Contributors: 4
Author Tokens Token Proportion Commits Commit Proportion
Phillip Potter 4230 98.99% 1 16.67%
Larry Finger 33 0.77% 3 50.00%
Fabio M. De Francesco 6 0.14% 1 16.67%
Greg Kroah-Hartman 4 0.09% 1 16.67%
Total 4273 6


// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2011 Realtek Corporation. */

#define _RTL8188E_PHYCFG_C_

#include "../include/osdep_service.h"
#include "../include/drv_types.h"
#include "../include/rtw_iol.h"
#include "../include/rtl8188e_hal.h"

/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16

#define MAX_DOZE_WAITING_TIMES_9x 64

/*---------------------------Define Local Constant---------------------------*/

/*------------------------Define global variable-----------------------------*/

/*------------------------Define local variable------------------------------*/

/*--------------------Define export function prototype-----------------------*/
/*  Please refer to header file */
/*--------------------Define export function prototype-----------------------*/

/*----------------------------Function Body----------------------------------*/
/*  */
/*  1. BB register R/W API */
/*  */

/**
* Function:	phy_CalculateBitShift
*
* OverView:	Get shifted position of the BitMask
*
* Input:
*			u32		BitMask,
*
* Output:	none
* Return:		u32		Return the shift bit bit position of the mask
*/
static	u32 phy_CalculateBitShift(u32 BitMask)
{
	u32 i;

	for (i = 0; i <= 31; i++) {
		if (((BitMask >> i) & 0x1) == 1)
			break;
	}
	return i;
}

/**
* Function:	PHY_QueryBBReg
*
* OverView:	Read "sepcific bits" from BB register
*
* Input:
*			struct adapter *Adapter,
*			u32			RegAddr,	The target address to be readback
*			u32			BitMask		The target bit position in the target address
*								to be readback
* Output:	None
* Return:		u32			Data		The readback register value
* Note:		This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
rtl8188e_PHY_QueryBBReg(
		struct adapter *Adapter,
		u32 RegAddr,
		u32 BitMask
	)
{
	u32 ReturnValue = 0, OriginalValue, BitShift;

	OriginalValue = rtw_read32(Adapter, RegAddr);
	BitShift = phy_CalculateBitShift(BitMask);
	ReturnValue = (OriginalValue & BitMask) >> BitShift;
	return ReturnValue;
}

/**
* Function:	PHY_SetBBReg
*
* OverView:	Write "Specific bits" to BB register (page 8~)
*
* Input:
*			struct adapter *Adapter,
*			u32			RegAddr,	The target address to be modified
*			u32			BitMask		The target bit position in the target address
*									to be modified
*			u32			Data		The new register value in the target bit position
*									of the target address
*
* Output:	None
* Return:		None
* Note:		This function is equal to "PutRegSetting" in PHY programming guide
*/

void rtl8188e_PHY_SetBBReg(struct adapter *Adapter, u32 RegAddr, u32 BitMask, u32 Data)
{
	u32 OriginalValue, BitShift;

	if (BitMask != bMaskDWord) { /* if not "double word" write */
		OriginalValue = rtw_read32(Adapter, RegAddr);
		BitShift = phy_CalculateBitShift(BitMask);
		Data = ((OriginalValue & (~BitMask)) | (Data << BitShift));
	}

	rtw_write32(Adapter, RegAddr, Data);
}

/*  */
/*  2. RF register R/W API */
/*  */
/**
* Function:	phy_RFSerialRead
*
* OverView:	Read regster from RF chips
*
* Input:
*			struct adapter *Adapter,
*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
*			u32			Offset,		The target address to be read
*
* Output:	None
* Return:		u32			reback value
* Note:		Threre are three types of serial operations:
*			1. Software serial write
*			2. Hardware LSSI-Low Speed Serial Interface
*			3. Hardware HSSI-High speed
*			serial write. Driver need to implement (1) and (2).
*			This function is equal to the combination of RF_ReadReg() and  RFLSSIRead()
*/
static	u32
phy_RFSerialRead(
		struct adapter *Adapter,
		enum rf_radio_path eRFPath,
		u32 Offset
	)
{
	u32 retValue = 0;
	struct hal_data_8188e				*pHalData = GET_HAL_DATA(Adapter);
	struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath];
	u32 NewOffset;
	u32 tmplong, tmplong2;
	u8 	RfPiEnable = 0;
	/*  */
	/*  Make sure RF register offset is correct */
	/*  */
	Offset &= 0xff;

