Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Phillip Potter | 7638 | 98.69% | 2 | 33.33% |
Larry Finger | 98 | 1.27% | 2 | 33.33% |
Michael Straube | 2 | 0.03% | 1 | 16.67% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 16.67% |
Total | 7739 | 6 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2011 Realtek Corporation. */ #include "../include/odm_precomp.h" /*---------------------------Define Local Constant---------------------------*/ /* 2010/04/25 MH Define the max tx power tracking tx agc power. */ #define ODM_TXPWRTRACK_MAX_IDX_88E 6 /*---------------------------Define Local Constant---------------------------*/ /* 3============================================================ */ /* 3 Tx Power Tracking */ /* 3============================================================ */ /*----------------------------------------------------------------------------- * Function: ODM_TxPwrTrackAdjust88E() * * Overview: 88E we can not write 0xc80/c94/c4c/ 0xa2x. Instead of write TX agc. * No matter OFDM & CCK use the same method. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 04/23/2012 MHC Create Version 0. * 04/23/2012 MHC Adjust TX agc directly not throughput BB digital. * *---------------------------------------------------------------------------*/ void ODM_TxPwrTrackAdjust88E(struct odm_dm_struct *dm_odm, u8 Type,/* 0 = OFDM, 1 = CCK */ u8 *pDirection, /* 1 = +(increase) 2 = -(decrease) */ u32 *pOutWriteVal /* Tx tracking CCK/OFDM BB swing index adjust */ ) { u8 pwr_value = 0; /* Tx power tracking BB swing table. */ /* The base index = 12. +((12-n)/2)dB 13~?? = decrease tx pwr by -((n-12)/2)dB */ if (Type == 0) { /* For OFDM afjust */ if (dm_odm->BbSwingIdxOfdm <= dm_odm->BbSwingIdxOfdmBase) { *pDirection = 1; pwr_value = (dm_odm->BbSwingIdxOfdmBase - dm_odm->BbSwingIdxOfdm); } else { *pDirection = 2; pwr_value = (dm_odm->BbSwingIdxOfdm - dm_odm->BbSwingIdxOfdmBase); } } else if (Type == 1) { /* For CCK adjust. */ if (dm_odm->BbSwingIdxCck <= dm_odm->BbSwingIdxCckBase) { *pDirection = 1; pwr_value = (dm_odm->BbSwingIdxCckBase - dm_odm->BbSwingIdxCck); } else { *pDirection = 2; pwr_value = (dm_odm->BbSwingIdxCck - dm_odm->BbSwingIdxCckBase); } } /* */ /* 2012/04/25 MH According to Ed/Luke.Lees estimate for EVM the max tx power tracking */ /* need to be less than 6 power index for 88E. */ /* */ if (pwr_value >= ODM_TXPWRTRACK_MAX_IDX_88E && *pDirection == 1) pwr_value = ODM_TXPWRTRACK_MAX_IDX_88E; *pOutWriteVal = pwr_value | (pwr_value << 8) | (pwr_value << 16) | (pwr_value << 24); } /* ODM_TxPwrTrackAdjust88E */ /*----------------------------------------------------------------------------- * Function: odm_TxPwrTrackSetPwr88E() * * Overview: 88E change all channel tx power accordign to flag. * OFDM & CCK are all different. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 04/23/2012 MHC Create Version 0. * *---------------------------------------------------------------------------*/ static void odm_TxPwrTrackSetPwr88E(struct odm_dm_struct *dm_odm) { if (dm_odm->BbSwingFlagOfdm || dm_odm->BbSwingFlagCck) { PHY_SetTxPowerLevel8188E(dm_odm->Adapter, *dm_odm->pChannel); dm_odm->BbSwingFlagOfdm = false; dm_odm->BbSwingFlagCck = false; } } /* odm_TxPwrTrackSetPwr88E */ /* 091212 chiyokolin */ void odm_TXPowerTrackingCallback_ThermalMeter_8188E( struct adapter *Adapter ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 ThermalValue = 0, delta, delta_LCK, delta_IQK, offset; u8 ThermalValue_AVG_count = 0; u32 ThermalValue_AVG = 0; s32 ele_A = 0, ele_D, TempCCk, X, value32; s32 Y, ele_C = 0; s8 OFDM_index[2], CCK_index = 0; s8 OFDM_index_old[2] = {0, 0}, CCK_index_old = 0; u32 i = 0, j = 0; bool is2t = false; u8 OFDM_min_index = 6, rf; /* OFDM BB Swing should be less than +3.0dB, which is required by Arthur */ u8 Indexforchannel = 0/*GetRightChnlPlaceforIQK(pHalData->CurrentChannel)*/; s8 OFDM_index_mapping[2][index_mapping_NUM_88E] = { {0, 0, 2, 3, 4, 4, /* 2.4G, decrease power */ 5, 6, 7, 7, 8, 9, 10, 10, 11}, /* For lower temperature, 20120220 updated on 20120220. */ {0, 0, -1, -2, -3, -4, /* 2.4G, increase power */ -4, -4, -4, -5, -7, -8, -9, -9, -10}, }; u8 Thermal_mapping[2][index_mapping_NUM_88E] = { {0, 2, 4, 6, 8, 10, /* 2.4G, decrease power */ 12, 14, 16, 18, 20, 22, 24, 26, 27}, {0, 2, 4, 6, 8, 10, /* 2.4G,, increase power */ 12, 14, 16, 18, 20, 22, 25, 25, 25}, }; struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* 2012/04/25 MH Add for tx power tracking