Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hennerich | 1441 | 59.30% | 4 | 12.12% |
Cliff Cai | 367 | 15.10% | 1 | 3.03% |
Narcisa Ana Maria Vasile | 249 | 10.25% | 1 | 3.03% |
Eva Rachel Retuya | 115 | 4.73% | 4 | 12.12% |
Marcelo Schmitt | 94 | 3.87% | 2 | 6.06% |
Jonathan Cameron | 65 | 2.67% | 6 | 18.18% |
Arnd Bergmann | 39 | 1.60% | 1 | 3.03% |
Alison Schofield | 17 | 0.70% | 1 | 3.03% |
Guru Das Srinagesh | 10 | 0.41% | 1 | 3.03% |
Lars-Peter Clausen | 9 | 0.37% | 3 | 9.09% |
Federico Di Pierro | 4 | 0.16% | 1 | 3.03% |
Sachin Kamat | 4 | 0.16% | 1 | 3.03% |
Nizam Haider | 4 | 0.16% | 1 | 3.03% |
Cristina Opriceana | 3 | 0.12% | 1 | 3.03% |
Mugilraj Dhavachelvan | 2 | 0.08% | 1 | 3.03% |
Jingoo Han | 2 | 0.08% | 1 | 3.03% |
Paul Gortmaker | 2 | 0.08% | 1 | 3.03% |
Greg Kroah-Hartman | 2 | 0.08% | 1 | 3.03% |
Svetlana Orlik | 1 | 0.04% | 1 | 3.03% |
Total | 2430 | 33 |
// SPDX-License-Identifier: GPL-2.0 /* * AD9832 SPI DDS driver * * Copyright 2011 Analog Devices Inc. */ #include <asm/div64.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/sysfs.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include "ad9832.h" #include "dds.h" /* Registers */ #define AD9832_FREQ0LL 0x0 #define AD9832_FREQ0HL 0x1 #define AD9832_FREQ0LM 0x2 #define AD9832_FREQ0HM 0x3 #define AD9832_FREQ1LL 0x4 #define AD9832_FREQ1HL 0x5 #define AD9832_FREQ1LM 0x6 #define AD9832_FREQ1HM 0x7 #define AD9832_PHASE0L 0x8 #define AD9832_PHASE0H 0x9 #define AD9832_PHASE1L 0xA #define AD9832_PHASE1H 0xB #define AD9832_PHASE2L 0xC #define AD9832_PHASE2H 0xD #define AD9832_PHASE3L 0xE #define AD9832_PHASE3H 0xF #define AD9832_PHASE_SYM 0x10 #define AD9832_FREQ_SYM 0x11 #define AD9832_PINCTRL_EN 0x12 #define AD9832_OUTPUT_EN 0x13 /* Command Control Bits */ #define AD9832_CMD_PHA8BITSW 0x1 #define AD9832_CMD_PHA16BITSW 0x0 #define AD9832_CMD_FRE8BITSW 0x3 #define AD9832_CMD_FRE16BITSW 0x2 #define AD9832_CMD_FPSELECT 0x6 #define AD9832_CMD_SYNCSELSRC 0x8 #define AD9832_CMD_SLEEPRESCLR 0xC #define AD9832_FREQ BIT(11) #define AD9832_PHASE(x) (((x) & 3) << 9) #define AD9832_SYNC BIT(13) #define AD9832_SELSRC BIT(12) #define AD9832_SLEEP BIT(13) #define AD9832_RESET BIT(12) #define AD9832_CLR BIT(11) #define CMD_SHIFT 12 #define ADD_SHIFT 8 #define AD9832_FREQ_BITS 32 #define AD9832_PHASE_BITS 12 #define RES_MASK(bits) ((1 << (bits)) - 1) /** * struct ad9832_state - driver instance specific data * @spi: spi_device * @avdd: supply regulator for the analog section * @dvdd: supply regulator for the digital section * @mclk: external master clock * @ctrl_fp: cached frequency/phase control word * @ctrl_ss: cached sync/selsrc control word * @ctrl_src: cached sleep/reset/clr word * @xfer: default spi transfer * @msg: default spi message * @freq_xfer: tuning word spi transfer * @freq_msg: tuning word spi message * @phase_xfer: tuning word spi transfer * @phase_msg: tuning word spi message * @lock: protect sensor state * @data: spi transmit buffer * @phase_data: tuning word spi transmit buffer * @freq_data: tuning word spi transmit buffer */ struct ad9832_state { struct spi_device *spi; struct regulator *avdd; struct regulator *dvdd; struct