	/*  */
	/*  Switch page for 8256 RF IC */
	/*  */
	NewOffset = Offset;

	/*  For 92S LSSI Read RFLSSIRead */
	/*  For RF A/B write 0x824/82c(does not work in the future) */
	/*  We must use 0x824 for RF A and B to execute read trigger */
	tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord);
	if (eRFPath == RF_PATH_A)
		tmplong2 = tmplong;
	else
		tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord);

	tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge;	/* T65 RF */

	PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong & (~bLSSIReadEdge));
	udelay(10);/*  PlatformStallExecution(10); */

	PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2);
	udelay(100);/* PlatformStallExecution(100); */

	udelay(10);/* PlatformStallExecution(10); */

	if (eRFPath == RF_PATH_A)
		RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT(8));
	else if (eRFPath == RF_PATH_B)
		RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT(8));

	if (RfPiEnable) {	/*  Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */
		retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData);
	} else {	/* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */
		retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
	}
	return retValue;
}

/**
* Function:	phy_RFSerialWrite
*
* OverView:	Write data to RF register (page 8~)
*
* Input:
*			struct adapter *Adapter,
*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
*			u32			Offset,		The target address to be read
*			u32			Data		The new register Data in the target bit position
*									of the target to be read
*
* Output:	None
* Return:		None
* Note:		Threre are three types of serial operations:
*			1. Software serial write
*			2. Hardware LSSI-Low Speed Serial Interface
*			3. Hardware HSSI-High speed
*			serial write. Driver need to implement (1) and (2).
*			This function is equal to the combination of RF_ReadReg() and  RFLSSIRead()
 *
 * Note:		  For RF8256 only
 *			 The total count of RTL8256(Zebra4) register is around 36 bit it only employs
 *			 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
 *			 to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
 *			 programming guide" for more details.
 *			 Thus, we define a sub-finction for RTL8526 register address conversion
 *		       ===========================================================
 *			 Register Mode		RegCTL[1]		RegCTL[0]		Note
 *								(Reg00[12])		(Reg00[10])
 *		       ===========================================================
 *			 Reg_Mode0				0				x			Reg 0 ~15(0x0 ~ 0xf)
 *		       ------------------------------------------------------------------
 *			 Reg_Mode1				1				0			Reg 16 ~30(0x1 ~ 0xf)
 *		       ------------------------------------------------------------------
 *			 Reg_Mode2				1				1			Reg 31 ~ 45(0x1 ~ 0xf)
 *		       ------------------------------------------------------------------
 *
 *	2008/09/02	MH	Add 92S RF definition
 *
 *
 *
*/
static	void
phy_RFSerialWrite(
		struct adapter *Adapter,
		enum rf_radio_path eRFPath,
		u32 Offset,
		u32 Data
	)
{
	u32 DataAndAddr = 0;
	struct hal_data_8188e				*pHalData = GET_HAL_DATA(Adapter);
	struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath];
	u32 NewOffset;

	/*  2009/06/17 MH We can not execute IO for power save or other accident mode. */

	Offset &= 0xff;

	/*  */
	/*  Switch page for 8256 RF IC */
	/*  */
	NewOffset = Offset;

	/*  */
	/*  Put write addr in [5:0]  and write data in [31:16] */
	/*  */
	DataAndAddr = ((NewOffset << 20) | (Data & 0x000fffff)) & 0x0fffffff;	/*  T65 RF */

	/*  */
	/*  Write Operation */
	/*  */
	PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
}