to set tx power in tx agc for 88E. */ odm_TxPwrTrackSetPwr88E(dm_odm); dm_odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++; /* cosa add for debug */ dm_odm->RFCalibrateInfo.bTXPowerTrackingInit = true; /* <Kordan> RFCalibrateInfo.RegA24 will be initialized when ODM HW configuring, but MP configures with para files. */ dm_odm->RFCalibrateInfo.RegA24 = 0x090e1317; ThermalValue = (u8)ODM_GetRFReg(dm_odm, RF_PATH_A, RF_T_METER_88E, 0xfc00); /* 0x42: RF Reg[15:10] 88E */ if (is2t) rf = 2; else rf = 1; if (ThermalValue) { /* Query OFDM path A default setting */ ele_D = ODM_GetBBReg(dm_odm, rOFDM0_XATxIQImbalance, bMaskDWord) & bMaskOFDM_D; for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) { /* find the index */ if (ele_D == (OFDMSwingTable[i] & bMaskOFDM_D)) { OFDM_index_old[0] = (u8)i; dm_odm->BbSwingIdxOfdmBase = (u8)i; break; } } /* Query OFDM path B default setting */ if (is2t) { ele_D = ODM_GetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord) & bMaskOFDM_D; for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) { /* find the index */ if (ele_D == (OFDMSwingTable[i] & bMaskOFDM_D)) { OFDM_index_old[1] = (u8)i; break; } } } /* Query CCK default setting From 0xa24 */ TempCCk = dm_odm->RFCalibrateInfo.RegA24; for (i = 0; i < CCK_TABLE_SIZE; i++) { if (dm_odm->RFCalibrateInfo.bCCKinCH14) { if (ODM_CompareMemory(dm_odm, (void *)&TempCCk, (void *)&CCKSwingTable_Ch14[i][2], 4) == 0) { CCK_index_old = (u8)i; dm_odm->BbSwingIdxCckBase = (u8)i; break; } } else { if (ODM_CompareMemory(dm_odm, (void *)&TempCCk, (void *)&CCKSwingTable_Ch1_Ch13[i][2], 4) == 0) { CCK_index_old = (u8)i; dm_odm->BbSwingIdxCckBase = (u8)i; break; } } } if (!dm_odm->RFCalibrateInfo.ThermalValue) { dm_odm->RFCalibrateInfo.ThermalValue = pHalData->EEPROMThermalMeter; dm_odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue; dm_odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue; for (i = 0; i < rf; i++) dm_odm->RFCalibrateInfo.OFDM_index[i] = OFDM_index_old[i]; dm_odm->RFCalibrateInfo.CCK_index = CCK_index_old; } /* calculate average thermal meter */ dm_odm->RFCalibrateInfo.ThermalValue_AVG[dm_odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue; dm_odm->RFCalibrateInfo.ThermalValue_AVG_index++; if (dm_odm->RFCalibrateInfo.ThermalValue_AVG_index == AVG_THERMAL_NUM_88E) dm_odm->RFCalibrateInfo.ThermalValue_AVG_index = 0; for (i = 0; i < AVG_THERMAL_NUM_88E; i++) { if (dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]) { ThermalValue_AVG += dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]; ThermalValue_AVG_count++; } } if (ThermalValue_AVG_count) ThermalValue = (u8)(ThermalValue_AVG / ThermalValue_AVG_count); if (dm_odm->RFCalibrateInfo.bReloadtxpowerindex) { delta = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); dm_odm->RFCalibrateInfo.bReloadtxpowerindex = false; dm_odm->RFCalibrateInfo.bDoneTxpower = false; } else if (dm_odm->RFCalibrateInfo.bDoneTxpower) { delta = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue) ? (ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue) : (dm_odm->RFCalibrateInfo.ThermalValue - ThermalValue); } else { delta = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); } delta_LCK = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue_LCK) ? (ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue_LCK) : (dm_odm->RFCalibrateInfo.ThermalValue_LCK - ThermalValue); delta_IQK = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue_IQK) ? (ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue_IQK) : (dm_odm->RFCalibrateInfo.ThermalValue_IQK - ThermalValue); if ((delta_LCK >= 8)) { /* Delta temperature is equal to or larger than 20 centigrade. */ dm_odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue; PHY_LCCalibrate_8188E(Adapter); } if (delta > 0 && dm_odm->RFCalibrateInfo.TxPowerTrackControl) { delta = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); /* calculate new OFDM / CCK offset */ if (ThermalValue > pHalData->EEPROMThermalMeter) j = 1; else j = 0; for (offset = 0; offset < index_mapping_NUM_88E; offset++) { if (delta < Thermal_mapping[j][offset]) { if (offset != 0) offset--; break; } } if (offset >= index_mapping_NUM_88E) offset = index_mapping_NUM_88E - 1; for (i = 0; i < rf; i++) OFDM_index[i] = dm_odm->RFCalibrateInfo.OFDM_index[i] + OFDM_index_mapping[j][offset]; CCK_index = dm_odm->RFCalibrateInfo.CCK_index + OFDM_index_mapping[j][offset]; for (i = 0; i < rf; i++) { if (OFDM_index[i] > OFDM_TABLE_SIZE_92D - 1) OFDM_index[i] = OFDM_TABLE_SIZE_92D - 1; else if (OFDM_index[i] < OFDM_min_index) OFDM_index[i] = OFDM_min_index; } if (CCK_index > CCK_TABLE_SIZE - 1) CCK_index = CCK_TABLE_SIZE - 1; else if (CCK_index < 0) CCK_index = 0; /* 2 temporarily remove bNOPG */ /* Config by SwingTable */ if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) { dm_odm->RFCalibrateInfo.bDoneTxpower = true; /* Adujst OFDM Ant_A according to IQK result */ ele_D = (OFDMSwingTable[(u8)OFDM_index[0]] & 0xFFC00000) >> 22; X = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][0]; Y = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][1]; /* Revse TX power table. */ dm_odm->BbSwingIdxOfdm = (u8)OFDM_index[0]; dm_odm->BbSwingIdxCck = (u8)CCK_index; if (dm_odm->BbSwingIdxOfdmCurrent != dm_odm->BbSwingIdxOfdm) { dm_odm->BbSwingIdxOfdmCurrent = dm_odm->BbSwingIdxOfdm; dm_odm->BbSwingFlagOfdm = true; } if (dm_odm->BbSwingIdxCckCurrent != dm_odm->BbSwingIdxCck) { dm_odm->BbSwingIdxCckCurrent = dm_odm->BbSwingIdxCck; dm_odm->BbSwingFlagCck = true; } if (X != 0) { if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; ele_A = ((X * ele_D) >> 8) & 0x000003FF; /* new element C = element D x Y */ if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; ele_C = ((Y * ele_D) >> 8) & 0x000003FF; /* 2012/04/23 MH According to Luke's suggestion, we can not write BB digital */ /* to increase TX power. Otherwise, EVM will be bad. */ } if (is2t) { ele_D = (OFDMSwingTable[(u8)OFDM_index[1]] & 0xFFC00000) >> 22; /* new element A = element D x X */ X = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][4]; Y = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][5]; if ((X != 0) && (*dm_odm->pBandType == ODM_BAND_2_4G)) { if ((X & 0x00000200) != 0) /* consider minus */ X = X | 0xFFFFFC00; ele_A = ((X * ele_D) >> 8) & 0x000003FF; /* new element C = element D x Y */ if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; ele_C = ((Y * ele_D) >> 8) & 0x00003FF; /* wtite new elements A, C, D to regC88 and regC9C, element B is always 0 */ value32 = (ele_D << 22) | ((ele_C & 0x3F) << 16) | ele_A; ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord, value32); value32 = (ele_C & 0x000003C0) >> 6; ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, bMaskH4Bits, value32); value32 = ((X * ele_D) >> 7) & 0x01; ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(28), value32); } else { ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord, OFDMSwingTable[(u8)OFDM_index[1]]); ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, bMaskH4Bits, 0x00); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(28), 0x00); } } } } if (delta_IQK >= 8) { /* Delta temperature is equal to or larger than 20 centigrade. */ dm_odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue; PHY_IQCalibrate_8188E(Adapter, false); } /* update thermal meter value */ if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) dm_odm->RFCalibrateInfo.ThermalValue = ThermalValue; } dm_odm->RFCalibrateInfo.TXPowercount = 0; } /* 1 7. IQK */ #define MAX_TOLERANCE 5 #define IQK_DELAY_TIME 1 /* ms */ static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ phy_PathA_IQK_8188E(struct adapter *adapt, bool configPathB) { u32 regeac, regE94, regE9C; u8 result = 0x00; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* 1 Tx IQK */ /* path-A IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c); ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x8214032a); ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000); /* LO calibration setting */ ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x00462911); /* One shot, path A LOK & IQK */ ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); /* delay x ms */ /* PlatformStallExecution(IQK_DELAY_TIME_88E*1000); */ ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord); regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord); if (!