t current_fcf_pri; uint16_t last_index; struct lpfc_fcf_pri *fcf_pri; struct lpfc_fcf_pri *next_fcf_pri; struct lpfc_fcf_pri *new_fcf_pri; int ret; new_fcf_pri = &phba->fcf.fcf_pri[fcf_index]; lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "3059 adding idx x%x pri x%x flg x%x\n", fcf_index, new_fcf_record->fip_priority, new_fcf_pri->fcf_rec.flag); spin_lock_irq(&phba->hbalock); if (new_fcf_pri->fcf_rec.flag & LPFC_FCF_ON_PRI_LIST) list_del_init(&new_fcf_pri->list); new_fcf_pri->fcf_rec.fcf_index = fcf_index; new_fcf_pri->fcf_rec.priority = new_fcf_record->fip_priority; if (list_empty(&phba->fcf.fcf_pri_list)) { list_add(&new_fcf_pri->list, &phba->fcf.fcf_pri_list); ret = lpfc_sli4_fcf_rr_index_set(phba, new_fcf_pri->fcf_rec.fcf_index); goto out; } last_index = find_first_bit(phba->fcf.fcf_rr_bmask, LPFC_SLI4_FCF_TBL_INDX_MAX); if (last_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { ret = 0; /* Empty rr list */ goto out; } current_fcf_pri = phba->fcf.fcf_pri[last_index].fcf_rec.priority; if (new_fcf_pri->fcf_rec.priority <= current_fcf_pri) { list_add(&new_fcf_pri->list, &phba->fcf.fcf_pri_list); if (new_fcf_pri->fcf_rec.priority < current_fcf_pri) { memset(phba->fcf.fcf_rr_bmask, 0, sizeof(*phba->fcf.fcf_rr_bmask)); /* fcfs_at_this_priority_level = 1; */ phba->fcf.eligible_fcf_cnt = 1; } else /* fcfs_at_this_priority_level++; */ phba->fcf.eligible_fcf_cnt++; ret = lpfc_sli4_fcf_rr_index_set(phba, new_fcf_pri->fcf_rec.fcf_index); goto out; } list_for_each_entry_safe(fcf_pri, next_fcf_pri, &phba->fcf.fcf_pri_list, list) { if (new_fcf_pri->fcf_rec.priority <= fcf_pri->fcf_rec.priority) { if (fcf_pri->list.prev == &phba->fcf.fcf_pri_list) list_add(&new_fcf_pri->list, &phba->fcf.fcf_pri_list); else list_add(&new_fcf_pri->list, &((struct lpfc_fcf_pri *) fcf_pri->list.prev)->list); ret = 0; goto out; } else if (fcf_pri->list.next == &phba->fcf.fcf_pri_list || new_fcf_pri->fcf_rec.priority < next_fcf_pri->fcf_rec.priority) { list_add(&new_fcf_pri->list, &fcf_pri->list); ret = 0; goto out; } if (new_fcf_pri->fcf_rec.priority > fcf_pri->fcf_rec.priority) continue; } ret = 1; out: /* we use = instead of |= to clear the FLOGI_FAILED flag. */ new_fcf_pri->fcf_rec.flag = LPFC_FCF_ON_PRI_LIST; spin_unlock_irq(&phba->hbalock); return ret; } /** * lpfc_mbx_cmpl_fcf_scan_read_fcf_rec - fcf scan read_fcf mbox cmpl handler. * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to mailbox object. * * This function iterates through all the fcf records available in * HBA and chooses the optimal FCF record for discovery. After finding * the FCF for discovery it registers the FCF record and kicks start * discovery. * If FCF_IN_USE flag is set in currently used FCF, the routine tries to * use an FCF record which matches fabric name and mac address of the * currently used FCF record. * If the driver supports only one FCF, it will try to use the FCF record * used by BOOT_BIOS. */ void lpfc_mbx_cmpl_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct fcf_record *new_fcf_record; uint32_t boot_flag, addr_mode; uint16_t fcf_index, next_fcf_index; struct lpfc_fcf_rec *fcf_rec = NULL; uint16_t vlan_id = LPFC_FCOE_NULL_VID; bool select_new_fcf; int rc; /* If there is pending FCoE event restart FCF table scan */ if (lpfc_check_pending_fcoe_event(phba, LPFC_SKIP_UNREG_FCF)) { lpfc_sli4_mbox_cmd_free(phba, mboxq); return; } /* Parse the FCF record from the non-embedded mailbox command */ new_fcf_record = lpfc_sli4_fcf_rec_mbox_parse(phba, mboxq, &next_fcf_index); if (!new_fcf_record) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2765 Mailbox command READ_FCF_RECORD " "failed to retrieve a FCF record.\n"); /* Let next new FCF event trigger fast failover */ spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~FCF_TS_INPROG; spin_unlock_irq(&phba->hbalock); lpfc_sli4_mbox_cmd_free(phba, mboxq); return; } /* Check the FCF record against the connection list */ rc = lpfc_match_fcf_conn_list(phba, new_fcf_record, &boot_flag, &addr_mode, &vlan_id); /* Log the FCF record information if turned on */ lpfc_sli4_log_fcf_record_info(phba, new_fcf_record, vlan_id, next_fcf_index); /* * If the fcf record does not match with connect list entries * read the next entry; otherwise, this is an eligible FCF * record for roundrobin FCF failover. */ if (!rc) { lpfc_sli4_fcf_pri_list_del(phba, bf_get(lpfc_fcf_record_fcf_index, new_fcf_record)); lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "2781 FCF (x%x) failed connection " "list check: (x%x/x%x/%x)\n", bf_get(lpfc_fcf_record_fcf_index, new_fcf_record), bf_get(lpfc_fcf_record_fcf_avail, new_fcf_record), bf_get(lpfc_fcf_record_fcf_valid, new_fcf_record), bf_get(lpfc_fcf_record_fcf_sol, new_fcf_record)); if ((phba->fcf.fcf_flag & FCF_IN_USE) && lpfc_sli4_fcf_record_match(phba, &phba->fcf.current_rec, new_fcf_record, LPFC_FCOE_IGNORE_VID)) { if (bf_get(lpfc_fcf_record_fcf_index, new_fcf_record) != phba->fcf.current_rec.fcf_indx) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2862 FCF (x%x) matches property " "of in-use FCF (x%x)\n", bf_get(lpfc_fcf_record_fcf_index, new_fcf_record), phba->fcf.current_rec.fcf_indx); goto read_next_fcf; } /* * In case the current in-use FCF record becomes * invalid/unavailable during FCF discovery that * was not triggered by fast FCF failover process, * treat it as fast FCF failover. */ if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND) && !(phba->fcf.fcf_flag & FCF_REDISC_FOV)) { lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "2835 Invalid in-use FCF " "(x%x), enter FCF failover " "table scan.\n", phba->fcf.current_rec.fcf_indx); spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag |= FCF_REDISC_FOV; spin_unlock_irq(&phba->hbalock); lpfc_sli4_mbox_cmd_free(phba, mboxq); lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); return; } } goto read_next_fcf; } else { fcf_index = bf_get(lpfc_fcf_record_fcf_index, new_fcf_record); rc = lpfc_sli4_fcf_pri_list_add(phba, fcf_index, new_fcf_record); if (rc) goto read_next_fcf; } /* * If this is not the first FCF discovery of the HBA, use last * FCF record for the discovery. The condition that a rescan * matches the in-use FCF record: fabric name, switch name, mac * address, and vlan_id. */ spin_lock_irq(&phba->hbalock); if (phba->fcf.fcf_flag & FCF_IN_USE) { if (phba->cfg_fcf_failover_policy == LPFC_FCF_FOV && lpfc_sli4_fcf_record_match(phba, &phba->fcf.current_rec, new_fcf_record, vlan_id)) { if (bf_get(lpfc_fcf_record_fcf_index, new_fcf_record) == phba->fcf.current_rec.fcf_indx) { phba->fcf.fcf_flag |= FCF_AVAILABLE; if (phba->fcf.fcf_flag & FCF_REDISC_PEND) /* Stop FCF redisc wait timer */ __lpfc_sli4_stop_fcf_redisc_wait_timer( phba); else if (phba->fcf.fcf_flag & FCF_REDISC_FOV) /* Fast failover, mark completed */ phba->fcf.fcf_flag &= ~FCF_REDISC_FOV; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2836 New FCF matches in-use " "FCF (x%x), port_state:x%x, " "fc_flag:x%x\n", phba->fcf.current_rec.fcf_indx, phba->pport->port_state, phba->pport->fc_flag); goto out; } else lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2863 New FCF (x%x) matches " "property of in-use FCF (x%x)\n", bf_get(lpfc_fcf_record_fcf_index, new_fcf_record), phba->fcf.current_rec.fcf_indx); } /* * Read next FCF record from HBA searching for the matching * with in-use record only if not during the fast failover * period. In case of fast failover period, it shall try to * determine whether the FCF record just read should be the * next candidate. */ if (!(phba->fcf.fcf_flag & FCF_REDISC_FOV)) { spin_unlock_irq(&phba->hbalock); goto read_next_fcf; } } /* * Update on failover FCF record only if it's in FCF fast-failover * period; otherwise, update on current FCF record. */ if (phba->fcf.fcf_flag & FCF_REDISC_FOV) fcf_rec = &phba->fcf.failover_rec; else fcf_rec = &phba->fcf.current_rec; if (phba->fcf.fcf_flag & FCF_AVAILABLE) { /* * If the driver FCF record does not have boot flag * set and new hba fcf record has boot flag set, use * the new hba fcf record. */ if (boot_flag && !(fcf_rec->flag & BOOT_ENABLE)) { /* Choose this FCF record */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2837 Update current FCF record " "(x%x) with new FCF record (x%x)\n", fcf_rec->fcf_indx, bf_get(lpfc_fcf_record_fcf_index, new_fcf_record)); __lpfc_update_fcf_record(phba, fcf_rec, new_fcf_record, addr_mode, vlan_id, BOOT_ENABLE); spin_unlock_irq(&phba->hbalock); goto read_next_fcf; } /* * If the driver FCF record has boot flag set and the * new hba FCF record does not have boot flag, read * the next FCF record. */ if (!boot_flag && (fcf_rec->flag & BOOT_ENABLE)) { spin_unlock_irq(&phba->hbalock); goto read_next_fcf; } /* * If the new hba FCF record has lower priority value * than the driver FCF record, use the new record. */ if (new_fcf_record->fip_priority < fcf_rec->priority) { /* Choose the new FCF record with lower priority */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2838 Update current FCF record " "(x%x) with new FCF record (x%x)\n", fcf_rec->fcf_indx, bf_get(lpfc_fcf_record_fcf_index, new_fcf_record)); __lpfc_update_fcf_record(phba, fcf_rec, new_fcf_record, addr_mode, vlan_id, 0); /* Reset running random FCF selection count */ phba->fcf.eligible_fcf_cnt = 1; } else if (new_fcf_record->fip_priority == fcf_rec->priority) { /* Update running random FCF selection count */ phba->fcf.eligible_fcf_cnt++; select_new_fcf = lpfc_sli4_new_fcf_random_select(phba, phba->fcf.eligible_fcf_cnt); if (select_new_fcf) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2839 Update current FCF record " "(x%x) with new FCF record (x%x)\n", fcf_rec->fcf_indx, bf_get(lpfc_fcf_record_fcf_index, new_fcf_record)); /* Choose the new FCF by random selection */ __lpfc_update_fcf_record(phba, fcf_rec, new_fcf_record, addr_mode, vlan_id, 0); } } spin_unlock_irq(&phba->hbalock); goto read_next_fcf; } /* * This is the first suitable FCF record, choose this record for * initial best-fit FCF. */ if (fcf_rec) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2840 Update initial FCF candidate " "with FCF (x%x)\n", bf_get(lpfc_fcf_record_fcf_index, new_fcf_record)); __lpfc_update_fcf_record(phba, fcf_rec, new_fcf_record, addr_mode, vlan_id, (boot_flag ? BOOT_ENABLE : 0)); phba->fcf.fcf_flag |= FCF_AVAILABLE; /* Setup initial running random FCF selection count */ phba->fcf.eligible_fcf_cnt = 1; } spin_unlock_irq(&phba->hbalock); goto read_next_fcf; read_next_fcf: lpfc_sli4_mbox_cmd_free(phba, mboxq); if (next_fcf_index == LPFC_FCOE_FCF_NEXT_NONE || next_fcf_index == 0) { if (phba->fcf.fcf_flag & FCF_REDISC_FOV) { /* * Case of FCF fast failover scan */ /* * It has not found any suitable FCF record, cancel * FCF scan inprogress, and do nothing */ if (!(phba->fcf.failover_rec.flag & RECORD_VALID)) { lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "2782 No suitable FCF found: " "(x%x/x%x)\n", phba->fcoe_eventtag_at_fcf_scan, bf_get(lpfc_fcf_record_fcf_index, new_fcf_record)); spin_lock_irq(&phba->hbalock); if (phba->hba_flag & HBA_DEVLOSS_TMO) { phba->hba_flag &= ~FCF_TS_INPROG; spin_unlock_irq(&phba->hbalock); /* Unregister in-use FCF and rescan */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2864 On devloss tmo " "unreg in-use FCF and " "rescan FCF table\n"); lpfc_unregister_fcf_rescan(phba); return; } /* * Let next new FCF event trigger fast failover */ phba->hba_flag &= ~FCF_TS_INPROG; spin_unlock_irq(&phba->hbalock); return; } /* * It has found a suitable FCF record that is not * the same as in-use FCF record, unregister the * in-use FCF record, replace the in-use FCF record * with the new FCF record, mark FCF fast failover * completed, and then start register the new FCF * record. */ /* Unregister the current in-use FCF record */ lpfc_unregister_fcf(phba); /* Replace in-use record with the new record */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2842 Replace in-use FCF (x%x) " "with failover FCF (x%x)\n", phba->fcf.current_rec.fcf_indx, phba->fcf.failover_rec.fcf_indx); memcpy(&phba->fcf.current_rec, &phba->fcf.failover_rec, sizeof(struct lpfc_fcf_rec)); /* * Mark the fast FCF failover rediscovery completed * and the start of the first round of the roundrobin * FCF failover. */ spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_REDISC_FOV; spin_unlock_irq(&phba->hbalock); /* Register to the new FCF record */ lpfc_register_fcf(phba); } else { /* * In case of transaction period to fast FCF failover, * do nothing when search to the end of the FCF table. */ if ((phba->fcf.fcf_flag & FCF_REDISC_EVT) || (phba->fcf.fcf_flag & FCF_REDISC_PEND)) return; if (phba->cfg_fcf_failover_policy == LPFC_FCF_FOV && phba->fcf.fcf_flag & FCF_IN_USE) { /* * In case the current in-use FCF record no * longer existed during FCF discovery that * was not triggered by fast FCF failover * process, treat it as fast FCF failover. */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2841 In-use FCF record (x%x) " "not reported, entering fast " "FCF failover mode scanning.\n", phba->fcf.current_rec.fcf_indx); spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag |= FCF_REDISC_FOV; spin_unlock_irq(&phba->hbalock); lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); return; } /* Register to the new FCF record */ lpfc_register_fcf(phba); } } else lpfc_sli4_fcf_scan_read_fcf_rec(phba, next_fcf_index); return; out: lpfc_sli4_mbox_cmd_free(phba, mboxq); lpfc_register_fcf(phba); return; } /** * lpfc_mbx_cmpl_fcf_rr_read_fcf_rec - fcf roundrobin read_fcf mbox cmpl hdler * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to mailbox object. * * This is the callback function for FLOGI failure roundrobin FCF failover * read FCF record mailbox command from the eligible FCF record bmask for * performing the failover. If the FCF read back is not valid/available, it * fails through to retrying FLOGI to the currently registered FCF again. * Otherwise, if the FCF read back is valid and available, it will set the * newly read FCF record to the failover FCF record, unregister currently * registered FCF record, copy the failover FCF record to the current * FCF record, and then register the current FCF record before proceeding * to trying FLOGI on the new failover FCF. */ void lpfc_mbx_cmpl_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct fcf_record *new_fcf_record; uint32_t boot_flag, addr_mode; uint16_t next_fcf_index, fcf_index; uint16_t current_fcf_index; uint16_t vlan_id; int rc; /* If link state is not up, stop the roundrobin failover process */ if (phba->link_state < LPFC_LINK_UP) { spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_DISCOVERY; phba->hba_flag &= ~FCF_RR_INPROG; spin_unlock_irq(&phba->hbalock); goto out; } /* Parse the FCF record from the non-embedded mailbox command */ new_fcf_record = lpfc_sli4_fcf_rec_mbox_parse(phba, mboxq, &next_fcf_index); if (!new_fcf_record) { lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "2766 Mailbox command READ_FCF_RECORD " "failed to retrieve a FCF record. " "hba_flg x%x fcf_flg x%x\n", phba->hba_flag, phba->fcf.fcf_flag); lpfc_unregister_fcf_rescan(phba); goto out; } /* Get the needed parameters from FCF record */ rc = lpfc_match_fcf_conn_list(phba, new_fcf_record, &boot_flag, &addr_mode, &vlan_id); /* Log the FCF record information if turned on */ lpfc_sli4_log_fcf_record_info(phba, new_fcf_record, vlan_id, next_fcf_index); fcf_index = bf_get(lpfc_fcf_record_fcf_index, new_fcf_record); if (!rc) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2848 Remove ineligible FCF (x%x) from " "from roundrobin bmask\n", fcf_index); /* Clear roundrobin bmask bit for ineligible FCF */ lpfc_sli4_fcf_rr_index_clear(phba, fcf_index); /* Perform next round of roundrobin FCF failover */ fcf_index = lpfc_sli4_fcf_rr_next_index_get(phba); rc = lpfc_sli4_fcf_rr_next_proc(phba->pport, fcf_index); if (rc) goto out; goto error_out; } if (fcf_index == phba->fcf.current_rec.fcf_indx) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2760 Perform FLOGI roundrobin FCF failover: " "FCF (x%x) back to FCF (x%x)\n", phba->fcf.current_rec.fcf_indx, fcf_index); /* Wait 500 ms before retrying FLOGI to current FCF */ msleep(500); lpfc_issue_init_vfi(phba->pport); goto out; } /* Upload new FCF record to the failover FCF record */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2834 Update current FCF (x%x) with new FCF (x%x)\n", phba->fcf.failover_rec.fcf_indx, fcf_index); spin_lock_irq(&phba->hbalock); __lpfc_update_fcf_record(phba, &phba->fcf.failover_rec, new_fcf_record, addr_mode, vlan_id, (boot_flag ? BOOT_ENABLE : 0)); spin_unlock_irq(&phba->hbalock); current_fcf_index = phba->fcf.current_rec.fcf_indx; /* Unregister the current in-use FCF record */ lpfc_unregister_fcf(phba); /* Replace in-use record with the new record */ memcpy(&phba->fcf.current_rec, &phba->fcf.failover_rec, sizeof(struct lpfc_fcf_rec)); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2783 Perform FLOGI roundrobin FCF failover: FCF " "(x%x) to FCF (x%x)\n", current_fcf_index, fcf_index); error_out: lpfc_register_fcf(phba); out: lpfc_sli4_mbox_cmd_free(phba, mboxq); } /** * lpfc_mbx_cmpl_read_fcf_rec - read fcf completion handler. * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to mailbox object. * * This is the callback function of read FCF record mailbox command for * updating the eligible FCF bmask for FLOGI failure roundrobin FCF * failover when a new FCF event happened. If the FCF read back is * valid/available and it passes the connection list check, it updates * the bmask for the eligible FCF record for roundrobin failover. */ void lpfc_mbx_cmpl_read_fcf_rec(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct fcf_record *new_fcf_record; uint32_t boot_flag, addr_mode; uint16_t fcf_index, next_fcf_index; uint16_t vlan_id; int rc; /* If link state is not up, no need to proceed */ if (phba->link_state < LPFC_LINK_UP) goto out; /* If FCF discovery period is over, no need to proceed */ if (!