/**
* Function:	PHY_QueryRFReg
*
* OverView:	Query "Specific bits" to RF register (page 8~)
*
* Input:
*			struct adapter *Adapter,
*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
*			u32			RegAddr,	The target address to be read
*			u32			BitMask		The target bit position in the target address
*									to be read
*
* Output:	None
* Return:		u32			Readback value
* Note:		This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32 rtl8188e_PHY_QueryRFReg(struct adapter *Adapter, enum rf_radio_path eRFPath,
			    u32 RegAddr, u32 BitMask)
{
	u32 Original_Value, Readback_Value, BitShift;

	Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);

	BitShift =  phy_CalculateBitShift(BitMask);
	Readback_Value = (Original_Value & BitMask) >> BitShift;
	return Readback_Value;
}

/**
* Function:	PHY_SetRFReg
*
* OverView:	Write "Specific bits" to RF register (page 8~)
*
* Input:
*			struct adapter *Adapter,
*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
*			u32			RegAddr,	The target address to be modified
*			u32			BitMask		The target bit position in the target address
*									to be modified
*			u32			Data		The new register Data in the target bit position
*									of the target address
*
* Output:	None
* Return:		None
* Note:		This function is equal to "PutRFRegSetting" in PHY programming guide
*/
void
rtl8188e_PHY_SetRFReg(
		struct adapter *Adapter,
		enum rf_radio_path eRFPath,
		u32 RegAddr,
		u32 BitMask,
		u32 Data
	)
{
	u32 Original_Value, BitShift;

	/*  RF data is 12 bits only */
	if (BitMask != bRFRegOffsetMask) {
		Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
		BitShift =  phy_CalculateBitShift(BitMask);
		Data = ((Original_Value & (~BitMask)) | (Data << BitShift));
	}

	phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data);
}

/*  */
/*  3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. */
/*  */

/*-----------------------------------------------------------------------------
 * Function:    PHY_MACConfig8192C
 *
 * Overview:	Condig MAC by header file or parameter file.
 *
 * Input:       NONE
 *
 * Output:      NONE
 *
 * Return:      NONE
 *
 * Revised History:
 *  When		Who		Remark
 *  08/12/2008	MHC		Create Version 0.
 *
 *---------------------------------------------------------------------------*/
s32 PHY_MACConfig8188E(struct adapter *Adapter)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
	int rtStatus = _SUCCESS;

	/*  */
	/*  Config MAC */
	/*  */
	if (HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv))
		rtStatus = _FAIL;

	/*  2010.07.13 AMPDU aggregation number B */
	rtw_write16(Adapter, REG_MAX_AGGR_NUM, MAX_AGGR_NUM);

	return rtStatus;
}

/**
* Function:	phy_InitBBRFRegisterDefinition
*
* OverView:	Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
*			struct adapter *Adapter,
*
* Output:	None
* Return:		None
* Note:		The initialization value is constant and it should never be changes
*/
static	void
phy_InitBBRFRegisterDefinition(
		struct adapter *Adapter
)
{
	struct hal_data_8188e		*pHalData = GET_HAL_DATA(Adapter);

	/*  RF Interface Sowrtware Control */
	pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /*  16 LSBs if read 32-bit from 0x870 */
	pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /*  16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
	pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;/*  16 LSBs if read 32-bit from 0x874 */
	pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;/*  16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */

	/*  RF Interface Readback Value */
	pHalData->PHYRegDef[RF_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; /*  16 LSBs if read 32-bit from 0x8E0 */
	pHalData->PHYRegDef[RF_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;/*  16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
	pHalData->PHYRegDef[RF_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;/*  16 LSBs if read 32-bit from 0x8E4 */
	pHalData->PHYRegDef[RF_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;/*  16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */

	/*  RF Interface Output (and Enable) */
	pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /*  16 LSBs if read 32-bit from 0x860 */
	pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /*  16 LSBs if read 32-bit from 0x864 */

	/*  RF Interface (Output and)  Enable */
	pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /*  16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
	pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /*  16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */

	/* Addr of LSSI. Wirte RF register by driver */
	pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */
	pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;

	/*  RF parameter */
	pHalData->PHYRegDef[RF_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter;  /* BB Band Select */
	pHalData->PHYRegDef[RF_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
	pHalData->PHYRegDef[RF_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
	pHalData->PHYRegDef[RF_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;