(regeac & BIT(28)) && (((regE94 & 0x03FF0000) >> 16) != 0x142) && (((regE9C & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; return result; } static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ phy_PathA_RxIQK(struct adapter *adapt, bool configPathB) { u32 regeac, regE94, regE9C, regEA4, u4tmp; u8 result = 0x00; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* 1 Get TXIMR setting */ /* modify RXIQK mode table */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf117B); /* PA,PAD off */ ODM_SetRFReg(dm_odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x980); ODM_SetRFReg(dm_odm, RF_PATH_A, 0x56, bRFRegOffsetMask, 0x51000); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); /* IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, 0x01007c00); ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x81004800); /* path-A IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c); ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c1f); ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000); /* LO calibration setting */ ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911); /* One shot, path A LOK & IQK */ ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); /* delay x ms */ ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord); regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord); if (!(regeac & BIT(28)) && (((regE94 & 0x03FF0000) >> 16) != 0x142) && (((regE9C & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; else /* if Tx not OK, ignore Rx */ return result; u4tmp = 0x80007C00 | (regE94 & 0x3FF0000) | ((regE9C & 0x3FF0000) >> 16); ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, u4tmp); /* 1 RX IQK */ /* modify RXIQK mode table */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf7ffa); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); /* IQK setting */ ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x01004800); /* path-A IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x38008c1c); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x18008c1c); ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c05); ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160c1f); /* LO calibration setting */ ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911); /* One shot, path A LOK & IQK */ ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); /* delay x ms */ /* PlatformStallExecution(IQK_DELAY_TIME_88E*1000); */ ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord); regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord); regEA4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord); /* reload RF 0xdf */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); ODM_SetRFReg(dm_odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180); if (!(regeac & BIT(27)) && /* if Tx is OK, check whether Rx is OK */ (((regEA4 & 0x03FF0000) >> 16) != 0x132) && (((regeac & 0x03FF0000) >> 16) != 0x36)) result |= 0x02; return result; } static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ phy_PathB_IQK_8188E(struct adapter *adapt) { u32 regeac, regeb4, regebc, regec4, regecc; u8 result = 0x00; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* One shot, path B LOK & IQK */ ODM_SetBBReg(dm_odm, rIQK_AGC_Cont, bMaskDWord, 0x00000002); ODM_SetBBReg(dm_odm, rIQK_AGC_Cont, bMaskDWord, 0x00000000); /* delay x ms */ ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); regeb4 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord); regebc = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord); regec4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_B_2, bMaskDWord); regecc = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_B_2, bMaskDWord); if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) && (((regebc & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; else return result; if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) && (((regecc & 0x03FF0000) >> 16) != 0x36)) result |= 0x02; return result; } static void patha_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8], u8 final_candidate, bool txonly) { u32 Oldval_0, X, TX0_A, reg; s32 Y, TX0_C; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (final_candidate == 0xFF) { return; } else if (iqkok) { Oldval_0 = (ODM_GetBBReg(dm_odm, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF; X = result[final_candidate][0]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX0_A = (X * Oldval_0) >> 8; ODM_SetBBReg(dm_odm, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(31), ((X * Oldval_0 >> 7) & 0x1)); Y = result[final_candidate][1]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; TX0_C = (Y * Oldval_0) >> 8; ODM_SetBBReg(dm_odm, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C & 0x3C0) >> 6)); ODM_SetBBReg(dm_odm, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C & 0x3F)); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(29), ((Y * Oldval_0 >> 7) & 0x1)); if (txonly) return; reg = result[final_candidate][2]; ODM_SetBBReg(dm_odm, rOFDM0_XARxIQImbalance, 