(phba->fcf.fcf_flag & FCF_DISCOVERY)) goto out; /* Parse the FCF record from the non-embedded mailbox command */ new_fcf_record = lpfc_sli4_fcf_rec_mbox_parse(phba, mboxq, &next_fcf_index); if (!new_fcf_record) { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2767 Mailbox command READ_FCF_RECORD " "failed to retrieve a FCF record.\n"); goto out; } /* Check the connection list for eligibility */ rc = lpfc_match_fcf_conn_list(phba, new_fcf_record, &boot_flag, &addr_mode, &vlan_id); /* Log the FCF record information if turned on */ lpfc_sli4_log_fcf_record_info(phba, new_fcf_record, vlan_id, next_fcf_index); if (!rc) goto out; /* Update the eligible FCF record index bmask */ fcf_index = bf_get(lpfc_fcf_record_fcf_index, new_fcf_record); rc = lpfc_sli4_fcf_pri_list_add(phba, fcf_index, new_fcf_record); out: lpfc_sli4_mbox_cmd_free(phba, mboxq); } /** * lpfc_init_vfi_cmpl - Completion handler for init_vfi mbox command. * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to mailbox data structure. * * This function handles completion of init vfi mailbox command. */ static void lpfc_init_vfi_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct lpfc_vport *vport = mboxq->vport; /* * VFI not supported on interface type 0, just do the flogi * Also continue if the VFI is in use - just use the same one. */ if (mboxq->u.mb.mbxStatus && (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) != LPFC_SLI_INTF_IF_TYPE_0) && mboxq->u.mb.mbxStatus != MBX_VFI_IN_USE) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2891 Init VFI mailbox failed 0x%x\n", mboxq->u.mb.mbxStatus); mempool_free(mboxq, phba->mbox_mem_pool); lpfc_vport_set_state(vport, FC_VPORT_FAILED); return; } lpfc_initial_flogi(vport); mempool_free(mboxq, phba->mbox_mem_pool); return; } /** * lpfc_issue_init_vfi - Issue init_vfi mailbox command. * @vport: pointer to lpfc_vport data structure. * * This function issue a init_vfi mailbox command to initialize the VFI and * VPI for the physical port. */ void lpfc_issue_init_vfi(struct lpfc_vport *vport) { LPFC_MBOXQ_t *mboxq; int rc; struct lpfc_hba *phba = vport->phba; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2892 Failed to allocate " "init_vfi mailbox\n"); return; } lpfc_init_vfi(mboxq, vport); mboxq->mbox_cmpl = lpfc_init_vfi_cmpl; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2893 Failed to issue init_vfi mailbox\n"); mempool_free(mboxq, vport->phba->mbox_mem_pool); } } /** * lpfc_init_vpi_cmpl - Completion handler for init_vpi mbox command. * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to mailbox data structure. * * This function handles completion of init vpi mailbox command. */ void lpfc_init_vpi_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct lpfc_vport *vport = mboxq->vport; struct lpfc_nodelist *ndlp; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); if (mboxq->u.mb.mbxStatus) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2609 Init VPI mailbox failed 0x%x\n", mboxq->u.mb.mbxStatus); mempool_free(mboxq, phba->mbox_mem_pool); lpfc_vport_set_state(vport, FC_VPORT_FAILED); return; } spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_VPORT_NEEDS_INIT_VPI; spin_unlock_irq(shost->host_lock); /* If this port is physical port or FDISC is done, do reg_vpi */ if ((phba->pport == vport) || (vport->port_state == LPFC_FDISC)) { ndlp = lpfc_findnode_did(vport, Fabric_DID); if (!ndlp) lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2731 Cannot find fabric " "controller node\n"); else lpfc_register_new_vport(phba, vport, ndlp); mempool_free(mboxq, phba->mbox_mem_pool); return; } if (phba->link_flag & LS_NPIV_FAB_SUPPORTED) lpfc_initial_fdisc(vport); else { lpfc_vport_set_state(vport, FC_VPORT_NO_FABRIC_SUPP); lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2606 No NPIV Fabric support\n"); } mempool_free(mboxq, phba->mbox_mem_pool); return; } /** * lpfc_issue_init_vpi - Issue init_vpi mailbox command. * @vport: pointer to lpfc_vport data structure. * * This function issue a init_vpi mailbox command to initialize * VPI for the vport. */ void lpfc_issue_init_vpi(struct lpfc_vport *vport) { LPFC_MBOXQ_t *mboxq; int rc, vpi; if ((vport->port_type != LPFC_PHYSICAL_PORT) && (!vport->vpi)) { vpi = lpfc_alloc_vpi(vport->phba); if (!vpi) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "3303 Failed to obtain vport vpi\n"); lpfc_vport_set_state(vport, FC_VPORT_FAILED); return; } vport->vpi = vpi; } mboxq = mempool_alloc(vport->phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2607 Failed to allocate " "init_vpi mailbox\n"); return; } lpfc_init_vpi(vport->phba, mboxq, vport->vpi); mboxq->vport = vport; mboxq->mbox_cmpl = lpfc_init_vpi_cmpl; rc = lpfc_sli_issue_mbox(vport->phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2608 Failed to issue init_vpi mailbox\n"); mempool_free(mboxq, vport->phba->mbox_mem_pool); } } /** * lpfc_start_fdiscs - send fdiscs for each vports on this port. * @phba: pointer to lpfc hba data structure. * * This function loops through the list of vports on the @phba and issues an * FDISC if possible. */ void lpfc_start_fdiscs(struct lpfc_hba *phba) { struct lpfc_vport **vports; int i; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) { for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { if (vports[i]->port_type == LPFC_PHYSICAL_PORT) continue; /* There are no vpi for this vport */ if (vports[i]->vpi > phba->max_vpi) { lpfc_vport_set_state(vports[i], FC_VPORT_FAILED); continue; } if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { lpfc_vport_set_state(vports[i], FC_VPORT_LINKDOWN); continue; } if (vports[i]->fc_flag & FC_VPORT_NEEDS_INIT_VPI) { lpfc_issue_init_vpi(vports[i]); continue; } if (phba->link_flag & LS_NPIV_FAB_SUPPORTED) lpfc_initial_fdisc(vports[i]); else { lpfc_vport_set_state(vports[i], FC_VPORT_NO_FABRIC_SUPP); lpfc_printf_vlog(vports[i], KERN_ERR, LOG_TRACE_EVENT, "0259 No NPIV " "Fabric support\n"); } } } lpfc_destroy_vport_work_array(phba, vports); } void lpfc_mbx_cmpl_reg_vfi(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct lpfc_dmabuf *dmabuf = mboxq->ctx_buf; struct lpfc_vport *vport = mboxq->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); /* * VFI not supported for interface type 0, so ignore any mailbox * error (except VFI in use) and continue with the discovery. */ if (mboxq->u.mb.mbxStatus && (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) != LPFC_SLI_INTF_IF_TYPE_0) && mboxq->u.mb.mbxStatus != MBX_VFI_IN_USE) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2018 REG_VFI mbxStatus error x%x " "HBA state x%x\n", mboxq->u.mb.mbxStatus, vport->port_state); if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { /* FLOGI failed, use loop map to make discovery list */ lpfc_disc_list_loopmap(vport); /* Start discovery */ lpfc_disc_start(vport); goto out_free_mem; } lpfc_vport_set_state(vport, FC_VPORT_FAILED); goto out_free_mem; } /* If the VFI is already registered, there is nothing else to do * Unless this was a VFI update and we are in PT2PT mode, then * we should drop through to set the port state to ready. */ if (vport->fc_flag & FC_VFI_REGISTERED) if (!(phba->sli_rev == LPFC_SLI_REV4 && vport->fc_flag & FC_PT2PT)) goto out_free_mem; /* The VPI is implicitly registered when the VFI is registered */ spin_lock_irq(shost->host_lock); vport->vpi_state |= LPFC_VPI_REGISTERED; vport->fc_flag |= FC_VFI_REGISTERED; vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; vport->fc_flag &= ~FC_VPORT_NEEDS_INIT_VPI; spin_unlock_irq(shost->host_lock); /* In case SLI4 FC loopback test, we are ready */ if ((phba->sli_rev == LPFC_SLI_REV4) && (phba->link_flag & LS_LOOPBACK_MODE)) { phba->link_state = LPFC_HBA_READY; goto out_free_mem; } lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "3313 cmpl reg vfi port_state:%x fc_flag:%x myDid:%x " "alpacnt:%d LinkState:%x topology:%x\n", vport->port_state, vport->fc_flag, vport->fc_myDID, vport->phba->alpa_map[0], phba->link_state, phba->fc_topology); if (vport->port_state == LPFC_FABRIC_CFG_LINK) { /* * For private loop or for NPort pt2pt, * just start discovery and we are done. */ if ((vport->fc_flag & FC_PT2PT) || ((phba->fc_topology == LPFC_TOPOLOGY_LOOP) && !(vport->fc_flag & FC_PUBLIC_LOOP))) { /* Use loop map to make discovery list */ lpfc_disc_list_loopmap(vport); /* Start discovery */ if (vport->fc_flag & FC_PT2PT) vport->port_state = LPFC_VPORT_READY; else lpfc_disc_start(vport); } else { lpfc_start_fdiscs(phba); lpfc_do_scr_ns_plogi(phba, vport); } } out_free_mem: mempool_free(mboxq, phba->mbox_mem_pool); if (dmabuf) { lpfc_mbuf_free(phba, dmabuf->virt, dmabuf->phys); kfree(dmabuf); } return; } static void lpfc_mbx_cmpl_read_sparam(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)pmb->ctx_buf; struct lpfc_vport *vport = pmb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct serv_parm *sp = &vport->fc_sparam; uint32_t ed_tov; /* Check for error */ if (mb->mbxStatus) { /* READ_SPARAM mbox error <mbxStatus> state <hba_state> */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0319 READ_SPARAM mbxStatus error x%x " "hba state x%x>\n", mb->mbxStatus, vport->port_state); lpfc_linkdown(phba); goto out; } memcpy((uint8_t *) &vport->fc_sparam, (uint8_t *) mp->virt, sizeof (struct serv_parm)); ed_tov = be32_to_cpu(sp->cmn.e_d_tov); if (sp->cmn.edtovResolution) /* E_D_TOV ticks are in nanoseconds */ ed_tov = (ed_tov + 999999) / 1000000; phba->fc_edtov = ed_tov; phba->fc_ratov = (2 * ed_tov) / 1000; if (phba->fc_ratov < FF_DEF_RATOV) { /* RA_TOV should be atleast 10sec for initial flogi */ phba->fc_ratov = FF_DEF_RATOV; } lpfc_update_vport_wwn(vport); fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); if (vport->port_type == LPFC_PHYSICAL_PORT) { memcpy(&phba->wwnn, &vport->fc_nodename, sizeof(phba->wwnn)); memcpy(&phba->wwpn, &vport->fc_portname, sizeof(phba->wwnn)); } lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* Check if sending the FLOGI is being deferred to after we get * up to date CSPs from MBX_READ_SPARAM. */ if (phba->hba_flag & HBA_DEFER_FLOGI) { lpfc_initial_flogi(vport); phba->hba_flag &= ~HBA_DEFER_FLOGI; } return; out: pmb->ctx_buf = NULL; lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); lpfc_issue_clear_la(phba, vport); mempool_free(pmb, phba->mbox_mem_pool); return; } static void lpfc_mbx_process_link_up(struct lpfc_hba *phba, struct lpfc_mbx_read_top *la) { struct lpfc_vport *vport = phba->pport; LPFC_MBOXQ_t *sparam_mbox, *cfglink_mbox = NULL; struct Scsi_Host *shost; int i; struct lpfc_dmabuf *mp; int rc; struct fcf_record *fcf_record; uint32_t fc_flags = 0; unsigned long iflags; spin_lock_irqsave(&phba->hbalock, iflags); phba->fc_linkspeed = bf_get(lpfc_mbx_read_top_link_spd, la); if (!(phba->hba_flag & HBA_FCOE_MODE)) { switch (bf_get(lpfc_mbx_read_top_link_spd, la)) { case LPFC_LINK_SPEED_1GHZ: case LPFC_LINK_SPEED_2GHZ: case LPFC_LINK_SPEED_4GHZ: case LPFC_LINK_SPEED_8GHZ: case LPFC_LINK_SPEED_10GHZ: case LPFC_LINK_SPEED_16GHZ: case LPFC_LINK_SPEED_32GHZ: case LPFC_LINK_SPEED_64GHZ: case LPFC_LINK_SPEED_128GHZ: case LPFC_LINK_SPEED_256GHZ: break; default: phba->fc_linkspeed = LPFC_LINK_SPEED_UNKNOWN; break; } } if (phba->fc_topology && phba->fc_topology != bf_get(lpfc_mbx_read_top_topology, la)) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3314 Toplogy changed was 0x%x is 0x%x\n", phba->fc_topology, bf_get(lpfc_mbx_read_top_topology, la)); phba->fc_topology_changed = 1; } phba->fc_topology = bf_get(lpfc_mbx_read_top_topology, la); phba->link_flag &= ~(LS_NPIV_FAB_SUPPORTED | LS_CT_VEN_RPA); shost = lpfc_shost_from_vport(vport); if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { phba->sli3_options &= ~LPFC_SLI3_NPIV_ENABLED; /* if npiv is enabled and this adapter supports npiv log * a message that npiv is not supported in this topology */ if (phba->cfg_enable_npiv && phba->max_vpi) lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1309 Link Up Event npiv not supported in loop " "topology\n"); /* Get Loop Map information */ if (bf_get(lpfc_mbx_read_top_il, la)) fc_flags |= FC_LBIT; vport->fc_myDID = bf_get(lpfc_mbx_read_top_alpa_granted, la); i = la->lilpBde64.tus.f.bdeSize; if (i == 0) { phba->alpa_map[0] = 0; } else { if (vport->cfg_log_verbose & LOG_LINK_EVENT) { int numalpa, j, k; union { uint8_t pamap[16]; struct { uint32_t wd1; uint32_t wd2; uint32_t wd3; uint32_t wd4; } pa; } un; numalpa = phba->alpa_map[0]; j = 0; while (j < numalpa) { memset(un.pamap, 0, 16); for (k = 1; j < numalpa; k++) { un.pamap[k - 1] = phba->alpa_map[j + 1]; j++; if (k == 16) break; } /* Link Up Event ALPA map */ lpfc_printf_log(phba, KERN_WARNING, LOG_LINK_EVENT, "1304 Link Up Event " "ALPA map Data: x%x " "x%x x%x x%x\n", un.pa.wd1, un.pa.wd2, un.pa.wd3, un.pa.wd4); } } } } else { if (!(phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)) { if (phba->max_vpi && phba->cfg_enable_npiv && (phba->sli_rev >= LPFC_SLI_REV3)) phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; } vport->fc_myDID = phba->fc_pref_DID; fc_flags |= FC_LBIT; } spin_unlock_irqrestore(&phba->hbalock, iflags); if (fc_flags) { spin_lock_irqsave(shost->host_lock, iflags); vport->fc_flag |= fc_flags; spin_unlock_irqrestore(shost->host_lock, iflags); } lpfc_linkup(phba); sparam_mbox = NULL; sparam_mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!sparam_mbox) goto out; rc = lpfc_read_sparam(phba, sparam_mbox, 0); if (rc) { mempool_free(sparam_mbox, phba->mbox_mem_pool); goto out; } sparam_mbox->vport = vport; sparam_mbox->mbox_cmpl = lpfc_mbx_cmpl_read_sparam; rc = lpfc_sli_issue_mbox(phba, sparam_mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { mp = (struct lpfc_dmabuf *)sparam_mbox->ctx_buf; lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(sparam_mbox, phba->mbox_mem_pool); goto out; } if (!