	/*  Tx AGC Gain Stage (same for all path. Should we remove this?) */
	pHalData->PHYRegDef[RF_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
	pHalData->PHYRegDef[RF_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
	pHalData->PHYRegDef[RF_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
	pHalData->PHYRegDef[RF_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */

	/*  Tranceiver A~D HSSI Parameter-1 */
	pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1;  /* wire control parameter1 */
	pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1;  /* wire control parameter1 */

	/*  Tranceiver A~D HSSI Parameter-2 */
	pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2;  /* wire control parameter2 */
	pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2;  /* wire control parameter2 */

	/*  RF switch Control */
	pHalData->PHYRegDef[RF_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; /* TR/Ant switch control */
	pHalData->PHYRegDef[RF_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
	pHalData->PHYRegDef[RF_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
	pHalData->PHYRegDef[RF_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;

	/*  AGC control 1 */
	pHalData->PHYRegDef[RF_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
	pHalData->PHYRegDef[RF_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
	pHalData->PHYRegDef[RF_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
	pHalData->PHYRegDef[RF_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;

	/*  AGC control 2 */
	pHalData->PHYRegDef[RF_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
	pHalData->PHYRegDef[RF_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
	pHalData->PHYRegDef[RF_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
	pHalData->PHYRegDef[RF_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;

	/*  RX AFE control 1 */
	pHalData->PHYRegDef[RF_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
	pHalData->PHYRegDef[RF_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
	pHalData->PHYRegDef[RF_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
	pHalData->PHYRegDef[RF_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;

	/*  RX AFE control 1 */
	pHalData->PHYRegDef[RF_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
	pHalData->PHYRegDef[RF_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
	pHalData->PHYRegDef[RF_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
	pHalData->PHYRegDef[RF_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;

	/*  Tx AFE control 1 */
	pHalData->PHYRegDef[RF_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
	pHalData->PHYRegDef[RF_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
	pHalData->PHYRegDef[RF_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
	pHalData->PHYRegDef[RF_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;

	/*  Tx AFE control 2 */
	pHalData->PHYRegDef[RF_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
	pHalData->PHYRegDef[RF_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
	pHalData->PHYRegDef[RF_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
	pHalData->PHYRegDef[RF_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;

	/*  Tranceiver LSSI Readback SI mode */
	pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
	pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
	pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
	pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;

	/*  Tranceiver LSSI Readback PI mode */
	pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
	pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
}

void storePwrIndexDiffRateOffset(struct adapter *Adapter, u32 RegAddr, u32 BitMask, u32 Data)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);

	if (RegAddr == rTxAGC_A_Rate18_06)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data;
	if (RegAddr == rTxAGC_A_Rate54_24)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data;
	if (RegAddr == rTxAGC_A_CCK1_Mcs32)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data;
	if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0xffffff00)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data;
	if (RegAddr == rTxAGC_A_Mcs03_Mcs00)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data;
	if (RegAddr == rTxAGC_A_Mcs07_Mcs04)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data;
	if (RegAddr == rTxAGC_A_Mcs11_Mcs08)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data;
	if (RegAddr == rTxAGC_A_Mcs15_Mcs12) {
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data;
		if (pHalData->rf_type == RF_1T1R)
			pHalData->pwrGroupCnt++;
	}
	if (RegAddr == rTxAGC_B_Rate18_06)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data;
	if (RegAddr == rTxAGC_B_Rate54_24)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data;
	if (RegAddr == rTxAGC_B_CCK1_55_Mcs32)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data;
	if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data;
	if (RegAddr == rTxAGC_B_Mcs03_Mcs00)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data;
	if (RegAddr == rTxAGC_B_Mcs07_Mcs04)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data;
	if (RegAddr == rTxAGC_B_Mcs11_Mcs08)
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data;
	if (RegAddr == rTxAGC_B_Mcs15_Mcs12) {
		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data;
		if (pHalData->rf_type != RF_1T1R)
			pHalData->pwrGroupCnt++;
	}
}

static	int phy_BB8188E_Config_ParaFile(struct adapter *Adapter)
{
	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
	struct hal_data_8188e		*pHalData = GET_HAL_DATA(Adapter);
	int			rtStatus = _SUCCESS;