0x3FF, reg); reg = result[final_candidate][3] & 0x3F; ODM_SetBBReg(dm_odm, rOFDM0_XARxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][3] >> 6) & 0xF; ODM_SetBBReg(dm_odm, rOFDM0_RxIQExtAnta, 0xF0000000, reg); } } static void pathb_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8], u8 final_candidate, bool txonly) { u32 Oldval_1, X, TX1_A, reg; s32 Y, TX1_C; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (final_candidate == 0xFF) { return; } else if (iqkok) { Oldval_1 = (ODM_GetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF; X = result[final_candidate][4]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX1_A = (X * Oldval_1) >> 8; ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, 0x3FF, TX1_A); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(27), ((X * Oldval_1 >> 7) & 0x1)); Y = result[final_candidate][5]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; TX1_C = (Y * Oldval_1) >> 8; ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, 0xF0000000, ((TX1_C & 0x3C0) >> 6)); ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, 0x003F0000, (TX1_C & 0x3F)); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(25), ((Y * Oldval_1 >> 7) & 0x1)); if (txonly) return; reg = result[final_candidate][6]; ODM_SetBBReg(dm_odm, rOFDM0_XBRxIQImbalance, 0x3FF, reg); reg = result[final_candidate][7] & 0x3F; ODM_SetBBReg(dm_odm, rOFDM0_XBRxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][7] >> 6) & 0xF; ODM_SetBBReg(dm_odm, rOFDM0_AGCRSSITable, 0x0000F000, reg); } } /* */ /* 2011/07/26 MH Add an API for testing IQK fail case. */ /* */ /* MP Already declare in odm.c */ static bool ODM_CheckPowerStatus(struct adapter *Adapter) { return true; } void _PHY_SaveADDARegisters(struct adapter *adapt, u32 *ADDAReg, u32 *ADDABackup, u32 RegisterNum) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (!ODM_CheckPowerStatus(adapt)) return; for (i = 0; i < RegisterNum; i++) { ADDABackup[i] = ODM_GetBBReg(dm_odm, ADDAReg[i], bMaskDWord); } } static void _PHY_SaveMACRegisters( struct adapter *adapt, u32 *MACReg, u32 *MACBackup ) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) { MACBackup[i] = ODM_Read1Byte(dm_odm, MACReg[i]); } MACBackup[i] = ODM_Read4Byte(dm_odm, MACReg[i]); } static void reload_adda_reg(struct adapter *adapt, u32 *ADDAReg, u32 *ADDABackup, u32 RegiesterNum) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; for (i = 0; i < RegiesterNum; i++) ODM_SetBBReg(dm_odm, ADDAReg[i], bMaskDWord, ADDABackup[i]); } static void _PHY_ReloadMACRegisters( struct adapter *adapt, u32 *MACReg, u32 *MACBackup ) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) { ODM_Write1Byte(dm_odm, MACReg[i], (u8)MACBackup[i]); } ODM_Write4Byte(dm_odm, MACReg[i], MACBackup[i]); } void _PHY_PathADDAOn( struct adapter *adapt, u32 *ADDAReg, bool isPathAOn, bool is2t ) { u32 pathOn; u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; pathOn = isPathAOn ? 0x04db25a4 : 0x0b1b25a4; if (!is2t) { pathOn = 0x0bdb25a0; ODM_SetBBReg(dm_odm, ADDAReg[0], bMaskDWord, 0x0b1b25a0); } else { ODM_SetBBReg(dm_odm, ADDAReg[0], bMaskDWord, pathOn); } for (i = 1; i < IQK_ADDA_REG_NUM; i++) ODM_SetBBReg(dm_odm, ADDAReg[i], bMaskDWord, pathOn); } void _PHY_MACSettingCalibration( struct adapter *adapt, u32 *MACReg, u32 *MACBackup ) { u32 i = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_Write1Byte(dm_odm, MACReg[i], 0x3F); for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++) { ODM_Write1Byte(dm_odm, MACReg[i], (u8)(MACBackup[i] & (~BIT(3)))); } ODM_Write1Byte(dm_odm, MACReg[i], (u8)(MACBackup[i] & (~BIT(5)))); } void _PHY_PathAStandBy( struct adapter *adapt ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x0); ODM_SetBBReg(dm_odm, 0x840, bMaskDWord, 0x00010000); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); } static void _PHY_PIModeSwitch( struct adapter *adapt, bool PIMode ) { u32 mode; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; mode = PIMode ? 