(phba->hba_flag & HBA_FCOE_MODE)) { cfglink_mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!cfglink_mbox) goto out; vport->port_state = LPFC_LOCAL_CFG_LINK; lpfc_config_link(phba, cfglink_mbox); cfglink_mbox->vport = vport; cfglink_mbox->mbox_cmpl = lpfc_mbx_cmpl_local_config_link; rc = lpfc_sli_issue_mbox(phba, cfglink_mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { mempool_free(cfglink_mbox, phba->mbox_mem_pool); goto out; } } else { vport->port_state = LPFC_VPORT_UNKNOWN; /* * Add the driver's default FCF record at FCF index 0 now. This * is phase 1 implementation that support FCF index 0 and driver * defaults. */ if (!(phba->hba_flag & HBA_FIP_SUPPORT)) { fcf_record = kzalloc(sizeof(struct fcf_record), GFP_KERNEL); if (unlikely(!fcf_record)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2554 Could not allocate memory for " "fcf record\n"); rc = -ENODEV; goto out; } lpfc_sli4_build_dflt_fcf_record(phba, fcf_record, LPFC_FCOE_FCF_DEF_INDEX); rc = lpfc_sli4_add_fcf_record(phba, fcf_record); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2013 Could not manually add FCF " "record 0, status %d\n", rc); rc = -ENODEV; kfree(fcf_record); goto out; } kfree(fcf_record); } /* * The driver is expected to do FIP/FCF. Call the port * and get the FCF Table. */ spin_lock_irqsave(&phba->hbalock, iflags); if (phba->hba_flag & FCF_TS_INPROG) { spin_unlock_irqrestore(&phba->hbalock, iflags); return; } /* This is the initial FCF discovery scan */ phba->fcf.fcf_flag |= FCF_INIT_DISC; spin_unlock_irqrestore(&phba->hbalock, iflags); lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2778 Start FCF table scan at linkup\n"); rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); if (rc) { spin_lock_irqsave(&phba->hbalock, iflags); phba->fcf.fcf_flag &= ~FCF_INIT_DISC; spin_unlock_irqrestore(&phba->hbalock, iflags); goto out; } /* Reset FCF roundrobin bmask for new discovery */ lpfc_sli4_clear_fcf_rr_bmask(phba); } /* Prepare for LINK up registrations */ memset(phba->os_host_name, 0, sizeof(phba->os_host_name)); scnprintf(phba->os_host_name, sizeof(phba->os_host_name), "%s", init_utsname()->nodename); return; out: lpfc_vport_set_state(vport, FC_VPORT_FAILED); lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0263 Discovery Mailbox error: state: 0x%x : x%px x%px\n", vport->port_state, sparam_mbox, cfglink_mbox); lpfc_issue_clear_la(phba, vport); return; } static void lpfc_enable_la(struct lpfc_hba *phba) { uint32_t control; struct lpfc_sli *psli = &phba->sli; spin_lock_irq(&phba->hbalock); psli->sli_flag |= LPFC_PROCESS_LA; if (phba->sli_rev <= LPFC_SLI_REV3) { control = readl(phba->HCregaddr); control |= HC_LAINT_ENA; writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } spin_unlock_irq(&phba->hbalock); } static void lpfc_mbx_issue_link_down(struct lpfc_hba *phba) { lpfc_linkdown(phba); lpfc_enable_la(phba); lpfc_unregister_unused_fcf(phba); /* turn on Link Attention interrupts - no CLEAR_LA needed */ } /* * This routine handles processing a READ_TOPOLOGY mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is * handed off to the SLI layer. SLI4 only. */ void lpfc_mbx_cmpl_read_topology(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_mbx_read_top *la; struct lpfc_sli_ring *pring; MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); uint8_t attn_type; unsigned long iflags; /* Unblock ELS traffic */ pring = lpfc_phba_elsring(phba); if (pring) pring->flag &= ~LPFC_STOP_IOCB_EVENT; /* Check for error */ if (mb->mbxStatus) { lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, "1307 READ_LA mbox error x%x state x%x\n", mb->mbxStatus, vport->port_state); lpfc_mbx_issue_link_down(phba); phba->link_state = LPFC_HBA_ERROR; goto lpfc_mbx_cmpl_read_topology_free_mbuf; } la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; attn_type = bf_get(lpfc_mbx_read_top_att_type, la); memcpy(&phba->alpa_map[0], mp->virt, 128); spin_lock_irqsave(shost->host_lock, iflags); if (bf_get(lpfc_mbx_read_top_pb, la)) vport->fc_flag |= FC_BYPASSED_MODE; else vport->fc_flag &= ~FC_BYPASSED_MODE; spin_unlock_irqrestore(shost->host_lock, iflags); if (phba->fc_eventTag <= la->eventTag) { phba->fc_stat.LinkMultiEvent++; if (attn_type == LPFC_ATT_LINK_UP) if (phba->fc_eventTag != 0) lpfc_linkdown(phba); } phba->fc_eventTag = la->eventTag; if (phba->sli_rev < LPFC_SLI_REV4) { spin_lock_irqsave(&phba->hbalock, iflags); if (bf_get(lpfc_mbx_read_top_mm, la)) phba->sli.sli_flag |= LPFC_MENLO_MAINT; else phba->sli.sli_flag &= ~LPFC_MENLO_MAINT; spin_unlock_irqrestore(&phba->hbalock, iflags); } phba->link_events++; if ((attn_type == LPFC_ATT_LINK_UP) && !(phba->sli.sli_flag & LPFC_MENLO_MAINT)) { phba->fc_stat.LinkUp++; if (phba->link_flag & LS_LOOPBACK_MODE) { lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1306 Link Up Event in loop back mode " "x%x received Data: x%x x%x x%x x%x\n", la->eventTag, phba->fc_eventTag, bf_get(lpfc_mbx_read_top_alpa_granted, la), bf_get(lpfc_mbx_read_top_link_spd, la), phba->alpa_map[0]); } else { lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1303 Link Up Event x%x received " "Data: x%x x%x x%x x%x x%x x%x %d\n", la->eventTag, phba->fc_eventTag, bf_get(lpfc_mbx_read_top_alpa_granted, la), bf_get(lpfc_mbx_read_top_link_spd, la), phba->alpa_map[0], bf_get(lpfc_mbx_read_top_mm, la), bf_get(lpfc_mbx_read_top_fa, la), phba->wait_4_mlo_maint_flg); } lpfc_mbx_process_link_up(phba, la); if (phba->cmf_active_mode != LPFC_CFG_OFF) lpfc_cmf_signal_init(phba); } else if (attn_type == LPFC_ATT_LINK_DOWN || attn_type == LPFC_ATT_UNEXP_WWPN) { phba->fc_stat.LinkDown++; if (phba->link_flag & LS_LOOPBACK_MODE) lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1308 Link Down Event in loop back mode " "x%x received " "Data: x%x x%x x%x\n", la->eventTag, phba->fc_eventTag, phba->pport->port_state, vport->fc_flag); else if (attn_type == LPFC_ATT_UNEXP_WWPN) lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1313 Link Down Unexpected FA WWPN Event x%x " "received Data: x%x x%x x%x x%x x%x\n", la->eventTag, phba->fc_eventTag, phba->pport->port_state, vport->fc_flag, bf_get(lpfc_mbx_read_top_mm, la), bf_get(lpfc_mbx_read_top_fa, la)); else lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1305 Link Down Event x%x received " "Data: x%x x%x x%x x%x x%x\n", la->eventTag, phba->fc_eventTag, phba->pport->port_state, vport->fc_flag, bf_get(lpfc_mbx_read_top_mm, la), bf_get(lpfc_mbx_read_top_fa, la)); lpfc_mbx_issue_link_down(phba); } if (phba->sli.sli_flag & LPFC_MENLO_MAINT && attn_type == LPFC_ATT_LINK_UP) { if (phba->link_state != LPFC_LINK_DOWN) { phba->fc_stat.LinkDown++; lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1312 Link Down Event x%x received " "Data: x%x x%x x%x\n", la->eventTag, phba->fc_eventTag, phba->pport->port_state, vport->fc_flag); lpfc_mbx_issue_link_down(phba); } else lpfc_enable_la(phba); lpfc_printf_log(phba, KERN_ERR, LOG_LINK_EVENT, "1310 Menlo Maint Mode Link up Event x%x rcvd " "Data: x%x x%x x%x\n", la->eventTag, phba->fc_eventTag, phba->pport->port_state, vport->fc_flag); /* * The cmnd that triggered this will be waiting for this * signal. */ /* WAKEUP for MENLO_SET_MODE or MENLO_RESET command. */ if (phba->wait_4_mlo_maint_flg) { phba->wait_4_mlo_maint_flg = 0; wake_up_interruptible(&phba->wait_4_mlo_m_q); } } if ((phba->sli_rev < LPFC_SLI_REV4) && bf_get(lpfc_mbx_read_top_fa, la)) { if (phba->sli.sli_flag & LPFC_MENLO_MAINT) lpfc_issue_clear_la(phba, vport); lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, "1311 fa %d\n", bf_get(lpfc_mbx_read_top_fa, la)); } lpfc_mbx_cmpl_read_topology_free_mbuf: lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); return; } /* * This routine handles processing a REG_LOGIN mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is * handed off to the SLI layer. */ void lpfc_mbx_cmpl_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; pmb->ctx_buf = NULL; pmb->ctx_ndlp = NULL; lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NODE | LOG_DISCOVERY, "0002 rpi:%x DID:%x flg:%x %d x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp); if (ndlp->nlp_flag & NLP_REG_LOGIN_SEND) ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND; if (ndlp->nlp_flag & NLP_IGNR_REG_CMPL || ndlp->nlp_state != NLP_STE_REG_LOGIN_ISSUE) { /* We rcvd a rscn after issuing this * mbox reg login, we may have cycled * back through the state and be * back at reg login state so this * mbox needs to be ignored becase * there is another reg login in * process. */ spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; spin_unlock_irq(&ndlp->lock); /* * We cannot leave the RPI registered because * if we go thru discovery again for this ndlp * a subsequent REG_RPI will fail. */ ndlp->nlp_flag |= NLP_RPI_REGISTERED; lpfc_unreg_rpi(vport, ndlp); } /* Call state machine */ lpfc_disc_state_machine(vport, ndlp, pmb, NLP_EVT_CMPL_REG_LOGIN); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* decrement the node reference count held for this callback * function. */ lpfc_nlp_put(ndlp); return; } static void lpfc_mbx_cmpl_unreg_vpi(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { MAILBOX_t *mb = &pmb->u.mb; struct lpfc_vport *vport = pmb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); switch (mb->mbxStatus) { case 0x0011: case 0x0020: lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0911 cmpl_unreg_vpi, mb status = 0x%x\n", mb->mbxStatus); break; /* If VPI is busy, reset the HBA */ case 0x9700: lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2798 Unreg_vpi failed vpi 0x%x, mb status = 0x%x\n", vport->vpi, mb->mbxStatus); if (!(phba->pport->load_flag & FC_UNLOADING)) lpfc_workq_post_event(phba, NULL, NULL, LPFC_EVT_RESET_HBA); } spin_lock_irq(shost->host_lock); vport->vpi_state &= ~LPFC_VPI_REGISTERED; vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI; spin_unlock_irq(shost->host_lock); vport->unreg_vpi_cmpl = VPORT_OK; mempool_free(pmb, phba->mbox_mem_pool); lpfc_cleanup_vports_rrqs(vport, NULL); /* * This shost reference might have been taken at the beginning of * lpfc_vport_delete() */ if ((vport->load_flag & FC_UNLOADING) && (vport != phba->pport)) scsi_host_put(shost); } int lpfc_mbx_unreg_vpi(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mbox; int rc; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return 1; lpfc_unreg_vpi(phba, vport->vpi, mbox); mbox->vport = vport; mbox->mbox_cmpl = lpfc_mbx_cmpl_unreg_vpi; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "1800 Could not issue unreg_vpi\n"); mempool_free(mbox, phba->mbox_mem_pool); vport->unreg_vpi_cmpl = VPORT_ERROR; return rc; } return 0; } static void lpfc_mbx_cmpl_reg_vpi(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); MAILBOX_t *mb = &pmb->u.mb; switch (mb->mbxStatus) { case 0x0011: case 0x9601: case 0x9602: lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0912 cmpl_reg_vpi, mb status = 0x%x\n", mb->mbxStatus); lpfc_vport_set_state(vport, FC_VPORT_FAILED); spin_lock_irq(shost->host_lock); vport->fc_flag &= ~(FC_FABRIC | FC_PUBLIC_LOOP); spin_unlock_irq(shost->host_lock); vport->fc_myDID = 0; if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) { if (phba->nvmet_support) lpfc_nvmet_update_targetport(phba); else lpfc_nvme_update_localport(vport); } goto out; } spin_lock_irq(shost->host_lock); vport->vpi_state |= LPFC_VPI_REGISTERED; vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; spin_unlock_irq(shost->host_lock); vport->num_disc_nodes = 0; /* go thru NPR list and issue ELS PLOGIs */ if (vport->fc_npr_cnt) lpfc_els_disc_plogi(vport); if (!vport->num_disc_nodes) { spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_NDISC_ACTIVE; spin_unlock_irq(shost->host_lock); lpfc_can_disctmo(vport); } vport->port_state = LPFC_VPORT_READY; out: mempool_free(pmb, phba->mbox_mem_pool); return; } /** * lpfc_create_static_vport - Read HBA config region to create static vports. * @phba: pointer to lpfc hba data structure. * * This routine issue a DUMP mailbox command for config region 22 to get * the list of static vports to be created. The function create vports * based on the information returned from the HBA. **/ void lpfc_create_static_vport(struct lpfc_hba *phba) { LPFC_MBOXQ_t *pmb = NULL; MAILBOX_t *mb; struct static_vport_info *vport_info; int mbx_wait_rc = 0, i; struct fc_vport_identifiers vport_id; struct fc_vport *new_fc_vport; struct Scsi_Host *shost; struct lpfc_vport *vport; uint16_t offset = 0; uint8_t *vport_buff; struct lpfc_dmabuf *mp; uint32_t byte_count = 0; pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0542 lpfc_create_static_vport failed to" " allocate mailbox memory\n"); return; } memset(pmb, 0, sizeof(LPFC_MBOXQ_t)); mb = &pmb->u.mb; vport_info = kzalloc(sizeof(struct static_vport_info), GFP_KERNEL); if (!vport_info) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0543 lpfc_create_static_vport failed to" " allocate vport_info\n"); mempool_free(pmb, phba->mbox_mem_pool); return; } vport_buff = (uint8_t *) vport_info; do { /* free dma buffer from previous round */ if (pmb->ctx_buf) { mp = (struct lpfc_dmabuf *)pmb->ctx_buf; lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } if (lpfc_dump_static_vport(phba, pmb, offset)) goto out; pmb->vport = phba->pport; mbx_wait_rc = lpfc_sli_issue_mbox_wait(phba, pmb, LPFC_MBOX_TMO); if ((mbx_wait_rc != MBX_SUCCESS) || mb->mbxStatus) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0544 lpfc_create_static_vport failed to" " issue dump mailbox command ret 0x%x " "status 0x%x\n", mbx_wait_rc, mb->mbxStatus); goto out; } if (phba->sli_rev == LPFC_SLI_REV4) { byte_count = pmb->u.mqe.un.mb_words[5]; mp = (struct lpfc_dmabuf *)pmb->ctx_buf; if (byte_count > sizeof(struct static_vport_info) - offset) byte_count = sizeof(struct static_vport_info) - offset; memcpy(vport_buff + offset, mp->virt, byte_count); offset += byte_count; } else { if (mb->un.varDmp.word_cnt > sizeof(struct static_vport_info) - offset) mb->un.varDmp.word_cnt = sizeof(struct static_vport_info) - offset; byte_count = mb->un.varDmp.word_cnt; lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, vport_buff + offset, byte_count); offset += byte_count; } } while (byte_count && offset < sizeof(struct static_vport_info)); if ((le32_to_cpu(vport_info->signature) != VPORT_INFO_SIG) || ((le32_to_cpu(vport_info->rev) & VPORT_INFO_REV_MASK) != VPORT_INFO_REV)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0545 lpfc_create_static_vport bad" " information header 0x%x 0x%x\n", le32_to_cpu(vport_info->signature), le32_to_cpu(vport_info->rev) & VPORT_INFO_REV_MASK); goto out; } shost = lpfc_shost_from_vport(phba->pport); for (i = 0; i < MAX_STATIC_VPORT_COUNT; i++) { memset(&vport_id, 0, sizeof(vport_id)); vport_id.port_name = wwn_to_u64(vport_info->vport_list[i].wwpn); vport_id.node_name = wwn_to_u64(vport_info->vport_list[i].wwnn); if (!vport_id.port_name || !vport_id.node_name) continue; vport_id.roles = FC_PORT_ROLE_FCP_INITIATOR; vport_id.vport_type = FC_PORTTYPE_NPIV; vport_id.disable = false; new_fc_vport = fc_vport_create(shost, 0, &vport_id); if (!new_fc_vport) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0546 lpfc_create_static_vport failed to" " create vport\n"); continue; } vport = *(struct lpfc_vport **)new_fc_vport->dd_data; vport->vport_flag |= STATIC_VPORT; } out: kfree(vport_info); if (mbx_wait_rc != MBX_TIMEOUT) { if (pmb->ctx_buf) { mp = (struct lpfc_dmabuf *)pmb->ctx_buf; lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } mempool_free(pmb, phba->mbox_mem_pool); } return; } /* * This routine handles processing a Fabric REG_LOGIN mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is * handed off to the SLI layer. */ void lpfc_mbx_cmpl_fabric_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); struct lpfc_nodelist *ndlp; struct Scsi_Host *shost; ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; pmb->ctx_ndlp = NULL; pmb->ctx_buf = NULL; if (mb->mbxStatus) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0258 Register Fabric login error: 0x%x\n", mb->mbxStatus); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { /* FLOGI failed, use loop map to make discovery list */ lpfc_disc_list_loopmap(vport); /* Start discovery */ lpfc_disc_start(vport); /* Decrement the reference count to ndlp after the * reference to the ndlp are done. */ lpfc_nlp_put(ndlp); return; } lpfc_vport_set_state(vport, FC_VPORT_FAILED); /* Decrement the reference count to ndlp after the reference * to the ndlp are done. */ lpfc_nlp_put(ndlp); return; } if (phba->sli_rev < LPFC_SLI_REV4) ndlp->nlp_rpi = mb->un.varWords[0]; ndlp->nlp_flag |= NLP_RPI_REGISTERED; ndlp->nlp_type |= NLP_FABRIC; lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE); if (vport->port_state == LPFC_FABRIC_CFG_LINK) { /* when physical port receive logo donot start * vport discovery */ if (!