clk *mclk; unsigned short ctrl_fp; unsigned short ctrl_ss; unsigned short ctrl_src; struct spi_transfer xfer; struct spi_message msg; struct spi_transfer freq_xfer[4]; struct spi_message freq_msg; struct spi_transfer phase_xfer[2]; struct spi_message phase_msg; struct mutex lock; /* protect sensor state */ /* * DMA (thus cache coherency maintenance) requires the * transfer buffers to live in their own cache lines. */ union { __be16 freq_data[4]____cacheline_aligned; __be16 phase_data[2]; __be16 data; }; }; static unsigned long ad9832_calc_freqreg(unsigned long mclk, unsigned long fout) { unsigned long long freqreg = (u64)fout * (u64)((u64)1L << AD9832_FREQ_BITS); do_div(freqreg, mclk); return freqreg; } static int ad9832_write_frequency(struct ad9832_state *st, unsigned int addr, unsigned long fout) { unsigned long regval; if (fout > (clk_get_rate(st->mclk) / 2)) return -EINVAL; regval = ad9832_calc_freqreg(clk_get_rate(st->mclk), fout); st->freq_data[0] = cpu_to_be16((AD9832_CMD_FRE8BITSW << CMD_SHIFT) | (addr << ADD_SHIFT) | ((regval >> 24) & 0xFF)); st->freq_data[1] = cpu_to_be16((AD9832_CMD_FRE16BITSW << CMD_SHIFT) | ((addr - 1) << ADD_SHIFT) | ((regval >> 16) & 0xFF)); st->freq_data[2] = cpu_to_be16((AD9832_CMD_FRE8BITSW << CMD_SHIFT) | ((addr - 2) << ADD_SHIFT) | ((regval >> 8) & 0xFF)); st->freq_data[3] = cpu_to_be16((AD9832_CMD_FRE16BITSW << CMD_SHIFT) | ((addr - 3) << ADD_SHIFT) | ((regval >> 0) & 0xFF)); return spi_sync(st->spi, &st->freq_msg); } static int ad9832_write_phase(struct ad9832_state *st, unsigned long addr, unsigned long phase) { if (phase > BIT(AD9832_PHASE_BITS)) return -EINVAL; st->phase_data[0] = cpu_to_be16((AD9832_CMD_PHA8BITSW << CMD_SHIFT) | (addr << ADD_SHIFT) | ((phase >> 8) & 0xFF)); st->phase_data[1] = cpu_to_be16((AD9832_CMD_PHA16BITSW << CMD_SHIFT) | ((addr - 1) << ADD_SHIFT) | (phase & 0xFF)); return spi_sync(st->spi, &st->phase_msg); } static ssize_t ad9832_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad9832_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); int ret; unsigned long val; ret = kstrtoul(buf, 10, &val); if (ret) goto error_ret; mutex_lock(&st->lock); switch ((u32)this_attr->address) { case AD9832_FREQ0HM: case AD9832_FREQ1HM: ret = ad9832_write_frequency(st, this_attr->address, val); break; case AD9832_PHASE0H: case AD9832_PHASE1H: case AD9832_PHASE2H: case AD9832_PHASE3H: ret = ad9832_write_phase(st, this_attr->address, val); break; case AD9832_PINCTRL_EN: if (val) st->ctrl_ss &= ~AD9832_SELSRC; else st->ctrl_ss |= AD9832_SELSRC; st->data = cpu_to_be16((AD9832_CMD_SYNCSELSRC << CMD_SHIFT) | st->ctrl_ss); ret = spi_sync(st->spi, &st->msg); break; case AD9832_FREQ_SYM: if (val == 1) { st->ctrl_fp |= AD9832_FREQ; } else if (val == 0) { st->ctrl_fp &= ~AD9832_FREQ; } else { ret = -EINVAL; break; } st->data = cpu_to_be16((AD9832_CMD_FPSELECT << CMD_SHIFT) | st->ctrl_fp); ret = spi_sync(st->spi, &st->msg); break; case AD9832_PHASE_SYM: if (val > 3) { ret = -EINVAL; break; } st->ctrl_fp &= ~AD9832_PHASE(3); st->ctrl_fp |= AD9832_PHASE(val); st->data = cpu_to_be16((AD9832_CMD_FPSELECT << CMD_SHIFT) | st->ctrl_fp); ret = spi_sync(st->spi, &st->msg); break; case