0x01000100 : 0x01000000; ODM_SetBBReg(dm_odm, rFPGA0_XA_HSSIParameter1, bMaskDWord, mode); ODM_SetBBReg(dm_odm, rFPGA0_XB_HSSIParameter1, bMaskDWord, mode); } static bool phy_SimularityCompare_8188E( struct adapter *adapt, s32 resulta[][8], u8 c1, u8 c2 ) { u32 i, j, diff, sim_bitmap, bound = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */ bool result = true; bool is2t; s32 tmp1 = 0, tmp2 = 0; if ((dm_odm->RFType == ODM_2T2R) || (dm_odm->RFType == ODM_2T3R) || (dm_odm->RFType == ODM_2T4R)) is2t = true; else is2t = false; if (is2t) bound = 8; else bound = 4; sim_bitmap = 0; for (i = 0; i < bound; i++) { if ((i == 1) || (i == 3) || (i == 5) || (i == 7)) { if ((resulta[c1][i] & 0x00000200) != 0) tmp1 = resulta[c1][i] | 0xFFFFFC00; else tmp1 = resulta[c1][i]; if ((resulta[c2][i] & 0x00000200) != 0) tmp2 = resulta[c2][i] | 0xFFFFFC00; else tmp2 = resulta[c2][i]; } else { tmp1 = resulta[c1][i]; tmp2 = resulta[c2][i]; } diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1); if (diff > MAX_TOLERANCE) { if ((i == 2 || i == 6) && !sim_bitmap) { if (resulta[c1][i] + resulta[c1][i + 1] == 0) final_candidate[(i / 4)] = c2; else if (resulta[c2][i] + resulta[c2][i + 1] == 0) final_candidate[(i / 4)] = c1; else sim_bitmap = sim_bitmap | (1 << i); } else { sim_bitmap = sim_bitmap | (1 << i); } } } if (sim_bitmap == 0) { for (i = 0; i < (bound / 4); i++) { if (final_candidate[i] != 0xFF) { for (j = i * 4; j < (i + 1) * 4 - 2; j++) resulta[3][j] = resulta[final_candidate[i]][j]; result = false; } } return result; } else { if (!(sim_bitmap & 0x03)) { /* path A TX OK */ for (i = 0; i < 2; i++) resulta[3][i] = resulta[c1][i]; } if (!(sim_bitmap & 0x0c)) { /* path A RX OK */ for (i = 2; i < 4; i++) resulta[3][i] = resulta[c1][i]; } if (!(sim_bitmap & 0x30)) { /* path B TX OK */ for (i = 4; i < 6; i++) resulta[3][i] = resulta[c1][i]; } if (!(sim_bitmap & 0xc0)) { /* path B RX OK */ for (i = 6; i < 8; i++) resulta[3][i] = resulta[c1][i]; } return false; } } static void phy_IQCalibrate_8188E(struct adapter *adapt, s32 result[][8], u8 t, bool is2t) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; u32 i; u8 PathAOK, PathBOK; u32 ADDA_REG[IQK_ADDA_REG_NUM] = { rFPGA0_XCD_SwitchControl, rBlue_Tooth, rRx_Wait_CCA, rTx_CCK_RFON, rTx_CCK_BBON, rTx_OFDM_RFON, rTx_OFDM_BBON, rTx_To_Rx, rTx_To_Tx, rRx_CCK, rRx_OFDM, rRx_Wait_RIFS, rRx_TO_Rx, rStandby, rSleep, rPMPD_ANAEN }; u32 IQK_MAC_REG[IQK_MAC_REG_NUM] = { REG_TXPAUSE, REG_BCN_CTRL, REG_BCN_CTRL_1, REG_GPIO_MUXCFG}; /* since 92C & 92D have the different define in IQK_BB_REG */ u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB, rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD }; u32 retryCount = 9; if (*dm_odm->mp_mode == 1) retryCount = 9; else retryCount = 2; /* Note: IQ calibration must be performed after loading */ /* PHY_REG.txt , and radio_a, radio_b.txt */ if (t == 0) { /* Save ADDA parameters, turn Path A ADDA on */ _PHY_SaveADDARegisters(adapt, ADDA_REG, dm_odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM); _PHY_SaveMACRegisters(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup); _PHY_SaveADDARegisters(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM); } _PHY_PathADDAOn(adapt, ADDA_REG, true, is2t); if (t == 0) dm_odm->RFCalibrateInfo.bRfPiEnable = (u8)ODM_GetBBReg(dm_odm, rFPGA0_XA_HSSIParameter1, BIT(8)); if (!dm_odm->RFCalibrateInfo.bRfPiEnable) { /* Switch BB to PI mode to do IQ Calibration. */ _PHY_PIModeSwitch(adapt, true); } /* BB setting */ ODM_SetBBReg(dm_odm, rFPGA0_RFMOD, BIT(24), 0x00); ODM_SetBBReg(dm_odm, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600); ODM_SetBBReg(dm_odm, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4); ODM_SetBBReg(dm_odm, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000); ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFInterfaceSW, BIT(10), 0x01); ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFInterfaceSW, BIT(26), 0x01); ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT(10), 0x00); ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT(10), 0x00); if (is2t) { ODM_SetBBReg(dm_odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00010000); ODM_SetBBReg(dm_odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00010000); } /* MAC settings */ _PHY_MACSettingCalibration(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup); /* Page B init */ /* AP or IQK */ ODM_SetBBReg(dm_odm, rConfig_AntA, bMaskDWord, 0x0f600000); if (is2t) ODM_SetBBReg(dm_odm, rConfig_AntB, bMaskDWord, 0x0f600000); /* IQ calibration setting */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, 0x01007c00); ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x81004800); for (i = 0; i < retryCount; i++) { PathAOK = phy_PathA_IQK_8188E(adapt, is2t); if (PathAOK == 0x01) { result[t][0] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord) & 0x3FF0000) >> 16; result[t][1] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord) & 0x3FF0000) >> 16; break; } } for (i = 0; i < retryCount; i++) { PathAOK = phy_PathA_RxIQK(adapt, is2t); if (PathAOK == 0x03) { result[t][2] = (ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord) & 0x3FF0000) >> 16; result[t][3] = (ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord) & 0x3FF0000) >> 16; break; } } if (is2t) { _PHY_PathAStandBy(adapt); /* Turn Path B ADDA on */ _PHY_PathADDAOn(adapt, ADDA_REG, false, is2t); for (i = 0; i < retryCount; i++) { PathBOK = phy_PathB_IQK_8188E(adapt); if (PathBOK == 0x03) { result[t][4] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord) & 0x3FF0000) >> 16; result[t][5] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord) & 0x3FF0000) >> 16; result[t][6] = (ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_B_2, bMaskDWord) & 0x3FF0000) >> 16; result[t][7] = (ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_B_2, bMaskDWord) & 0x3FF0000) >> 16; break; } else if (i == (retryCount - 1) && PathBOK == 0x01) { /* Tx IQK OK */ result[t][4] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord) & 0x3FF0000) >> 16; result[t][5] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord) & 0x3FF0000) >> 16; } } } /* Back to BB mode, load original value */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0); if (t != 0) { if (!dm_odm->RFCalibrateInfo.bRfPiEnable) { /* Switch back BB to SI mode after finish IQ Calibration. */ _PHY_PIModeSwitch(adapt, false); } /* Reload ADDA power saving parameters */ reload_adda_reg(adapt, ADDA_REG, dm_odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM); /* Reload MAC parameters */ _PHY_ReloadMACRegisters(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup); reload_adda_reg(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM); /* Restore RX initial gain */ ODM_SetBBReg(dm_odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00032ed3); if (is2t) ODM_SetBBReg(dm_odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00032ed3); /* load 0xe30 IQC default value */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00); } } static void phy_LCCalibrate_8188E(struct adapter *adapt, bool is2t) { u8 tmpreg; u32 RF_Amode = 0, RF_Bmode = 0, LC_Cal; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* Check continuous TX and Packet TX */ tmpreg = ODM_Read1Byte(dm_odm, 0xd03); if ((tmpreg & 0x70) != 0) /* Deal with contisuous TX case */ ODM_Write1Byte(dm_odm, 0xd03, tmpreg & 0x8F); /* disable all continuous TX */ else /* Deal with Packet TX case */ ODM_Write1Byte(dm_odm, REG_TXPAUSE, 0xFF); /* block all queues */ if ((tmpreg & 0x70) != 0) { /* 1. Read original RF mode */ /* Path-A */ RF_Amode = PHY_QueryRFReg(adapt, RF_PATH_A, RF_AC, bMask12Bits); /* Path-B */ if (is2t) RF_Bmode = PHY_QueryRFReg(adapt, RF_PATH_B, RF_AC, bMask12Bits); /* 2. Set RF mode = standby mode */ /* Path-A */ ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode & 0x8FFFF) | 0x10000); /* Path-B */ if (is2t) ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode & 0x8FFFF) | 0x10000); } /* 3. Read RF reg18 */ LC_Cal = PHY_QueryRFReg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits); /* 4. Set LC calibration begin bit15 */ ODM_SetRFReg(dm_odm, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal | 0x08000); ODM_sleep_ms(100); /* Restore original situation */ if ((tmpreg & 0x70) != 0) { /* Deal with continuous TX case */ /* Path-A */ ODM_Write1Byte(dm_odm, 0xd03, tmpreg); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode); /* Path-B */ if (is2t) ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode); } else { /* Deal with Packet TX case */ ODM_Write1Byte(dm_odm, REG_TXPAUSE, 0x00); } } void PHY_IQCalibrate_8188E(struct adapter *adapt, bool recovery) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; struct mpt_context *pMptCtx = &adapt->mppriv.MptCtx; s32 result[4][8]; /* last is final result */ u8 i, final_candidate; bool pathaok, pathbok; s32 RegE94, RegE9C, RegEA4, RegEB4, RegEBC, RegEC4; bool is12simular, is13simular, is23simular; bool singletone = false, carrier_sup = false; u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance, rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable, rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance, rOFDM0_XCTxAFE, rOFDM0_XDTxAFE, rOFDM0_RxIQExtAnta}; bool is2t; is2t = (dm_odm->RFType == ODM_2T2R) ? true : false; if (!ODM_CheckPowerStatus(adapt)) return; if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION)) return; if (*dm_odm->mp_mode == 1) { singletone = pMptCtx->bSingleTone; carrier_sup = pMptCtx->bCarrierSuppression; } /* 20120213<Kordan> Turn on when continuous Tx to pass lab testing. (required by Edlu) */ if (singletone || carrier_sup) return; if (recovery) { reload_adda_reg(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9); return; } for (i = 0; i < 8; i++) { result[0][i] = 0; result[1][i] = 0; result[2][i] = 0; if ((i == 0) || (i == 2) || (i == 4) || (i == 6)) result[3][i] = 0x100; else result[3][i] = 0; } final_candidate = 0xff; pathaok = false; pathbok = false; is12simular = false; is23simular = false; is13simular = false; for (i = 0; i < 3; i++) { phy_IQCalibrate_8188E(adapt, result, i, is2t); if (i == 1) { is12simular = phy_SimularityCompare_8188E(adapt, result, 0, 1); if (is12simular) { final_candidate = 0; break; } } if (i == 2) { is13simular = phy_SimularityCompare_8188E(adapt, result, 0, 2); if (is13simular) { final_candidate = 0; break; } is23simular = phy_SimularityCompare_8188E(adapt, result, 1, 2); if (is23simular) { final_candidate = 1; } else { final_candidate = 3; } } } for (i = 0; i < 4; i++) { RegE94 = result[i][0]; RegE9C = result[i][1]; RegEA4 = result[i][2]; RegEB4 = result[i][4]; RegEBC = result[i][5]; RegEC4 = result[i][6]; } if (final_candidate != 0xff) { RegE94 = result[final_candidate][0]; RegE9C = result[final_candidate][1]; RegEA4 = result[final_candidate][2]; RegEB4 = result[final_candidate][4]; RegEBC = result[final_candidate][5]; dm_odm->RFCalibrateInfo.RegE94 = RegE94; dm_odm->RFCalibrateInfo.RegE9C = RegE9C; dm_odm->RFCalibrateInfo.RegEB4 = RegEB4; dm_odm->RFCalibrateInfo.RegEBC = RegEBC; RegEC4 = result[final_candidate][6]; pathaok = true; pathbok = true; } else { dm_odm->RFCalibrateInfo.RegE94 = 0x100; dm_odm->RFCalibrateInfo.RegEB4 = 0x100; /* X default value */ dm_odm->RFCalibrateInfo.RegE9C = 0x0; dm_odm->RFCalibrateInfo.RegEBC = 0x0; /* Y default value */ } if (RegE94 != 0) patha_fill_iqk(adapt, pathaok, result, final_candidate, (RegEA4 == 0)); if (is2t) { if (RegEB4 != 0) pathb_fill_iqk(adapt, pathbok, result, final_candidate, (RegEC4 == 0)); } /* To Fix BSOD when final_candidate is 0xff */ /* by sherry 20120321 */ if (final_candidate < 4) { for (i = 0; i < IQK_Matrix_REG_NUM; i++) dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[0].Value[0][i] = result[final_candidate][i]; dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[0].bIQKDone = true; } _PHY_SaveADDARegisters(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9); } void PHY_LCCalibrate_8188E(struct adapter *adapt) { bool singletone = false, carrier_sup = false; u32 timeout = 2000, timecount = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; struct mpt_context *pMptCtx = &adapt->mppriv.MptCtx; if (*dm_odm->mp_mode == 1) { singletone = pMptCtx->bSingleTone; carrier_sup = pMptCtx->bCarrierSuppression; } if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION)) return; /* 20120213<Kordan> Turn on when continuous Tx to pass lab testing. (required by Edlu) */ if (singletone || carrier_sup) return; while (*dm_odm->pbScanInProcess && timecount < timeout) { ODM_delay_ms(50); timecount += 50; } dm_odm->RFCalibrateInfo.bLCKInProgress = true; if (dm_odm->RFType == ODM_2T2R) { phy_LCCalibrate_8188E(adapt, true); } else { /* For 88C 1T1R */ phy_LCCalibrate_8188E(adapt, false); } dm_odm->RFCalibrateInfo.bLCKInProgress = false; } static void phy_setrfpathswitch_8188e(struct adapter *adapt, bool main, bool is2t) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (!adapt->hw_init_completed) { u8 u1btmp; u1btmp = ODM_Read1Byte(dm_odm, REG_LEDCFG2) | BIT(7); ODM_Write1Byte(dm_odm, REG_LEDCFG2, u1btmp); ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFParameter, BIT(13), 0x01); } if (is2t) { /* 92C */ if (main) ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT(5) | BIT(6), 0x1); /* 92C_Path_A */ else ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT(5) | BIT(6), 0x2); /* BT */ } else { /* 88C */ if (main) ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT(8) | BIT(9), 0x2); /* Main */ else ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT(8) | BIT(9), 0x1); /* Aux */ } } void PHY_SetRFPathSwitch_8188E(struct adapter *adapt, bool main) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (dm_odm->RFType == ODM_2T2R) { phy_setrfpathswitch_8188e(adapt, main, true); } else { /* For 88C 1T1R */ phy_setrfpathswitch_8188e(adapt, main, false); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1