(vport->fc_flag & FC_LOGO_RCVD_DID_CHNG)) lpfc_start_fdiscs(phba); else { shost = lpfc_shost_from_vport(vport); spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_LOGO_RCVD_DID_CHNG ; spin_unlock_irq(shost->host_lock); } lpfc_do_scr_ns_plogi(phba, vport); } lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* Drop the reference count from the mbox at the end after * all the current reference to the ndlp have been done. */ lpfc_nlp_put(ndlp); return; } /* * This routine will issue a GID_FT for each FC4 Type supported * by the driver. ALL GID_FTs must complete before discovery is started. */ int lpfc_issue_gidft(struct lpfc_vport *vport) { /* Good status, issue CT Request to NameServer */ if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (vport->cfg_enable_fc4_type == LPFC_ENABLE_FCP)) { if (lpfc_ns_cmd(vport, SLI_CTNS_GID_FT, 0, SLI_CTPT_FCP)) { /* Cannot issue NameServer FCP Query, so finish up * discovery */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0604 %s FC TYPE %x %s\n", "Failed to issue GID_FT to ", FC_TYPE_FCP, "Finishing discovery."); return 0; } vport->gidft_inp++; } if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) { if (lpfc_ns_cmd(vport, SLI_CTNS_GID_FT, 0, SLI_CTPT_NVME)) { /* Cannot issue NameServer NVME Query, so finish up * discovery */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0605 %s FC_TYPE %x %s %d\n", "Failed to issue GID_FT to ", FC_TYPE_NVME, "Finishing discovery: gidftinp ", vport->gidft_inp); if (vport->gidft_inp == 0) return 0; } else vport->gidft_inp++; } return vport->gidft_inp; } /** * lpfc_issue_gidpt - issue a GID_PT for all N_Ports * @vport: The virtual port for which this call is being executed. * * This routine will issue a GID_PT to get a list of all N_Ports * * Return value : * 0 - Failure to issue a GID_PT * 1 - GID_PT issued **/ int lpfc_issue_gidpt(struct lpfc_vport *vport) { /* Good status, issue CT Request to NameServer */ if (lpfc_ns_cmd(vport, SLI_CTNS_GID_PT, 0, GID_PT_N_PORT)) { /* Cannot issue NameServer FCP Query, so finish up * discovery */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0606 %s Port TYPE %x %s\n", "Failed to issue GID_PT to ", GID_PT_N_PORT, "Finishing discovery."); return 0; } vport->gidft_inp++; return 1; } /* * This routine handles processing a NameServer REG_LOGIN mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is * handed off to the SLI layer. */ void lpfc_mbx_cmpl_ns_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; struct lpfc_vport *vport = pmb->vport; int rc; pmb->ctx_buf = NULL; pmb->ctx_ndlp = NULL; vport->gidft_inp = 0; if (mb->mbxStatus) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0260 Register NameServer error: 0x%x\n", mb->mbxStatus); out: /* decrement the node reference count held for this * callback function. */ lpfc_nlp_put(ndlp); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* If the node is not registered with the scsi or nvme * transport, remove the fabric node. The failed reg_login * is terminal. */ if (!(ndlp->fc4_xpt_flags & (SCSI_XPT_REGD | NVME_XPT_REGD))) { spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~NLP_NPR_2B_DISC; spin_unlock_irq(&ndlp->lock); lpfc_nlp_not_used(ndlp); } if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { /* * RegLogin failed, use loop map to make discovery * list */ lpfc_disc_list_loopmap(vport); /* Start discovery */ lpfc_disc_start(vport); return; } lpfc_vport_set_state(vport, FC_VPORT_FAILED); return; } if (phba->sli_rev < LPFC_SLI_REV4) ndlp->nlp_rpi = mb->un.varWords[0]; ndlp->nlp_flag |= NLP_RPI_REGISTERED; ndlp->nlp_type |= NLP_FABRIC; lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "0003 rpi:%x DID:%x flg:%x %d x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp); if (vport->port_state < LPFC_VPORT_READY) { /* Link up discovery requires Fabric registration. */ lpfc_ns_cmd(vport, SLI_CTNS_RNN_ID, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RSNN_NN, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RSPN_ID, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RFT_ID, 0, 0); if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (vport->cfg_enable_fc4_type == LPFC_ENABLE_FCP)) lpfc_ns_cmd(vport, SLI_CTNS_RFF_ID, 0, FC_TYPE_FCP); if ((vport->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) lpfc_ns_cmd(vport, SLI_CTNS_RFF_ID, 0, FC_TYPE_NVME); /* Issue SCR just before NameServer GID_FT Query */ lpfc_issue_els_scr(vport, 0); /* Link was bounced or a Fabric LOGO occurred. Start EDC * with initial FW values provided the congestion mode is * not off. Note that signals may or may not be supported * by the adapter but FPIN is provided by default for 1 * or both missing signals support. */ if (phba->cmf_active_mode != LPFC_CFG_OFF) { phba->cgn_reg_fpin = phba->cgn_init_reg_fpin; phba->cgn_reg_signal = phba->cgn_init_reg_signal; rc = lpfc_issue_els_edc(vport, 0); lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_ELS | LOG_DISCOVERY, "4220 EDC issue error x%x, Data: x%x\n", rc, phba->cgn_init_reg_signal); } else { lpfc_issue_els_rdf(vport, 0); } } vport->fc_ns_retry = 0; if (lpfc_issue_gidft(vport) == 0) goto out; /* * At this point in time we may need to wait for multiple * SLI_CTNS_GID_FT CT commands to complete before we start discovery. * * decrement the node reference count held for this * callback function. */ lpfc_nlp_put(ndlp); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); return; } /* * This routine handles processing a Fabric Controller REG_LOGIN mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is handed off to the SLI layer. */ void lpfc_mbx_cmpl_fc_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); struct lpfc_nodelist *ndlp; ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; pmb->ctx_ndlp = NULL; pmb->ctx_buf = NULL; if (mb->mbxStatus) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0933 %s: Register FC login error: 0x%x\n", __func__, mb->mbxStatus); goto out; } if (phba->sli_rev < LPFC_SLI_REV4) ndlp->nlp_rpi = mb->un.varWords[0]; lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0934 %s: Complete FC x%x RegLogin rpi x%x ste x%x\n", __func__, ndlp->nlp_DID, ndlp->nlp_rpi, ndlp->nlp_state); ndlp->nlp_flag |= NLP_RPI_REGISTERED; ndlp->nlp_type |= NLP_FABRIC; lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE); out: lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* Drop the reference count from the mbox at the end after * all the current reference to the ndlp have been done. */ lpfc_nlp_put(ndlp); } static void lpfc_register_remote_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct fc_rport *rport; struct lpfc_rport_data *rdata; struct fc_rport_identifiers rport_ids; struct lpfc_hba *phba = vport->phba; unsigned long flags; if (vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME) return; /* Remote port has reappeared. Re-register w/ FC transport */ rport_ids.node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn); rport_ids.port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn); rport_ids.port_id = ndlp->nlp_DID; rport_ids.roles = FC_RPORT_ROLE_UNKNOWN; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT, "rport add: did:x%x flg:x%x type x%x", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_type); /* Don't add the remote port if unloading. */ if (vport->load_flag & FC_UNLOADING) return; /* * Disassociate any older association between this ndlp and rport */ if (ndlp->rport) { rdata = ndlp->rport->dd_data; rdata->pnode = NULL; } ndlp->rport = rport = fc_remote_port_add(shost, 0, &rport_ids); if (!rport) { dev_printk(KERN_WARNING, &phba->pcidev->dev, "Warning: fc_remote_port_add failed\n"); return; } /* Successful port add. Complete initializing node data */ rport->maxframe_size = ndlp->nlp_maxframe; rport->supported_classes = ndlp->nlp_class_sup; rdata = rport->dd_data; rdata->pnode = lpfc_nlp_get(ndlp); if (!rdata->pnode) { dev_warn(&phba->pcidev->dev, "Warning - node ref failed. Unreg rport\n"); fc_remote_port_delete(rport); ndlp->rport = NULL; return; } spin_lock_irqsave(&ndlp->lock, flags); ndlp->fc4_xpt_flags |= SCSI_XPT_REGD; spin_unlock_irqrestore(&ndlp->lock, flags); if (ndlp->nlp_type & NLP_FCP_TARGET) rport_ids.roles |= FC_PORT_ROLE_FCP_TARGET; if (ndlp->nlp_type & NLP_FCP_INITIATOR) rport_ids.roles |= FC_PORT_ROLE_FCP_INITIATOR; if (ndlp->nlp_type & NLP_NVME_INITIATOR) rport_ids.roles |= FC_PORT_ROLE_NVME_INITIATOR; if (ndlp->nlp_type & NLP_NVME_TARGET) rport_ids.roles |= FC_PORT_ROLE_NVME_TARGET; if (ndlp->nlp_type & NLP_NVME_DISCOVERY) rport_ids.roles |= FC_PORT_ROLE_NVME_DISCOVERY; if (rport_ids.roles != FC_RPORT_ROLE_UNKNOWN) fc_remote_port_rolechg(rport, rport_ids.roles); lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE, "3183 %s rport x%px DID x%x, role x%x\n", __func__, rport, rport->port_id, rport->roles); if ((rport->scsi_target_id != -1) && (rport->scsi_target_id < LPFC_MAX_TARGET)) { ndlp->nlp_sid = rport->scsi_target_id; } return; } static void lpfc_unregister_remote_port(struct lpfc_nodelist *ndlp) { struct fc_rport *rport = ndlp->rport; struct lpfc_vport *vport = ndlp->vport; if (vport->cfg_enable_fc4_type == LPFC_ENABLE_NVME) return; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_RPORT, "rport delete: did:x%x flg:x%x type x%x", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_type); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "3184 rport unregister x%06x, rport x%px " "xptflg x%x\n", ndlp->nlp_DID, rport, ndlp->fc4_xpt_flags); fc_remote_port_delete(rport); lpfc_nlp_put(ndlp); } static void lpfc_nlp_counters(struct lpfc_vport *vport, int state, int count) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); unsigned long iflags; spin_lock_irqsave(shost->host_lock, iflags); switch (state) { case NLP_STE_UNUSED_NODE: vport->fc_unused_cnt += count; break; case NLP_STE_PLOGI_ISSUE: vport->fc_plogi_cnt += count; break; case NLP_STE_ADISC_ISSUE: vport->fc_adisc_cnt += count; break; case NLP_STE_REG_LOGIN_ISSUE: vport->fc_reglogin_cnt += count; break; case NLP_STE_PRLI_ISSUE: vport->fc_prli_cnt += count; break; case NLP_STE_UNMAPPED_NODE: vport->fc_unmap_cnt += count; break; case NLP_STE_MAPPED_NODE: vport->fc_map_cnt += count; break; case NLP_STE_NPR_NODE: if (vport->fc_npr_cnt == 0 && count == -1) vport->fc_npr_cnt = 0; else vport->fc_npr_cnt += count; break; } spin_unlock_irqrestore(shost->host_lock, iflags); } /* Register a node with backend if not already done */ void lpfc_nlp_reg_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { unsigned long iflags; spin_lock_irqsave(&ndlp->lock, iflags); if (ndlp->fc4_xpt_flags & NLP_XPT_REGD) { /* Already registered with backend, trigger rescan */ spin_unlock_irqrestore(&ndlp->lock, iflags); if (ndlp->fc4_xpt_flags & NVME_XPT_REGD && ndlp->nlp_type & (NLP_NVME_TARGET | NLP_NVME_DISCOVERY)) { lpfc_nvme_rescan_port(vport, ndlp); } return; } ndlp->fc4_xpt_flags |= NLP_XPT_REGD; spin_unlock_irqrestore(&ndlp->lock, iflags); if (lpfc_valid_xpt_node(ndlp)) { vport->phba->nport_event_cnt++; /* * Tell the fc transport about the port, if we haven't * already. If we have, and it's a scsi entity, be */ lpfc_register_remote_port(vport, ndlp); } /* We are done if we do not have any NVME remote node */ if (!(ndlp->nlp_fc4_type & NLP_FC4_NVME)) return; /* Notify the NVME transport of this new rport. */ if (vport->phba->sli_rev >= LPFC_SLI_REV4 && ndlp->nlp_fc4_type & NLP_FC4_NVME) { if (vport->phba->nvmet_support == 0) { /* Register this rport with the transport. * Only NVME Target Rports are registered with * the transport. */ if (ndlp->nlp_type & NLP_NVME_TARGET) { vport->phba->nport_event_cnt++; lpfc_nvme_register_port(vport, ndlp); } } else { /* Just take an NDLP ref count since the * target does not register rports. */ lpfc_nlp_get(ndlp); } } } /* Unregister a node with backend if not already done */ void lpfc_nlp_unreg_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { unsigned long iflags; spin_lock_irqsave(&ndlp->lock, iflags); if (!(ndlp->fc4_xpt_flags & NLP_XPT_REGD)) { spin_unlock_irqrestore(&ndlp->lock, iflags); return; } ndlp->fc4_xpt_flags &= ~NLP_XPT_REGD; spin_unlock_irqrestore(&ndlp->lock, iflags); if (ndlp->rport && ndlp->fc4_xpt_flags & SCSI_XPT_REGD) { vport->phba->nport_event_cnt++; lpfc_unregister_remote_port(ndlp); } if (ndlp->fc4_xpt_flags & NVME_XPT_REGD) { vport->phba->nport_event_cnt++; if (vport->phba->nvmet_support == 0) { /* Start devloss if target. */ if (ndlp->nlp_type & NLP_NVME_TARGET) lpfc_nvme_unregister_port(vport, ndlp); } else { /* NVMET has no upcall. */ lpfc_nlp_put(ndlp); } } } /* * Adisc state change handling */ static void lpfc_handle_adisc_state(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, int new_state) { switch (new_state) { /* * Any state to ADISC_ISSUE * Do nothing, adisc cmpl handling will trigger state changes */ case NLP_STE_ADISC_ISSUE: break; /* * ADISC_ISSUE to mapped states * Trigger a registration with backend, it will be nop if * already registered */ case NLP_STE_UNMAPPED_NODE: ndlp->nlp_type |= NLP_FC_NODE; fallthrough; case NLP_STE_MAPPED_NODE: ndlp->nlp_flag &= ~NLP_NODEV_REMOVE; lpfc_nlp_reg_node(vport, ndlp); break; /* * ADISC_ISSUE to non-mapped states * We are moving from ADISC_ISSUE to a non-mapped state because * ADISC failed, we would have skipped unregistering with * backend, attempt it now */ case NLP_STE_NPR_NODE: ndlp->nlp_flag &= ~NLP_RCV_PLOGI; fallthrough; default: lpfc_nlp_unreg_node(vport, ndlp); break; } } static void lpfc_nlp_state_cleanup(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, int old_state, int new_state) { /* Trap ADISC changes here */ if (new_state == NLP_STE_ADISC_ISSUE || old_state == NLP_STE_ADISC_ISSUE) { lpfc_handle_adisc_state(vport, ndlp, new_state); return; } if (new_state == NLP_STE_UNMAPPED_NODE) { ndlp->nlp_flag &= ~NLP_NODEV_REMOVE; ndlp->nlp_type |= NLP_FC_NODE; } if (new_state == NLP_STE_MAPPED_NODE) ndlp->nlp_flag &= ~NLP_NODEV_REMOVE; if (new_state == NLP_STE_NPR_NODE) ndlp->nlp_flag &= ~NLP_RCV_PLOGI; /* Reg/Unreg for FCP and NVME Transport interface */ if ((old_state == NLP_STE_MAPPED_NODE || old_state == NLP_STE_UNMAPPED_NODE)) { /* For nodes marked for ADISC, Handle unreg in ADISC cmpl */ if (!