AD9832_OUTPUT_EN: if (val) st->ctrl_src &= ~(AD9832_RESET | AD9832_SLEEP | AD9832_CLR); else st->ctrl_src |= AD9832_RESET; st->data = cpu_to_be16((AD9832_CMD_SLEEPRESCLR << CMD_SHIFT) | st->ctrl_src); ret = spi_sync(st->spi, &st->msg); break; default: ret = -ENODEV; } mutex_unlock(&st->lock); error_ret: return ret ? ret : len; } /* * see dds.h for further information */ static IIO_DEV_ATTR_FREQ(0, 0, 0200, NULL, ad9832_write, AD9832_FREQ0HM); static IIO_DEV_ATTR_FREQ(0, 1, 0200, NULL, ad9832_write, AD9832_FREQ1HM); static IIO_DEV_ATTR_FREQSYMBOL(0, 0200, NULL, ad9832_write, AD9832_FREQ_SYM); static IIO_CONST_ATTR_FREQ_SCALE(0, "1"); /* 1Hz */ static IIO_DEV_ATTR_PHASE(0, 0, 0200, NULL, ad9832_write, AD9832_PHASE0H); static IIO_DEV_ATTR_PHASE(0, 1, 0200, NULL, ad9832_write, AD9832_PHASE1H); static IIO_DEV_ATTR_PHASE(0, 2, 0200, NULL, ad9832_write, AD9832_PHASE2H); static IIO_DEV_ATTR_PHASE(0, 3, 0200, NULL, ad9832_write, AD9832_PHASE3H); static IIO_DEV_ATTR_PHASESYMBOL(0, 0200, NULL, ad9832_write, AD9832_PHASE_SYM); static IIO_CONST_ATTR_PHASE_SCALE(0, "0.0015339808"); /* 2PI/2^12 rad*/ static IIO_DEV_ATTR_PINCONTROL_EN(0, 0200, NULL, ad9832_write, AD9832_PINCTRL_EN); static IIO_DEV_ATTR_OUT_ENABLE(0, 0200, NULL, ad9832_write, AD9832_OUTPUT_EN); static struct attribute *ad9832_attributes[] = { &iio_dev_attr_out_altvoltage0_frequency0.dev_attr.attr, &iio_dev_attr_out_altvoltage0_frequency1.dev_attr.attr, &iio_const_attr_out_altvoltage0_frequency_scale.dev_attr.attr, &iio_dev_attr_out_altvoltage0_phase0.dev_attr.attr, &iio_dev_attr_out_altvoltage0_phase1.dev_attr.attr, &iio_dev_attr_out_altvoltage0_phase2.dev_attr.attr, &iio_dev_attr_out_altvoltage0_phase3.dev_attr.attr, &iio_const_attr_out_altvoltage0_phase_scale.dev_attr.attr, &iio_dev_attr_out_altvoltage0_pincontrol_en.dev_attr.attr, &iio_dev_attr_out_altvoltage0_frequencysymbol.dev_attr.attr, &iio_dev_attr_out_altvoltage0_phasesymbol.dev_attr.attr, &iio_dev_attr_out_altvoltage0_out_enable.dev_attr.attr, NULL, }; static const struct attribute_group ad9832_attribute_group = { .attrs = ad9832_attributes, }; static const struct iio_info ad9832_info = { .attrs = &ad9832_attribute_group, }; static int ad9832_probe(struct spi_device *spi) { struct ad9832_platform_data *pdata = dev_get_platdata(&spi->dev); struct iio_dev *indio_dev; struct ad9832_state *st; int ret; if (!pdata) { dev_dbg(&spi->dev, "no platform data?\n"); return -ENODEV; } indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; spi_set_drvdata(spi, indio_dev); st = iio_priv(indio_dev); st->avdd = devm_regulator_get(&spi->dev, "avdd"); if (IS_ERR(st->avdd)) return PTR_ERR(st->avdd); ret = regulator_enable(st->avdd); if (ret) { dev_err(&spi->dev, "Failed to enable specified AVDD supply\n"); return ret; } st->dvdd = devm_regulator_get(&spi->dev, "dvdd"); if (IS_ERR(st->dvdd)) { ret = PTR_ERR(st->dvdd); goto error_disable_avdd; } ret = regulator_enable(st->dvdd); if (ret) { dev_err(&spi->dev, "Failed to enable specified DVDD supply\n"); goto error_disable_avdd; } st->mclk = devm_clk_get(&spi->dev, "mclk"); if (IS_ERR(st->mclk)) { ret = PTR_ERR(st->mclk); goto error_disable_dvdd; } ret = clk_prepare_enable(st->mclk); if (ret < 0) goto error_disable_dvdd; st->spi = spi; mutex_init(&st->lock); indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &ad9832_info; indio_dev->modes = INDIO_DIRECT_MODE; /* Setup default messages */ st->xfer.tx_buf = &st->data; st->xfer.len = 2; spi_message_init(&st->msg); spi_message_add_tail(&st->xfer, &st->msg); st->freq_xfer[0].tx_buf = &st->freq_data[0]; st->freq_xfer[0].len = 2; st->freq_xfer[0].cs_change = 1; st->freq_xfer[1].tx_buf = &st->freq_data[1]; st->freq_xfer[1].len = 2; st->freq_xfer[1].cs_change = 1; st->freq_xfer[2].tx_buf = &st->freq_data[2]; st->freq_xfer[2].len = 2; st->freq_xfer[2].cs_change = 1; st->freq_xfer[3].tx_buf = &st->freq_data[3]; st->freq_xfer[3].len = 2; spi_message_init(&st->freq_msg); spi_message_add_tail(&st->freq_xfer[0], &st->freq_msg); spi_message_add_tail(&st->freq_xfer[1], &st->freq_msg); spi_message_add_tail(&st->freq_xfer[2], &st->freq_msg); spi_message_add_tail(&st->freq_xfer[3], &st->freq_msg); st->phase_xfer[0].tx_buf = &st->phase_data[0]; st->phase_xfer[0].len = 2; st->phase_xfer[0].cs_change = 1; st->phase_xfer[1].tx_buf = &st->phase_data[1]; st->phase_xfer[1].len = 2; spi_message_init(&st->phase_msg); spi_message_add_tail(&st->phase_xfer[0], &st->phase_msg); spi_message_add_tail(&st->phase_xfer[1], &st->phase_msg); st->ctrl_src = AD9832_SLEEP | AD9832_RESET | AD9832_CLR; st->data = cpu_to_be16((AD9832_CMD_SLEEPRESCLR << CMD_SHIFT) | st->ctrl_src); ret = spi_sync(st->spi, &st->msg); if (ret) { dev_err(&spi->dev, "device init failed\n"); goto error_unprepare_mclk; } ret = ad9832_write_frequency(st, AD9832_FREQ0HM, pdata->freq0); if (ret) goto error_unprepare_mclk; ret = ad9832_write_frequency(st, AD9832_FREQ1HM, pdata->freq1); if (ret) goto error_unprepare_mclk; ret = ad9832_write_phase(st, AD9832_PHASE0H, pdata->phase0); if (ret) goto error_unprepare_mclk; ret = ad9832_write_phase(st, AD9832_PHASE1H, pdata->phase1); if (ret) goto error_unprepare_mclk; ret = ad9832_write_phase(st, AD9832_PHASE2H, pdata->phase2); if (ret) goto error_unprepare_mclk; ret = ad9832_write_phase(st, AD9832_PHASE3H, pdata->phase3); if (ret) goto error_unprepare_mclk; ret = iio_device_register(indio_dev); if (ret) goto error_unprepare_mclk; return 0; error_unprepare_mclk: clk_disable_unprepare(st->mclk); error_disable_dvdd: regulator_disable(st->dvdd); error_disable_avdd: regulator_disable(st->avdd); return ret; } static int ad9832_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct ad9832_state *st = iio_priv(indio_dev); iio_device_unregister(indio_dev); clk_disable_unprepare(st->mclk); regulator_disable(st->dvdd); regulator_disable(st->avdd); return 0; } static const struct spi_device_id ad9832_id[] = { {"ad9832", 0}, {"ad9835", 0}, {} }; MODULE_DEVICE_TABLE(spi, ad9832_id); static struct spi_driver ad9832_driver = { .driver = { .name = "ad9832", }, .probe = ad9832_probe, .remove = ad9832_remove, .id_table = ad9832_id, }; module_spi_driver(ad9832_driver); MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); MODULE_DESCRIPTION("Analog Devices AD9832/AD9835 DDS"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1