(ndlp->nlp_flag & NLP_NPR_ADISC)) lpfc_nlp_unreg_node(vport, ndlp); } if (new_state == NLP_STE_MAPPED_NODE || new_state == NLP_STE_UNMAPPED_NODE) lpfc_nlp_reg_node(vport, ndlp); if ((new_state == NLP_STE_MAPPED_NODE) && (vport->stat_data_enabled)) { /* * A new target is discovered, if there is no buffer for * statistical data collection allocate buffer. */ ndlp->lat_data = kcalloc(LPFC_MAX_BUCKET_COUNT, sizeof(struct lpfc_scsicmd_bkt), GFP_KERNEL); if (!ndlp->lat_data) lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0286 lpfc_nlp_state_cleanup failed to " "allocate statistical data buffer DID " "0x%x\n", ndlp->nlp_DID); } /* * If the node just added to Mapped list was an FCP target, * but the remote port registration failed or assigned a target * id outside the presentable range - move the node to the * Unmapped List. */ if ((new_state == NLP_STE_MAPPED_NODE) && (ndlp->nlp_type & NLP_FCP_TARGET) && (!ndlp->rport || ndlp->rport->scsi_target_id == -1 || ndlp->rport->scsi_target_id >= LPFC_MAX_TARGET)) { spin_lock_irq(&ndlp->lock); ndlp->nlp_flag |= NLP_TGT_NO_SCSIID; spin_unlock_irq(&ndlp->lock); lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE); } } static char * lpfc_nlp_state_name(char *buffer, size_t size, int state) { static char *states[] = { [NLP_STE_UNUSED_NODE] = "UNUSED", [NLP_STE_PLOGI_ISSUE] = "PLOGI", [NLP_STE_ADISC_ISSUE] = "ADISC", [NLP_STE_REG_LOGIN_ISSUE] = "REGLOGIN", [NLP_STE_PRLI_ISSUE] = "PRLI", [NLP_STE_LOGO_ISSUE] = "LOGO", [NLP_STE_UNMAPPED_NODE] = "UNMAPPED", [NLP_STE_MAPPED_NODE] = "MAPPED", [NLP_STE_NPR_NODE] = "NPR", }; if (state < NLP_STE_MAX_STATE && states[state]) strlcpy(buffer, states[state], size); else snprintf(buffer, size, "unknown (%d)", state); return buffer; } void lpfc_nlp_set_state(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, int state) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); int old_state = ndlp->nlp_state; int node_dropped = ndlp->nlp_flag & NLP_DROPPED; char name1[16], name2[16]; lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0904 NPort state transition x%06x, %s -> %s\n", ndlp->nlp_DID, lpfc_nlp_state_name(name1, sizeof(name1), old_state), lpfc_nlp_state_name(name2, sizeof(name2), state)); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_NODE, "node statechg did:x%x old:%d ste:%d", ndlp->nlp_DID, old_state, state); if (node_dropped && old_state == NLP_STE_UNUSED_NODE && state != NLP_STE_UNUSED_NODE) { ndlp->nlp_flag &= ~NLP_DROPPED; lpfc_nlp_get(ndlp); } if (old_state == NLP_STE_NPR_NODE && state != NLP_STE_NPR_NODE) lpfc_cancel_retry_delay_tmo(vport, ndlp); if (old_state == NLP_STE_UNMAPPED_NODE) { ndlp->nlp_flag &= ~NLP_TGT_NO_SCSIID; ndlp->nlp_type &= ~NLP_FC_NODE; } if (list_empty(&ndlp->nlp_listp)) { spin_lock_irq(shost->host_lock); list_add_tail(&ndlp->nlp_listp, &vport->fc_nodes); spin_unlock_irq(shost->host_lock); } else if (old_state) lpfc_nlp_counters(vport, old_state, -1); ndlp->nlp_state = state; lpfc_nlp_counters(vport, state, 1); lpfc_nlp_state_cleanup(vport, ndlp, old_state, state); } void lpfc_enqueue_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); if (list_empty(&ndlp->nlp_listp)) { spin_lock_irq(shost->host_lock); list_add_tail(&ndlp->nlp_listp, &vport->fc_nodes); spin_unlock_irq(shost->host_lock); } } void lpfc_dequeue_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); lpfc_cancel_retry_delay_tmo(vport, ndlp); if (ndlp->nlp_state && !list_empty(&ndlp->nlp_listp)) lpfc_nlp_counters(vport, ndlp->nlp_state, -1); spin_lock_irq(shost->host_lock); list_del_init(&ndlp->nlp_listp); spin_unlock_irq(shost->host_lock); lpfc_nlp_state_cleanup(vport, ndlp, ndlp->nlp_state, NLP_STE_UNUSED_NODE); } /** * lpfc_initialize_node - Initialize all fields of node object * @vport: Pointer to Virtual Port object. * @ndlp: Pointer to FC node object. * @did: FC_ID of the node. * * This function is always called when node object need to be initialized. * It initializes all the fields of the node object. Although the reference * to phba from @ndlp can be obtained indirectly through it's reference to * @vport, a direct reference to phba is taken here by @ndlp. This is due * to the life-span of the @ndlp might go beyond the existence of @vport as * the final release of ndlp is determined by its reference count. And, the * operation on @ndlp needs the reference to phba. **/ static inline void lpfc_initialize_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, uint32_t did) { INIT_LIST_HEAD(&ndlp->els_retry_evt.evt_listp); INIT_LIST_HEAD(&ndlp->dev_loss_evt.evt_listp); timer_setup(&ndlp->nlp_delayfunc, lpfc_els_retry_delay, 0); INIT_LIST_HEAD(&ndlp->recovery_evt.evt_listp); ndlp->nlp_DID = did; ndlp->vport = vport; ndlp->phba = vport->phba; ndlp->nlp_sid = NLP_NO_SID; ndlp->nlp_fc4_type = NLP_FC4_NONE; kref_init(&ndlp->kref); atomic_set(&ndlp->cmd_pending, 0); ndlp->cmd_qdepth = vport->cfg_tgt_queue_depth; ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; } void lpfc_drop_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { /* * Use of lpfc_drop_node and UNUSED list: lpfc_drop_node should * be used if we wish to issue the "last" lpfc_nlp_put() to remove * the ndlp from the vport. The ndlp marked as UNUSED on the list * until ALL other outstanding threads have completed. We check * that the ndlp not already in the UNUSED state before we proceed. */ if (ndlp->nlp_state == NLP_STE_UNUSED_NODE) return; lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNUSED_NODE); ndlp->nlp_flag |= NLP_DROPPED; if (vport->phba->sli_rev == LPFC_SLI_REV4) { lpfc_cleanup_vports_rrqs(vport, ndlp); lpfc_unreg_rpi(vport, ndlp); } lpfc_nlp_put(ndlp); return; } /* * Start / ReStart rescue timer for Discovery / RSCN handling */ void lpfc_set_disctmo(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; uint32_t tmo; if (vport->port_state == LPFC_LOCAL_CFG_LINK) { /* For FAN, timeout should be greater than edtov */ tmo = (((phba->fc_edtov + 999) / 1000) + 1); } else { /* Normal discovery timeout should be > than ELS/CT timeout * FC spec states we need 3 * ratov for CT requests */ tmo = ((phba->fc_ratov * 3) + 3); } if (!timer_pending(&vport->fc_disctmo)) { lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_ELS_CMD, "set disc timer: tmo:x%x state:x%x flg:x%x", tmo, vport->port_state, vport->fc_flag); } mod_timer(&vport->fc_disctmo, jiffies + msecs_to_jiffies(1000 * tmo)); spin_lock_irq(shost->host_lock); vport->fc_flag |= FC_DISC_TMO; spin_unlock_irq(shost->host_lock); /* Start Discovery Timer state <hba_state> */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0247 Start Discovery Timer state x%x " "Data: x%x x%lx x%x x%x\n", vport->port_state, tmo, (unsigned long)&vport->fc_disctmo, vport->fc_plogi_cnt, vport->fc_adisc_cnt); return; } /* * Cancel rescue timer for Discovery / RSCN handling */ int lpfc_can_disctmo(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); unsigned long iflags; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_ELS_CMD, "can disc timer: state:x%x rtry:x%x flg:x%x", vport->port_state, vport->fc_ns_retry, vport->fc_flag); /* Turn off discovery timer if its running */ if (vport->fc_flag & FC_DISC_TMO) { spin_lock_irqsave(shost->host_lock, iflags); vport->fc_flag &= ~FC_DISC_TMO; spin_unlock_irqrestore(shost->host_lock, iflags); del_timer_sync(&vport->fc_disctmo); spin_lock_irqsave(&vport->work_port_lock, iflags); vport->work_port_events &= ~WORKER_DISC_TMO; spin_unlock_irqrestore(&vport->work_port_lock, iflags); } /* Cancel Discovery Timer state <hba_state> */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0248 Cancel Discovery Timer state x%x " "Data: x%x x%x x%x\n", vport->port_state, vport->fc_flag, vport->fc_plogi_cnt, vport->fc_adisc_cnt); return 0; } /* * Check specified ring for outstanding IOCB on the SLI queue * Return true if iocb matches the specified nport */ int lpfc_check_sli_ndlp(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *iocb, struct lpfc_nodelist *ndlp) { IOCB_t *icmd = &iocb->iocb; struct lpfc_vport *vport = ndlp->vport; if (iocb->vport != vport) return 0; if (pring->ringno == LPFC_ELS_RING) { switch (icmd->ulpCommand) { case CMD_GEN_REQUEST64_CR: if (iocb->context_un.ndlp == ndlp) return 1; fallthrough; case CMD_ELS_REQUEST64_CR: if (icmd->un.elsreq64.remoteID == ndlp->nlp_DID) return 1; fallthrough; case CMD_XMIT_ELS_RSP64_CX: if (iocb->context1 == (uint8_t *) ndlp) return 1; } } else if (pring->ringno == LPFC_FCP_RING) { /* Skip match check if waiting to relogin to FCP target */ if ((ndlp->nlp_type & NLP_FCP_TARGET) && (ndlp->nlp_flag & NLP_DELAY_TMO)) { return 0; } if (icmd->ulpContext == (volatile ushort)ndlp->nlp_rpi) { return 1; } } return 0; } static void __lpfc_dequeue_nport_iocbs(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct lpfc_sli_ring *pring, struct list_head *dequeue_list) { struct lpfc_iocbq *iocb, *next_iocb; list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { /* Check to see if iocb matches the nport */ if (lpfc_check_sli_ndlp(phba, pring, iocb, ndlp)) /* match, dequeue */ list_move_tail(&iocb->list, dequeue_list); } } static void lpfc_sli3_dequeue_nport_iocbs(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct list_head *dequeue_list) { struct lpfc_sli *psli = &phba->sli; uint32_t i; spin_lock_irq(&phba->hbalock); for (i = 0; i < psli->num_rings; i++) __lpfc_dequeue_nport_iocbs(phba, ndlp, &psli->sli3_ring[i], dequeue_list); spin_unlock_irq(&phba->hbalock); } static void lpfc_sli4_dequeue_nport_iocbs(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct list_head *dequeue_list) { struct lpfc_sli_ring *pring; struct lpfc_queue *qp = NULL; spin_lock_irq(&phba->hbalock); list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { pring = qp->pring; if (!pring) continue; spin_lock(&pring->ring_lock); __lpfc_dequeue_nport_iocbs(phba, ndlp, pring, dequeue_list); spin_unlock(&pring->ring_lock); } spin_unlock_irq(&phba->hbalock); } /* * Free resources / clean up outstanding I/Os * associated with nlp_rpi in the LPFC_NODELIST entry. */ static int lpfc_no_rpi(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) { LIST_HEAD(completions); lpfc_fabric_abort_nport(ndlp); /* * Everything that matches on txcmplq will be returned * by firmware with a no rpi error. */ if (ndlp->nlp_flag & NLP_RPI_REGISTERED) { if (phba->sli_rev != LPFC_SLI_REV4) lpfc_sli3_dequeue_nport_iocbs(phba, ndlp, &completions); else lpfc_sli4_dequeue_nport_iocbs(phba, ndlp, &completions); } /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); return 0; } /** * lpfc_nlp_logo_unreg - Unreg mailbox completion handler before LOGO * @phba: Pointer to HBA context object. * @pmb: Pointer to mailbox object. * * This function will issue an ELS LOGO command after completing * the UNREG_RPI. **/ static void lpfc_nlp_logo_unreg(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct lpfc_nodelist *ndlp; ndlp = (struct lpfc_nodelist *)(pmb->ctx_ndlp); if (!ndlp) return; lpfc_issue_els_logo(vport, ndlp, 0); mempool_free(pmb, phba->mbox_mem_pool); /* Check to see if there are any deferred events to process */ if ((ndlp->nlp_flag & NLP_UNREG_INP) && (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "1434 UNREG cmpl deferred logo x%x " "on NPort x%x Data: x%x x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_defer_did, ndlp); ndlp->nlp_flag &= ~NLP_UNREG_INP; ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); } else { /* NLP_RELEASE_RPI is only set for SLI4 ports. */ if (ndlp->nlp_flag & NLP_RELEASE_RPI) { lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~NLP_RELEASE_RPI; ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; spin_unlock_irq(&ndlp->lock); } spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~NLP_UNREG_INP; spin_unlock_irq(&ndlp->lock); } } /* * Sets the mailbox completion handler to be used for the * unreg_rpi command. The handler varies based on the state of * the port and what will be happening to the rpi next. */ static void lpfc_set_unreg_login_mbx_cmpl(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, LPFC_MBOXQ_t *mbox) { unsigned long iflags; /* Driver always gets a reference on the mailbox job * in support of async jobs. */ mbox->ctx_ndlp = lpfc_nlp_get(ndlp); if (!mbox->ctx_ndlp) return; if (ndlp->nlp_flag & NLP_ISSUE_LOGO) { mbox->mbox_cmpl = lpfc_nlp_logo_unreg; } else if (phba->sli_rev == LPFC_SLI_REV4 && (!(vport->load_flag & FC_UNLOADING)) && (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= LPFC_SLI_INTF_IF_TYPE_2) && (kref_read(&ndlp->kref) > 0)) { mbox->mbox_cmpl = lpfc_sli4_unreg_rpi_cmpl_clr; } else { if (vport->load_flag & FC_UNLOADING) { if (phba->sli_rev == LPFC_SLI_REV4) { spin_lock_irqsave(&ndlp->lock, iflags); ndlp->nlp_flag |= NLP_RELEASE_RPI; spin_unlock_irqrestore(&ndlp->lock, iflags); } } mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; } } /* * Free rpi associated with LPFC_NODELIST entry. * This routine is called from lpfc_freenode(), when we are removing * a LPFC_NODELIST entry. It is also called if the driver initiates a * LOGO that completes successfully, and we are waiting to PLOGI back * to the remote NPort. In addition, it is called after we receive * and unsolicated ELS cmd, send back a rsp, the rsp completes and * we are waiting to PLOGI back to the remote NPort. */ int lpfc_unreg_rpi(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mbox; int rc, acc_plogi = 1; uint16_t rpi; if (ndlp->nlp_flag & NLP_RPI_REGISTERED || ndlp->nlp_flag & NLP_REG_LOGIN_SEND) { if (ndlp->nlp_flag & NLP_REG_LOGIN_SEND) lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "3366 RPI x%x needs to be " "unregistered nlp_flag x%x " "did x%x\n", ndlp->nlp_rpi, ndlp->nlp_flag, ndlp->nlp_DID); /* If there is already an UNREG in progress for this ndlp, * no need to queue up another one. */ if (ndlp->nlp_flag & NLP_UNREG_INP) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "1436 unreg_rpi SKIP UNREG x%x on " "NPort x%x deferred x%x flg x%x " "Data: x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_defer_did, ndlp->nlp_flag, ndlp); goto out; } mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (mbox) { /* SLI4 ports require the physical rpi value. */ rpi = ndlp->nlp_rpi; if (phba->sli_rev == LPFC_SLI_REV4) rpi = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; lpfc_unreg_login(phba, vport->vpi, rpi, mbox); mbox->vport = vport; lpfc_set_unreg_login_mbx_cmpl(phba, vport, ndlp, mbox); if (!mbox->ctx_ndlp) { mempool_free(mbox, phba->mbox_mem_pool); return 1; } if (mbox->mbox_cmpl == lpfc_sli4_unreg_rpi_cmpl_clr) /* * accept PLOGIs after unreg_rpi_cmpl */ acc_plogi = 0; if (((ndlp->nlp_DID & Fabric_DID_MASK) != Fabric_DID_MASK) && (!(vport->fc_flag & FC_OFFLINE_MODE))) ndlp->nlp_flag |= NLP_UNREG_INP; lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "1433 unreg_rpi UNREG x%x on " "NPort x%x deferred flg x%x " "Data:x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, ndlp); rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { mempool_free(mbox, phba->mbox_mem_pool); acc_plogi = 1; } } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "1444 Failed to allocate mempool " "unreg_rpi UNREG x%x, " "DID x%x, flag x%x, " "ndlp x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, ndlp); /* Because mempool_alloc failed, we * will issue a LOGO here and keep the rpi alive if * not unloading. */ if (!(vport->load_flag & FC_UNLOADING)) { ndlp->nlp_flag &= ~NLP_UNREG_INP; lpfc_issue_els_logo(vport, ndlp, 0); ndlp->nlp_prev_state = ndlp->nlp_state; lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE); } return 1; } lpfc_no_rpi(phba, ndlp); out: if (phba->sli_rev != LPFC_SLI_REV4) ndlp->nlp_rpi = 0; ndlp->nlp_flag &= ~NLP_RPI_REGISTERED; ndlp->nlp_flag &= ~NLP_NPR_ADISC; if (acc_plogi) ndlp->nlp_flag &= ~NLP_LOGO_ACC; return 1; } ndlp->nlp_flag &= ~NLP_LOGO_ACC; return 0; } /** * lpfc_unreg_hba_rpis - Unregister rpis registered to the hba. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unregister all the currently registered RPIs * to the HBA. **/ void lpfc_unreg_hba_rpis(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct lpfc_nodelist *ndlp; struct Scsi_Host *shost; int i; vports = lpfc_create_vport_work_array(phba); if (!vports) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2884 Vport array allocation failed \n"); return; } for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); spin_lock_irq(shost->host_lock); list_for_each_entry(ndlp, &vports[i]->fc_nodes, nlp_listp) { if (ndlp->nlp_flag & NLP_RPI_REGISTERED) { /* The mempool_alloc might sleep */ spin_unlock_irq(shost->host_lock); lpfc_unreg_rpi(vports[i], ndlp); spin_lock_irq(shost->host_lock); } } spin_unlock_irq(shost->host_lock); } lpfc_destroy_vport_work_array(phba, vports); } void lpfc_unreg_all_rpis(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mbox; int rc; if (phba->sli_rev == LPFC_SLI_REV4) { lpfc_sli4_unreg_all_rpis(vport); return; } mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (mbox) { lpfc_unreg_login(phba, vport->vpi, LPFC_UNREG_ALL_RPIS_VPORT, mbox); mbox->vport = vport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mbox->ctx_ndlp = NULL; rc = lpfc_sli_issue_mbox_wait(phba, mbox, LPFC_MBOX_TMO); if (rc != MBX_TIMEOUT) mempool_free(mbox, phba->mbox_mem_pool); if ((rc == MBX_TIMEOUT) || (rc == MBX_NOT_FINISHED)) lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "1836 Could not issue " "unreg_login(all_rpis) status %d\n", rc); } } void lpfc_unreg_default_rpis(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mbox; int rc; /* Unreg DID is an SLI3 operation. */ if (phba->sli_rev > LPFC_SLI_REV3) return; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (mbox) { lpfc_unreg_did(phba, vport->vpi, LPFC_UNREG_ALL_DFLT_RPIS, mbox); mbox->vport = vport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mbox->ctx_ndlp = NULL; rc = lpfc_sli_issue_mbox_wait(phba, mbox, LPFC_MBOX_TMO); if (rc != MBX_TIMEOUT) mempool_free(mbox, phba->mbox_mem_pool); if ((rc == MBX_TIMEOUT) || (rc == MBX_NOT_FINISHED)) lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "1815 Could not issue " "unreg_did (default rpis) status %d\n", rc); } } /* * Free resources associated with LPFC_NODELIST entry * so it can be freed. */ static int lpfc_cleanup_node(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mb, *nextmb; struct lpfc_dmabuf *mp; /* Cleanup node for NPort <nlp_DID> */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0900 Cleanup node for NPort x%x " "Data: x%x x%x x%x\n", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, ndlp->nlp_rpi); lpfc_dequeue_node(vport, ndlp); /* Don't need to clean up REG_LOGIN64 cmds for Default RPI cleanup */ /* cleanup any ndlp on mbox q waiting for reglogin cmpl */ if ((mb = phba->sli.mbox_active)) { if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) && !(mb->mbox_flag & LPFC_MBX_IMED_UNREG) && (ndlp == (struct lpfc_nodelist *)mb->ctx_ndlp)) { mb->ctx_ndlp = NULL; mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; } } spin_lock_irq(&phba->hbalock); /* Cleanup REG_LOGIN completions which are not yet processed */ list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) || (mb->mbox_flag & LPFC_MBX_IMED_UNREG) || (ndlp != (struct lpfc_nodelist *)mb->ctx_ndlp)) continue; mb->ctx_ndlp = NULL; mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; } list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) && !(mb->mbox_flag & LPFC_MBX_IMED_UNREG) && (ndlp == (struct lpfc_nodelist *)mb->ctx_ndlp)) { mp = (struct lpfc_dmabuf *)(mb->ctx_buf); if (mp) { __lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } list_del(&mb->list); mempool_free(mb, phba->mbox_mem_pool); /* We shall not invoke the lpfc_nlp_put to decrement * the ndlp reference count as we are in the process * of lpfc_nlp_release. */ } } spin_unlock_irq(&phba->hbalock); lpfc_els_abort(phba, ndlp); spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~NLP_DELAY_TMO; spin_unlock_irq(&ndlp->lock); ndlp->nlp_last_elscmd = 0; del_timer_sync(&ndlp->nlp_delayfunc); list_del_init(&ndlp->els_retry_evt.evt_listp); list_del_init(&ndlp->dev_loss_evt.evt_listp); list_del_init(&ndlp->recovery_evt.evt_listp); lpfc_cleanup_vports_rrqs(vport, ndlp); if (phba->sli_rev == LPFC_SLI_REV4) ndlp->nlp_flag |= NLP_RELEASE_RPI; return 0; } static int lpfc_matchdid(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, uint32_t did) { D_ID mydid, ndlpdid, matchdid; if (did == Bcast_DID) return 0; /* First check for Direct match */ if (ndlp->nlp_DID == did) return 1; /* Next check for area/domain identically equals 0 match */ mydid.un.word = vport->fc_myDID; if ((mydid.un.b.domain == 0) && (mydid.un.b.area == 0)) { return 0; } matchdid.un.word = did; ndlpdid.un.word = ndlp->nlp_DID; if (matchdid.un.b.id == ndlpdid.un.b.id) { if ((mydid.un.b.domain == matchdid.un.b.domain) && (mydid.un.b.area == matchdid.un.b.area)) { /* This code is supposed to match the ID * for a private loop device that is * connect to fl_port. But we need to * check that the port did not just go * from pt2pt to fabric or we could end * up matching ndlp->nlp_DID 000001 to * fabric DID 0x20101 */ if ((ndlpdid.un.b.domain == 0) && (ndlpdid.un.b.area == 0)) { if (ndlpdid.un.b.id && vport->phba->fc_topology == LPFC_TOPOLOGY_LOOP) return 1; } return 0; } matchdid.un.word = ndlp->nlp_DID; if ((mydid.un.b.domain == ndlpdid.un.b.domain) && (mydid.un.b.area == ndlpdid.un.b.area)) { if ((matchdid.un.b.domain == 0) && (matchdid.un.b.area == 0)) { if (matchdid.un.b.id) return 1; } } } return 0; } /* Search for a nodelist entry */ static struct lpfc_nodelist * __lpfc_findnode_did(struct lpfc_vport *vport, uint32_t did) { struct lpfc_nodelist *ndlp; uint32_t data1; list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (lpfc_matchdid(vport, ndlp, did)) { data1 = (((uint32_t)ndlp->nlp_state << 24) | ((uint32_t)ndlp->nlp_xri << 16) | ((uint32_t)ndlp->nlp_type << 8) ); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0929 FIND node DID " "Data: x%px x%x x%x x%x x%x x%px\n", ndlp, ndlp->nlp_DID, ndlp->nlp_flag, data1, ndlp->nlp_rpi, ndlp->active_rrqs_xri_bitmap); return ndlp; } } /* FIND node did <did> NOT FOUND */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0932 FIND node did x%x NOT FOUND.\n", did); return NULL; } struct lpfc_nodelist * lpfc_findnode_did(struct lpfc_vport *vport, uint32_t did) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_nodelist *ndlp; unsigned long iflags; spin_lock_irqsave(shost->host_lock, iflags); ndlp = __lpfc_findnode_did(vport, did); spin_unlock_irqrestore(shost->host_lock, iflags); return ndlp; } struct lpfc_nodelist * lpfc_findnode_mapped(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_nodelist *ndlp; uint32_t data1; unsigned long iflags; spin_lock_irqsave(shost->host_lock, iflags); list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || ndlp->nlp_state == NLP_STE_MAPPED_NODE) { data1 = (((uint32_t)ndlp->nlp_state << 24) | ((uint32_t)ndlp->nlp_xri << 16) | ((uint32_t)ndlp->nlp_type << 8) | ((uint32_t)ndlp->nlp_rpi & 0xff)); spin_unlock_irqrestore(shost->host_lock, iflags); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "2025 FIND node DID " "Data: x%px x%x x%x x%x x%px\n", ndlp, ndlp->nlp_DID, ndlp->nlp_flag, data1, ndlp->active_rrqs_xri_bitmap); return ndlp; } } spin_unlock_irqrestore(shost->host_lock, iflags); /* FIND node did <did> NOT FOUND */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "2026 FIND mapped did NOT FOUND.\n"); return NULL; } struct lpfc_nodelist * lpfc_setup_disc_node(struct lpfc_vport *vport, uint32_t did) { struct lpfc_nodelist *ndlp; ndlp = lpfc_findnode_did(vport, did); if (!ndlp) { if (vport->phba->nvmet_support) return NULL; if ((vport->fc_flag & FC_RSCN_MODE) != 0 && lpfc_rscn_payload_check(vport, did) == 0) return NULL; ndlp = lpfc_nlp_init(vport, did); if (!ndlp) return NULL; lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE); lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "6453 Setup New Node 2B_DISC x%x " "Data:x%x x%x x%x\n", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, vport->fc_flag); spin_lock_irq(&ndlp->lock); ndlp->nlp_flag |= NLP_NPR_2B_DISC; spin_unlock_irq(&ndlp->lock); return ndlp; } /* The NVME Target does not want to actively manage an rport. * The goal is to allow the target to reset its state and clear * pending IO in preparation for the initiator to recover. */ if ((vport->fc_flag & FC_RSCN_MODE) && !(vport->fc_flag & FC_NDISC_ACTIVE)) { if (lpfc_rscn_payload_check(vport, did)) { /* Since this node is marked for discovery, * delay timeout is not needed. */ lpfc_cancel_retry_delay_tmo(vport, ndlp); lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "6455 Setup RSCN Node 2B_DISC x%x " "Data:x%x x%x x%x\n", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, vport->fc_flag); /* NVME Target mode waits until rport is known to be * impacted by the RSCN before it transitions. No * active management - just go to NPR provided the * node had a valid login. */ if (vport->phba->nvmet_support) return ndlp; /* If we've already received a PLOGI from this NPort * we don't need to try to discover it again. */ if (ndlp->nlp_flag & NLP_RCV_PLOGI && !(ndlp->nlp_type & (NLP_FCP_TARGET | NLP_NVME_TARGET))) return NULL; ndlp->nlp_prev_state = ndlp->nlp_state; lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE); spin_lock_irq(&ndlp->lock); ndlp->nlp_flag |= NLP_NPR_2B_DISC; spin_unlock_irq(&ndlp->lock); } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "6456 Skip Setup RSCN Node x%x " "Data:x%x x%x x%x\n", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, vport->fc_flag); ndlp = NULL; } } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "6457 Setup Active Node 2B_DISC x%x " "Data:x%x x%x x%x\n", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, vport->fc_flag); /* If the initiator received a PLOGI from this NPort or if the * initiator is already in the process of discovery on it, * there's no need to try to discover it again. */ if (ndlp->nlp_state == NLP_STE_ADISC_ISSUE || ndlp->nlp_state == NLP_STE_PLOGI_ISSUE || (!vport->phba->nvmet_support && ndlp->nlp_flag & NLP_RCV_PLOGI)) return NULL; if (vport->phba->nvmet_support) return ndlp; /* Moving to NPR state clears unsolicited flags and * allows for rediscovery */ lpfc_nlp_set_state(vport, ndlp, NLP_STE_NPR_NODE); spin_lock_irq(&ndlp->lock); ndlp->nlp_flag |= NLP_NPR_2B_DISC; spin_unlock_irq(&ndlp->lock); } return ndlp; } /* Build a list of nodes to discover based on the loopmap */ void lpfc_disc_list_loopmap(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; int j; uint32_t alpa, index; if (!lpfc_is_link_up(phba)) return; if (phba->fc_topology != LPFC_TOPOLOGY_LOOP) return; /* Check for loop map present or not */ if (phba->alpa_map[0]) { for (j = 1; j <= phba->alpa_map[0]; j++) { alpa = phba->alpa_map[j]; if (((vport->fc_myDID & 0xff) == alpa) || (alpa == 0)) continue; lpfc_setup_disc_node(vport, alpa); } } else { /* No alpamap, so try all alpa's */ for (j = 0; j < FC_MAXLOOP; j++) { /* If cfg_scan_down is set, start from highest * ALPA (0xef) to lowest (0x1). */ if (vport->cfg_scan_down) index = j; else index = FC_MAXLOOP - j - 1; alpa = lpfcAlpaArray[index]; if ((vport->fc_myDID & 0xff) == alpa) continue; lpfc_setup_disc_node(vport, alpa); } } return; } /* SLI3 only */ void lpfc_issue_clear_la(struct lpfc_hba *phba, struct lpfc_vport *vport) { LPFC_MBOXQ_t *mbox; struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *extra_ring = &psli->sli3_ring[LPFC_EXTRA_RING]; struct lpfc_sli_ring *fcp_ring = &psli->sli3_ring[LPFC_FCP_RING]; int rc; /* * if it's not a physical port or if we already send * clear_la then don't send it. */ if ((phba->link_state >= LPFC_CLEAR_LA) || (vport->port_type != LPFC_PHYSICAL_PORT) || (phba->sli_rev == LPFC_SLI_REV4)) return; /* Link up discovery */ if ((mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL)) != NULL) { phba->link_state = LPFC_CLEAR_LA; lpfc_clear_la(phba, mbox); mbox->mbox_cmpl = lpfc_mbx_cmpl_clear_la; mbox->vport = vport; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { mempool_free(mbox, phba->mbox_mem_pool); lpfc_disc_flush_list(vport); extra_ring->flag &= ~LPFC_STOP_IOCB_EVENT; fcp_ring->flag &= ~LPFC_STOP_IOCB_EVENT; phba->link_state = LPFC_HBA_ERROR; } } } /* Reg_vpi to tell firmware to resume normal operations */ void lpfc_issue_reg_vpi(struct lpfc_hba *phba, struct lpfc_vport *vport) { LPFC_MBOXQ_t *regvpimbox; regvpimbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (regvpimbox) { lpfc_reg_vpi(vport, regvpimbox); regvpimbox->mbox_cmpl = lpfc_mbx_cmpl_reg_vpi; regvpimbox->vport = vport; if (lpfc_sli_issue_mbox(phba, regvpimbox, MBX_NOWAIT) == MBX_NOT_FINISHED) { mempool_free(regvpimbox, phba->mbox_mem_pool); } } } /* Start Link up / RSCN discovery on NPR nodes */ void lpfc_disc_start(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; uint32_t num_sent; uint32_t clear_la_pending; if (!lpfc_is_link_up(phba)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "3315 Link is not up %x\n", phba->link_state); return; } if (phba->link_state == LPFC_CLEAR_LA) clear_la_pending = 1; else clear_la_pending = 0; if (vport->port_state < LPFC_VPORT_READY) vport->port_state = LPFC_DISC_AUTH; lpfc_set_disctmo(vport); vport->fc_prevDID = vport->fc_myDID; vport->num_disc_nodes = 0; /* Start Discovery state <hba_state> */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0202 Start Discovery port state x%x " "flg x%x Data: x%x x%x x%x\n", vport->port_state, vport->fc_flag, vport->fc_plogi_cnt, vport->fc_adisc_cnt, vport->fc_npr_cnt); /* First do ADISCs - if any */ num_sent = lpfc_els_disc_adisc(vport); if (num_sent) return; /* Register the VPI for SLI3, NPIV only. */ if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && !(vport->fc_flag & FC_PT2PT) && !(vport->fc_flag & FC_RSCN_MODE) && (phba->sli_rev < LPFC_SLI_REV4)) { lpfc_issue_clear_la(phba, vport); lpfc_issue_reg_vpi(phba, vport); return; } /* * For SLI2, we need to set port_state to READY and continue * discovery. */ if (vport->port_state < LPFC_VPORT_READY && !clear_la_pending) { /* If we get here, there is nothing to ADISC */ lpfc_issue_clear_la(phba, vport); if (!(vport->fc_flag & FC_ABORT_DISCOVERY)) { vport->num_disc_nodes = 0; /* go thru NPR nodes and issue ELS PLOGIs */ if (vport->fc_npr_cnt) lpfc_els_disc_plogi(vport); if (!vport->num_disc_nodes) { spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_NDISC_ACTIVE; spin_unlock_irq(shost->host_lock); lpfc_can_disctmo(vport); } } vport->port_state = LPFC_VPORT_READY; } else { /* Next do PLOGIs - if any */ num_sent = lpfc_els_disc_plogi(vport); if (num_sent) return; if (vport->fc_flag & FC_RSCN_MODE) { /* Check to see if more RSCNs came in while we * were processing this one. */ if ((vport->fc_rscn_id_cnt == 0) && (!(vport->fc_flag & FC_RSCN_DISCOVERY))) { spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_RSCN_MODE; spin_unlock_irq(shost->host_lock); lpfc_can_disctmo(vport); } else lpfc_els_handle_rscn(vport); } } return; } /* * Ignore completion for all IOCBs on tx and txcmpl queue for ELS * ring the match the sppecified nodelist. */ static void lpfc_free_tx(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) { LIST_HEAD(completions); IOCB_t *icmd; struct lpfc_iocbq *iocb, *next_iocb; struct lpfc_sli_ring *pring; pring = lpfc_phba_elsring(phba); if (unlikely(!pring)) return; /* Error matching iocb on txq or txcmplq * First check the txq. */ spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { if (iocb->context1 != ndlp) { continue; } icmd = &iocb->iocb; if ((icmd->ulpCommand == CMD_ELS_REQUEST64_CR) || (icmd->ulpCommand == CMD_XMIT_ELS_RSP64_CX)) { list_move_tail(&iocb->list, &completions); } } /* Next check the txcmplq */ list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) { if (iocb->context1 != ndlp) { continue; } icmd = &iocb->iocb; if (icmd->ulpCommand == CMD_ELS_REQUEST64_CR || icmd->ulpCommand == CMD_XMIT_ELS_RSP64_CX) { lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); } } spin_unlock_irq(&phba->hbalock); /* Make sure HBA is alive */ lpfc_issue_hb_tmo(phba); /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); } static void lpfc_disc_flush_list(struct lpfc_vport *vport) { struct lpfc_nodelist *ndlp, *next_ndlp; struct lpfc_hba *phba = vport->phba; if (vport->fc_plogi_cnt || vport->fc_adisc_cnt) { list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { if (ndlp->nlp_state == NLP_STE_PLOGI_ISSUE || ndlp->nlp_state == NLP_STE_ADISC_ISSUE) { lpfc_free_tx(phba, ndlp); } } } } void lpfc_cleanup_discovery_resources(struct lpfc_vport *vport) { lpfc_els_flush_rscn(vport); lpfc_els_flush_cmd(vport); lpfc_disc_flush_list(vport); } /*****************************************************************************/ /* * NAME: lpfc_disc_timeout * * FUNCTION: Fibre Channel driver discovery timeout routine. * * EXECUTION ENVIRONMENT: interrupt only * * CALLED FROM: * Timer function * * RETURNS: * none */ /*****************************************************************************/ void lpfc_disc_timeout(struct timer_list *t) { struct lpfc_vport *vport = from_timer(vport, t, fc_disctmo); struct lpfc_hba *phba = vport->phba; uint32_t tmo_posted; unsigned long flags = 0; if (unlikely(!phba)) return; spin_lock_irqsave(&vport->work_port_lock, flags); tmo_posted = vport->work_port_events & WORKER_DISC_TMO; if (!tmo_posted) vport->work_port_events |= WORKER_DISC_TMO; spin_unlock_irqrestore(&vport->work_port_lock, flags); if (!tmo_posted) lpfc_worker_wake_up(phba); return; } static void lpfc_disc_timeout_handler(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; struct lpfc_sli *psli = &phba->sli; struct lpfc_nodelist *ndlp, *next_ndlp; LPFC_MBOXQ_t *initlinkmbox; int rc, clrlaerr = 0; if (!(vport->fc_flag & FC_DISC_TMO)) return; spin_lock_irq(shost->host_lock); vport->fc_flag &= ~FC_DISC_TMO; spin_unlock_irq(shost->host_lock); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_ELS_CMD, "disc timeout: state:x%x rtry:x%x flg:x%x", vport->port_state, vport->fc_ns_retry, vport->fc_flag); switch (vport->port_state) { case LPFC_LOCAL_CFG_LINK: /* * port_state is identically LPFC_LOCAL_CFG_LINK while * waiting for FAN timeout */ lpfc_printf_vlog(vport, KERN_WARNING, LOG_DISCOVERY, "0221 FAN timeout\n"); /* Start discovery by sending FLOGI, clean up old rpis */ list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { if (ndlp->nlp_state != NLP_STE_NPR_NODE) continue; if (ndlp->nlp_type & NLP_FABRIC) { /* Clean up the ndlp on Fabric connections */ lpfc_drop_node(vport, ndlp); } else if (!(ndlp->nlp_flag & NLP_NPR_ADISC)) { /* Fail outstanding IO now since device * is marked for PLOGI. */ lpfc_unreg_rpi(vport, ndlp); } } if (vport->port_state != LPFC_FLOGI) { if (phba->sli_rev <= LPFC_SLI_REV3) lpfc_initial_flogi(vport); else lpfc_issue_init_vfi(vport); return; } break; case LPFC_FDISC: case LPFC_FLOGI: /* port_state is identically LPFC_FLOGI while waiting for FLOGI cmpl */ /* Initial FLOGI timeout */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0222 Initial %s timeout\n", vport->vpi ? "FDISC" : "FLOGI"); /* Assume no Fabric and go on with discovery. * Check for outstanding ELS FLOGI to abort. */ /* FLOGI failed, so just use loop map to make discovery list */ lpfc_disc_list_loopmap(vport); /* Start discovery */ lpfc_disc_start(vport); break; case LPFC_FABRIC_CFG_LINK: /* hba_state is identically LPFC_FABRIC_CFG_LINK while waiting for NameServer login */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0223 Timeout while waiting for " "NameServer login\n"); /* Next look for NameServer ndlp */ ndlp = lpfc_findnode_did(vport, NameServer_DID); if (ndlp) lpfc_els_abort(phba, ndlp); /* ReStart discovery */ goto restart_disc; case LPFC_NS_QRY: /* Check for wait for NameServer Rsp timeout */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0224 NameServer Query timeout " "Data: x%x x%x\n", vport->fc_ns_retry, LPFC_MAX_NS_RETRY); if (vport->fc_ns_retry < LPFC_MAX_NS_RETRY) { /* Try it one more time */ vport->fc_ns_retry++; vport->gidft_inp = 0; rc = lpfc_issue_gidft(vport); if (rc == 0) break; } vport->fc_ns_retry = 0; restart_disc: /* * Discovery is over. * set port_state to PORT_READY if SLI2. * cmpl_reg_vpi will set port_state to READY for SLI3. */ if (phba->sli_rev < LPFC_SLI_REV4) { if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) lpfc_issue_reg_vpi(phba, vport); else { lpfc_issue_clear_la(phba, vport); vport->port_state = LPFC_VPORT_READY; } } /* Setup and issue mailbox INITIALIZE LINK command */ initlinkmbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!initlinkmbox) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0206 Device Discovery " "completion error\n"); phba->link_state = LPFC_HBA_ERROR; break; } lpfc_linkdown(phba); lpfc_init_link(phba, initlinkmbox, phba->cfg_topology, phba->cfg_link_speed); initlinkmbox->u.mb.un.varInitLnk.lipsr_AL_PA = 0; initlinkmbox->vport = vport; initlinkmbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(phba, initlinkmbox, MBX_NOWAIT); lpfc_set_loopback_flag(phba); if (rc == MBX_NOT_FINISHED) mempool_free(initlinkmbox, phba->mbox_mem_pool); break; case LPFC_DISC_AUTH: /* Node Authentication timeout */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0227 Node Authentication timeout\n"); lpfc_disc_flush_list(vport); /* * set port_state to PORT_READY if SLI2. * cmpl_reg_vpi will set port_state to READY for SLI3. */ if (phba->sli_rev < LPFC_SLI_REV4) { if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) lpfc_issue_reg_vpi(phba, vport); else { /* NPIV Not enabled */ lpfc_issue_clear_la(phba, vport); vport->port_state = LPFC_VPORT_READY; } } break; case LPFC_VPORT_READY: if (vport->fc_flag & FC_RSCN_MODE) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0231 RSCN timeout Data: x%x " "x%x\n", vport->fc_ns_retry, LPFC_MAX_NS_RETRY); /* Cleanup any outstanding ELS commands */ lpfc_els_flush_cmd(vport); lpfc_els_flush_rscn(vport); lpfc_disc_flush_list(vport); } break; default: lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0273 Unexpected discovery timeout, " "vport State x%x\n", vport->port_state); break; } switch (phba->link_state) { case LPFC_CLEAR_LA: /* CLEAR LA timeout */ lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0228 CLEAR LA timeout\n"); clrlaerr = 1; break; case LPFC_LINK_UP: lpfc_issue_clear_la(phba, vport); fallthrough; case LPFC_LINK_UNKNOWN: case LPFC_WARM_START: case LPFC_INIT_START: case LPFC_INIT_MBX_CMDS: case LPFC_LINK_DOWN: case LPFC_HBA_ERROR: lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0230 Unexpected timeout, hba link " "state x%x\n", phba->link_state); clrlaerr = 1; break; case LPFC_HBA_READY: break; } if (clrlaerr) { lpfc_disc_flush_list(vport); if (phba->sli_rev != LPFC_SLI_REV4) { psli->sli3_ring[(LPFC_EXTRA_RING)].flag &= ~LPFC_STOP_IOCB_EVENT; psli->sli3_ring[LPFC_FCP_RING].flag &= ~LPFC_STOP_IOCB_EVENT; } vport->port_state = LPFC_VPORT_READY; } return; } /* * This routine handles processing a NameServer REG_LOGIN mailbox * command upon completion. It is setup in the LPFC_MBOXQ * as the completion routine when the command is * handed off to the SLI layer. */ void lpfc_mbx_cmpl_fdmi_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; struct lpfc_vport *vport = pmb->vport; pmb->ctx_buf = NULL; pmb->ctx_ndlp = NULL; if (phba->sli_rev < LPFC_SLI_REV4) ndlp->nlp_rpi = mb->un.varWords[0]; ndlp->nlp_flag |= NLP_RPI_REGISTERED; ndlp->nlp_type |= NLP_FABRIC; lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "0004 rpi:%x DID:%x flg:%x %d x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp); /* * Start issuing Fabric-Device Management Interface (FDMI) command to * 0xfffffa (FDMI well known port). * DHBA -> DPRT -> RHBA -> RPA (physical port) * DPRT -> RPRT (vports) */ if (vport->port_type == LPFC_PHYSICAL_PORT) { phba->link_flag &= ~LS_CT_VEN_RPA; /* For extra Vendor RPA */ lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_DHBA, 0); } else { lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_DPRT, 0); } /* decrement the node reference count held for this callback * function. */ lpfc_nlp_put(ndlp); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); return; } static int lpfc_filter_by_rpi(struct lpfc_nodelist *ndlp, void *param) { uint16_t *rpi = param; return ndlp->nlp_rpi == *rpi; } static int lpfc_filter_by_wwpn(struct lpfc_nodelist *ndlp, void *param) { return memcmp(&ndlp->nlp_portname, param, sizeof(ndlp->nlp_portname)) == 0; } static struct lpfc_nodelist * __lpfc_find_node(struct lpfc_vport *vport, node_filter filter, void *param) { struct lpfc_nodelist *ndlp; list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (filter(ndlp, param)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "3185 FIND node filter %ps DID " "ndlp x%px did x%x flg x%x st x%x " "xri x%x type x%x rpi x%x\n", filter, ndlp, ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_state, ndlp->nlp_xri, ndlp->nlp_type, ndlp->nlp_rpi); return ndlp; } } lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "3186 FIND node filter %ps NOT FOUND.\n", filter); return NULL; } /* * This routine looks up the ndlp lists for the given RPI. If rpi found it * returns the node list element pointer else return NULL. */ struct lpfc_nodelist * __lpfc_findnode_rpi(struct lpfc_vport *vport, uint16_t rpi) { return __lpfc_find_node(vport, lpfc_filter_by_rpi, &rpi); } /* * This routine looks up the ndlp lists for the given WWPN. If WWPN found it * returns the node element list pointer else return NULL. */ struct lpfc_nodelist * lpfc_findnode_wwpn(struct lpfc_vport *vport, struct lpfc_name *wwpn) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_nodelist *ndlp; spin_lock_irq(shost->host_lock); ndlp = __lpfc_find_node(vport, lpfc_filter_by_wwpn, wwpn); spin_unlock_irq(shost->host_lock); return ndlp; } /* * This routine looks up the ndlp lists for the given RPI. If the rpi * is found, the routine returns the node element list pointer else * return NULL. */ struct lpfc_nodelist * lpfc_findnode_rpi(struct lpfc_vport *vport, uint16_t rpi) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_nodelist *ndlp; unsigned long flags; spin_lock_irqsave(shost->host_lock, flags); ndlp = __lpfc_findnode_rpi(vport, rpi); spin_unlock_irqrestore(shost->host_lock, flags); return ndlp; } /** * lpfc_find_vport_by_vpid - Find a vport on a HBA through vport identifier * @phba: pointer to lpfc hba data structure. * @vpi: the physical host virtual N_Port identifier. * * This routine finds a vport on a HBA (referred by @phba) through a * @vpi. The function walks the HBA's vport list and returns the address * of the vport with the matching @vpi. * * Return code * NULL - No vport with the matching @vpi found * Otherwise - Address to the vport with the matching @vpi. **/ struct lpfc_vport * lpfc_find_vport_by_vpid(struct lpfc_hba *phba, uint16_t vpi) { struct lpfc_vport *vport; unsigned long flags; int i = 0; /* The physical ports are always vpi 0 - translate is unnecessary. */ if (vpi > 0) { /* * Translate the physical vpi to the logical vpi. The * vport stores the logical vpi. */ for (i = 0; i <= phba->max_vpi; i++) { if (vpi == phba->vpi_ids[i]) break; } if (i > phba->max_vpi) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2936 Could not find Vport mapped " "to vpi %d\n", vpi); return NULL; } } spin_lock_irqsave(&phba->port_list_lock, flags); list_for_each_entry(vport, &phba->port_list, listentry) { if (vport->vpi == i) { spin_unlock_irqrestore(&phba->port_list_lock, flags); return vport; } } spin_unlock_irqrestore(&phba->port_list_lock, flags); return NULL; } struct lpfc_nodelist * lpfc_nlp_init(struct lpfc_vport *vport, uint32_t did) { struct lpfc_nodelist *ndlp; int rpi = LPFC_RPI_ALLOC_ERROR; if (vport->phba->sli_rev == LPFC_SLI_REV4) { rpi = lpfc_sli4_alloc_rpi(vport->phba); if (rpi == LPFC_RPI_ALLOC_ERROR) return NULL; } ndlp = mempool_alloc(vport->phba->nlp_mem_pool, GFP_KERNEL); if (!ndlp) { if (vport->phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_free_rpi(vport->phba, rpi); return NULL; } memset(ndlp, 0, sizeof (struct lpfc_nodelist)); spin_lock_init(&ndlp->lock); lpfc_initialize_node(vport, ndlp, did); INIT_LIST_HEAD(&ndlp->nlp_listp); if (vport->phba->sli_rev == LPFC_SLI_REV4) { ndlp->nlp_rpi = rpi; lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "0007 Init New ndlp x%px, rpi:x%x DID:%x " "flg:x%x refcnt:%d\n", ndlp, ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref)); ndlp->active_rrqs_xri_bitmap = mempool_alloc(vport->phba->active_rrq_pool, GFP_KERNEL); if (ndlp->active_rrqs_xri_bitmap) memset(ndlp->active_rrqs_xri_bitmap, 0, ndlp->phba->cfg_rrq_xri_bitmap_sz); } lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_NODE, "node init: did:x%x", ndlp->nlp_DID, 0, 0); return ndlp; } /* This routine releases all resources associated with a specifc NPort's ndlp * and mempool_free's the nodelist. */ static void lpfc_nlp_release(struct kref *kref) { struct lpfc_nodelist *ndlp = container_of(kref, struct lpfc_nodelist, kref); struct lpfc_vport *vport = ndlp->vport; lpfc_debugfs_disc_trc(ndlp->vport, LPFC_DISC_TRC_NODE, "node release: did:x%x flg:x%x type:x%x", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_type); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0279 %s: ndlp: x%px did %x refcnt:%d rpi:%x\n", __func__, ndlp, ndlp->nlp_DID, kref_read(&ndlp->kref), ndlp->nlp_rpi); /* remove ndlp from action. */ lpfc_cancel_retry_delay_tmo(vport, ndlp); lpfc_cleanup_node(vport, ndlp); /* Not all ELS transactions have registered the RPI with the port. * In these cases the rpi usage is temporary and the node is * released when the WQE is completed. Catch this case to free the * RPI to the pool. Because this node is in the release path, a lock * is unnecessary. All references are gone and the node has been * dequeued. */ if (ndlp->nlp_flag & NLP_RELEASE_RPI) { if (ndlp->nlp_rpi != LPFC_RPI_ALLOC_ERROR && !(ndlp->nlp_flag & (NLP_RPI_REGISTERED | NLP_UNREG_INP))) { lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; } } /* The node is not freed back to memory, it is released to a pool so * the node fields need to be cleaned up. */ ndlp->vport = NULL; ndlp->nlp_state = NLP_STE_FREED_NODE; ndlp->nlp_flag = 0; ndlp->fc4_xpt_flags = 0; /* free ndlp memory for final ndlp release */ kfree(ndlp->lat_data); if (ndlp->phba->sli_rev == LPFC_SLI_REV4) mempool_free(ndlp->active_rrqs_xri_bitmap, ndlp->phba->active_rrq_pool); mempool_free(ndlp, ndlp->phba->nlp_mem_pool); } /* This routine bumps the reference count for a ndlp structure to ensure * that one discovery thread won't free a ndlp while another discovery thread * is using it. */ struct lpfc_nodelist * lpfc_nlp_get(struct lpfc_nodelist *ndlp) { unsigned long flags; if (ndlp) { lpfc_debugfs_disc_trc(ndlp->vport, LPFC_DISC_TRC_NODE, "node get: did:x%x flg:x%x refcnt:x%x", ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref)); /* The check of ndlp usage to prevent incrementing the * ndlp reference count that is in the process of being * released. */ spin_lock_irqsave(&ndlp->lock, flags); if (!kref_get_unless_zero(&ndlp->kref)) { spin_unlock_irqrestore(&ndlp->lock, flags); lpfc_printf_vlog(ndlp->vport, KERN_WARNING, LOG_NODE, "0276 %s: ndlp:x%px refcnt:%d\n", __func__, (void *)ndlp, kref_read(&ndlp->kref)); return NULL; } spin_unlock_irqrestore(&ndlp->lock, flags); } else { WARN_ONCE(!ndlp, "**** %s, get ref on NULL ndlp!", __func__); } return ndlp; } /* This routine decrements the reference count for a ndlp structure. If the * count goes to 0, this indicates the associated nodelist should be freed. */ int lpfc_nlp_put(struct lpfc_nodelist *ndlp) { if (ndlp) { lpfc_debugfs_disc_trc(ndlp->vport, LPFC_DISC_TRC_NODE, "node put: did:x%x flg:x%x refcnt:x%x", ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref)); } else { WARN_ONCE(!ndlp, "**** %s, put ref on NULL ndlp!", __func__); } return ndlp ? kref_put(&ndlp->kref, lpfc_nlp_release) : 0; } /* This routine free's the specified nodelist if it is not in use * by any other discovery thread. This routine returns 1 if the * ndlp has been freed. A return value of 0 indicates the ndlp is * not yet been released. */ int lpfc_nlp_not_used(struct lpfc_nodelist *ndlp) { lpfc_debugfs_disc_trc(ndlp->vport, LPFC_DISC_TRC_NODE, "node not used: did:x%x flg:x%x refcnt:x%x", ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref)); if (kref_read(&ndlp->kref) == 1) if (lpfc_nlp_put(ndlp)) return 1; return 0; } /** * lpfc_fcf_inuse - Check if FCF can be unregistered. * @phba: Pointer to hba context object. * * This function iterate through all FC nodes associated * will all vports to check if there is any node with * fc_rports associated with it. If there is an fc_rport * associated with the node, then the node is either in * discovered state or its devloss_timer is pending. */ static int lpfc_fcf_inuse(struct lpfc_hba *phba) { struct lpfc_vport **vports; int i, ret = 0; struct lpfc_nodelist *ndlp; struct Scsi_Host *shost; vports = lpfc_create_vport_work_array(phba); /* If driver cannot allocate memory, indicate fcf is in use */ if (!vports) return 1; for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); spin_lock_irq(shost->host_lock); /* * IF the CVL_RCVD bit is not set then we have sent the * flogi. * If dev_loss fires while we are waiting we do not want to * unreg the fcf. */ if (!(vports[i]->fc_flag & FC_VPORT_CVL_RCVD)) { spin_unlock_irq(shost->host_lock); ret = 1; goto out; } list_for_each_entry(ndlp, &vports[i]->fc_nodes, nlp_listp) { if (ndlp->rport && (ndlp->rport->roles & FC_RPORT_ROLE_FCP_TARGET)) { ret = 1; spin_unlock_irq(shost->host_lock); goto out; } else if (ndlp->nlp_flag & NLP_RPI_REGISTERED) { ret = 1; lpfc_printf_log(phba, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "2624 RPI %x DID %x flag %x " "still logged in\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag); } } spin_unlock_irq(shost->host_lock); } out: lpfc_destroy_vport_work_array(phba, vports); return ret; } /** * lpfc_unregister_vfi_cmpl - Completion handler for unreg vfi. * @phba: Pointer to hba context object. * @mboxq: Pointer to mailbox object. * * This function frees memory associated with the mailbox command. */ void lpfc_unregister_vfi_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct lpfc_vport *vport = mboxq->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); if (mboxq->u.mb.mbxStatus) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2555 UNREG_VFI mbxStatus error x%x " "HBA state x%x\n", mboxq->u.mb.mbxStatus, vport->port_state); } spin_lock_irq(shost->host_lock); phba->pport->fc_flag &= ~FC_VFI_REGISTERED; spin_unlock_irq(shost->host_lock); mempool_free(mboxq, phba->mbox_mem_pool); return; } /** * lpfc_unregister_fcfi_cmpl - Completion handler for unreg fcfi. * @phba: Pointer to hba context object. * @mboxq: Pointer to mailbox object. * * This function frees memory associated with the mailbox command. */ static void lpfc_unregister_fcfi_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { struct lpfc_vport *vport = mboxq->vport; if (mboxq->u.mb.mbxStatus) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2550 UNREG_FCFI mbxStatus error x%x " "HBA state x%x\n", mboxq->u.mb.mbxStatus, vport->port_state); } mempool_free(mboxq, phba->mbox_mem_pool); return; } /** * lpfc_unregister_fcf_prep - Unregister fcf record preparation * @phba: Pointer to hba context object. * * This function prepare the HBA for unregistering the currently registered * FCF from the HBA. It performs unregistering, in order, RPIs, VPIs, and * VFIs. */ int lpfc_unregister_fcf_prep(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct lpfc_nodelist *ndlp; struct Scsi_Host *shost; int i = 0, rc; /* Unregister RPIs */ if (lpfc_fcf_inuse(phba)) lpfc_unreg_hba_rpis(phba); /* At this point, all discovery is aborted */ phba->pport->port_state = LPFC_VPORT_UNKNOWN; /* Unregister VPIs */ vports = lpfc_create_vport_work_array(phba); if (vports && (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { /* Stop FLOGI/FDISC retries */ ndlp = lpfc_findnode_did(vports[i], Fabric_DID); if (ndlp) lpfc_cancel_retry_delay_tmo(vports[i], ndlp); lpfc_cleanup_pending_mbox(vports[i]); if (phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_unreg_all_rpis(vports[i]); lpfc_mbx_unreg_vpi(vports[i]); shost = lpfc_shost_from_vport(vports[i]); spin_lock_irq(shost->host_lock); vports[i]->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; spin_unlock_irq(shost->host_lock); } lpfc_destroy_vport_work_array(phba, vports); if (i == 0 && (!(phba->sli3_options & LPFC_SLI3_NPIV_ENABLED))) { ndlp = lpfc_findnode_did(phba->pport, Fabric_DID); if (ndlp) lpfc_cancel_retry_delay_tmo(phba->pport, ndlp); lpfc_cleanup_pending_mbox(phba->pport); if (phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_unreg_all_rpis(phba->pport); lpfc_mbx_unreg_vpi(phba->pport); shost = lpfc_shost_from_vport(phba->pport); spin_lock_irq(shost->host_lock); phba->pport->fc_flag |= FC_VPORT_NEEDS_INIT_VPI; phba->pport->vpi_state &= ~LPFC_VPI_REGISTERED; spin_unlock_irq(shost->host_lock); } /* Cleanup any outstanding ELS commands */ lpfc_els_flush_all_cmd(phba); /* Unregister the physical port VFI */ rc = lpfc_issue_unreg_vfi(phba->pport); return rc; } /** * lpfc_sli4_unregister_fcf - Unregister currently registered FCF record * @phba: Pointer to hba context object. * * This function issues synchronous unregister FCF mailbox command to HBA to * unregister the currently registered FCF record. The driver does not reset * the driver FCF usage state flags. * * Return 0 if successfully issued, none-zero otherwise. */ int lpfc_sli4_unregister_fcf(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mbox; int rc; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2551 UNREG_FCFI mbox allocation failed" "HBA state x%x\n", phba->pport->port_state); return -ENOMEM; } lpfc_unreg_fcfi(mbox, phba->fcf.fcfi); mbox->vport = phba->pport; mbox->mbox_cmpl = lpfc_unregister_fcfi_cmpl; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2552 Unregister FCFI command failed rc x%x " "HBA state x%x\n", rc, phba->pport->port_state); return -EINVAL; } return 0; } /** * lpfc_unregister_fcf_rescan - Unregister currently registered fcf and rescan * @phba: Pointer to hba context object. * * This function unregisters the currently reigstered FCF. This function * also tries to find another FCF for discovery by rescan the HBA FCF table. */ void lpfc_unregister_fcf_rescan(struct lpfc_hba *phba) { int rc; /* Preparation for unregistering fcf */ rc = lpfc_unregister_fcf_prep(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2748 Failed to prepare for unregistering " "HBA's FCF record: rc=%d\n", rc); return; } /* Now, unregister FCF record and reset HBA FCF state */ rc = lpfc_sli4_unregister_fcf(phba); if (rc) return; /* Reset HBA FCF states after successful unregister FCF */ phba->fcf.fcf_flag = 0; phba->fcf.current_rec.flag = 0; /* * If driver is not unloading, check if there is any other * FCF record that can be used for discovery. */ if ((phba->pport->load_flag & FC_UNLOADING) || (phba->link_state < LPFC_LINK_UP)) return; /* This is considered as the initial FCF discovery scan */ spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag |= FCF_INIT_DISC; spin_unlock_irq(&phba->hbalock); /* Reset FCF roundrobin bmask for new discovery */ lpfc_sli4_clear_fcf_rr_bmask(phba); rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); if (rc) { spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_INIT_DISC; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2553 lpfc_unregister_unused_fcf failed " "to read FCF record HBA state x%x\n", phba->pport->port_state); } } /** * lpfc_unregister_fcf - Unregister the currently registered fcf record * @phba: Pointer to hba context object. * * This function just unregisters the currently reigstered FCF. It does not * try to find another FCF for discovery. */ void lpfc_unregister_fcf(struct lpfc_hba *phba) { int rc; /* Preparation for unregistering fcf */ rc = lpfc_unregister_fcf_prep(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2749 Failed to prepare for unregistering " "HBA's FCF record: rc=%d\n", rc); return; } /* Now, unregister FCF record and reset HBA FCF state */ rc = lpfc_sli4_unregister_fcf(phba); if (rc) return; /* Set proper HBA FCF states after successful unregister FCF */ spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_REGISTERED; spin_unlock_irq(&phba->hbalock); } /** * lpfc_unregister_unused_fcf - Unregister FCF if all devices are disconnected. * @phba: Pointer to hba context object. * * This function check if there are any connected remote port for the FCF and * if all the devices are disconnected, this function unregister FCFI. * This function also tries to use another FCF for discovery. */ void lpfc_unregister_unused_fcf(struct lpfc_hba *phba) { /* * If HBA is not running in FIP mode, if HBA does not support * FCoE, if FCF discovery is ongoing, or if FCF has not been * registered, do nothing. */ spin_lock_irq(&phba->hbalock); if (!(phba->hba_flag & HBA_FCOE_MODE) || !(phba->fcf.fcf_flag & FCF_REGISTERED) || !(phba->hba_flag & HBA_FIP_SUPPORT) || (phba->fcf.fcf_flag & FCF_DISCOVERY) || (phba->pport->port_state == LPFC_FLOGI)) { spin_unlock_irq(&phba->hbalock); return; } spin_unlock_irq(&phba->hbalock); if (lpfc_fcf_inuse(phba)) return; lpfc_unregister_fcf_rescan(phba); } /** * lpfc_read_fcf_conn_tbl - Create driver FCF connection table. * @phba: Pointer to hba context object. * @buff: Buffer containing the FCF connection table as in the config * region. * This function create driver data structure for the FCF connection * record table read from config region 23. */ static void lpfc_read_fcf_conn_tbl(struct lpfc_hba *phba, uint8_t *buff) { struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; struct lpfc_fcf_conn_hdr *conn_hdr; struct lpfc_fcf_conn_rec *conn_rec; uint32_t record_count; int i; /* Free the current connect table */ list_for_each_entry_safe(conn_entry, next_conn_entry, &phba->fcf_conn_rec_list, list) { list_del_init(&conn_entry->list); kfree(conn_entry); } conn_hdr = (struct lpfc_fcf_conn_hdr *) buff; record_count = conn_hdr->length * sizeof(uint32_t)/ sizeof(struct lpfc_fcf_conn_rec); conn_rec = (struct lpfc_fcf_conn_rec *) (buff + sizeof(struct lpfc_fcf_conn_hdr)); for (i = 0; i < record_count; i++) { if (!(conn_rec[i].flags & FCFCNCT_VALID)) continue; conn_entry = kzalloc(sizeof(struct lpfc_fcf_conn_entry), GFP_KERNEL); if (!conn_entry) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2566 Failed to allocate connection" " table entry\n"); return; } memcpy(&conn_entry->conn_rec, &conn_rec[i], sizeof(struct lpfc_fcf_conn_rec)); list_add_tail(&conn_entry->list, &phba->fcf_conn_rec_list); } if (!list_empty(&phba->fcf_conn_rec_list)) { i = 0; list_for_each_entry(conn_entry, &phba->fcf_conn_rec_list, list) { conn_rec = &conn_entry->conn_rec; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3345 FCF connection list rec[%02d]: " "flags:x%04x, vtag:x%04x, " "fabric_name:x%02x:%02x:%02x:%02x:" "%02x:%02x:%02x:%02x, " "switch_name:x%02x:%02x:%02x:%02x:" "%02x:%02x:%02x:%02x\n", i++, conn_rec->flags, conn_rec->vlan_tag, conn_rec->fabric_name[0], conn_rec->fabric_name[1], conn_rec->fabric_name[2], conn_rec->fabric_name[3], conn_rec->fabric_name[4], conn_rec->fabric_name[5], conn_rec->fabric_name[6], conn_rec->fabric_name[7], conn_rec->switch_name[0], conn_rec->switch_name[1], conn_rec->switch_name[2], conn_rec->switch_name[3], conn_rec->switch_name[4], conn_rec->switch_name[5], conn_rec->switch_name[6], conn_rec->switch_name[7]); } } } /** * lpfc_read_fcoe_param - Read FCoe parameters from conf region.. * @phba: Pointer to hba context object. * @buff: Buffer containing the FCoE parameter data structure. * * This function update driver data structure with config * parameters read from config region 23. */ static void lpfc_read_fcoe_param(struct lpfc_hba *phba, uint8_t *buff) { struct lpfc_fip_param_hdr *fcoe_param_hdr; struct lpfc_fcoe_params *fcoe_param; fcoe_param_hdr = (struct lpfc_fip_param_hdr *) buff; fcoe_param = (struct lpfc_fcoe_params *) (buff + sizeof(struct lpfc_fip_param_hdr)); if ((fcoe_param_hdr->parm_version != FIPP_VERSION) || (fcoe_param_hdr->length != FCOE_PARAM_LENGTH)) return; if (fcoe_param_hdr->parm_flags & FIPP_VLAN_VALID) { phba->valid_vlan = 1; phba->vlan_id = le16_to_cpu(fcoe_param->vlan_tag) & 0xFFF; } phba->fc_map[0] = fcoe_param->fc_map[0]; phba->fc_map[1] = fcoe_param->fc_map[1]; phba->fc_map[2] = fcoe_param->fc_map[2]; return; } /** * lpfc_get_rec_conf23 - Get a record type in config region data. * @buff: Buffer containing config region 23 data. * @size: Size of the data buffer. * @rec_type: Record type to be searched. * * This function searches config region data to find the beginning * of the record specified by record_type. If record found, this * function return pointer to the record else return NULL. */ static uint8_t * lpfc_get_rec_conf23(uint8_t *buff, uint32_t size, uint8_t rec_type) { uint32_t offset = 0, rec_length; if ((buff[0] == LPFC_REGION23_LAST_REC) || (size < sizeof(uint32_t))) return NULL; rec_length = buff[offset + 1]; /* * One TLV record has one word header and number of data words * specified in the rec_length field of the record header. */ while ((offset + rec_length * sizeof(uint32_t) + sizeof(uint32_t)) <= size) { if (buff[offset] == rec_type) return &buff[offset]; if (buff[offset] == LPFC_REGION23_LAST_REC) return NULL; offset += rec_length * sizeof(uint32_t) + sizeof(uint32_t); rec_length = buff[offset + 1]; } return NULL; } /** * lpfc_parse_fcoe_conf - Parse FCoE config data read from config region 23. * @phba: Pointer to lpfc_hba data structure. * @buff: Buffer containing config region 23 data. * @size: Size of the data buffer. * * This function parses the FCoE config parameters in config region 23 and * populate driver data structure with the parameters. */ void lpfc_parse_fcoe_conf(struct lpfc_hba *phba, uint8_t *buff, uint32_t size) { uint32_t offset = 0; uint8_t *rec_ptr; /* * If data size is less than 2 words signature and version cannot be * verified. */ if (size < 2*sizeof(uint32_t)) return; /* Check the region signature first */ if (memcmp(buff, LPFC_REGION23_SIGNATURE, 4)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2567 Config region 23 has bad signature\n"); return; } offset += 4; /* Check the data structure version */ if (buff[offset] != LPFC_REGION23_VERSION) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2568 Config region 23 has bad version\n"); return; } offset += 4; /* Read FCoE param record */ rec_ptr = lpfc_get_rec_conf23(&buff[offset], size - offset, FCOE_PARAM_TYPE); if (rec_ptr) lpfc_read_fcoe_param(phba, rec_ptr); /* Read FCF connection table */ rec_ptr = lpfc_get_rec_conf23(&buff[offset], size - offset, FCOE_CONN_TBL_TYPE); if (rec_ptr) lpfc_read_fcf_conn_tbl(phba, rec_ptr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1