	/*  */
	/*  1. Read PHY_REG.TXT BB INIT!! */
	/*  We will separate as 88C / 92C according to chip version */
	/*  */
	if (HAL_STATUS_FAILURE == ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
		rtStatus = _FAIL;
	if (rtStatus != _SUCCESS)
		goto phy_BB8190_Config_ParaFile_Fail;

	/*  2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt */
	if (!pEEPROM->bautoload_fail_flag) {
		pHalData->pwrGroupCnt = 0;

		if (HAL_STATUS_FAILURE == ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG))
			rtStatus = _FAIL;
	}

	if (rtStatus != _SUCCESS)
		goto phy_BB8190_Config_ParaFile_Fail;

	/*  3. BB AGC table Initialization */
	if (HAL_STATUS_FAILURE == ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv,  CONFIG_BB_AGC_TAB))
		rtStatus = _FAIL;

	if (rtStatus != _SUCCESS)
		goto phy_BB8190_Config_ParaFile_Fail;

phy_BB8190_Config_ParaFile_Fail:

	return rtStatus;
}

int
PHY_BBConfig8188E(
		struct adapter *Adapter
	)
{
	int	rtStatus = _SUCCESS;
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
	u32 RegVal;
	u8 CrystalCap;

	phy_InitBBRFRegisterDefinition(Adapter);

	/*  Enable BB and RF */
	RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
	rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal | BIT(13) | BIT(0) | BIT(1)));

	/*  20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */

	rtw_write8(Adapter, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);

	rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);

	/*  Config BB and AGC */
	rtStatus = phy_BB8188E_Config_ParaFile(Adapter);

	/*  write 0x24[16:11] = 0x24[22:17] = CrystalCap */
	CrystalCap = pHalData->CrystalCap & 0x3F;
	PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6)));

	return rtStatus;
}

int PHY_RFConfig8188E(struct adapter *Adapter)
{
	int		rtStatus = _SUCCESS;

	/*  RF config */
	rtStatus = PHY_RF6052_Config8188E(Adapter);
	return rtStatus;
}

/*-----------------------------------------------------------------------------
 * Function:    PHY_ConfigRFWithParaFile()
 *
 * Overview:    This function read RF parameters from general file format, and do RF 3-wire
 *
 * Input:	struct adapter *Adapter
 *			ps8					pFileName
 *			enum rf_radio_path eRFPath
 *
 * Output:      NONE
 *
 * Return:      RT_STATUS_SUCCESS: configuration file exist
 *
 * Note:		Delay may be required for RF configuration
 *---------------------------------------------------------------------------*/
int rtl8188e_PHY_ConfigRFWithParaFile(struct adapter *Adapter, u8 *pFileName, enum rf_radio_path eRFPath)
{
	return _SUCCESS;
}

void
rtl8192c_PHY_GetHWRegOriginalValue(
		struct adapter *Adapter
	)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);

	/*  read rx initial gain */
	pHalData->DefaultInitialGain[0] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0);
	pHalData->DefaultInitialGain[1] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0);
	pHalData->DefaultInitialGain[2] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XCAGCCore1, bMaskByte0);
	pHalData->DefaultInitialGain[3] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XDAGCCore1, bMaskByte0);

	/*  read framesync */
	pHalData->framesync = (u8)PHY_QueryBBReg(Adapter, rOFDM0_RxDetector3, bMaskByte0);
	pHalData->framesyncC34 = PHY_QueryBBReg(Adapter, rOFDM0_RxDetector2, bMaskDWord);
}

/*  */
/*	Description: */
/*		Map dBm into Tx power index according to */
/*		current HW model, for example, RF and PA, and */
/*		current wireless mode. */
/*	By Bruce, 2008-01-29. */
/*  */
static	u8 phy_DbmToTxPwrIdx(struct adapter *Adapter, enum wireless_mode WirelessMode, int PowerInDbm)
{
	u8 TxPwrIdx = 0;
	int				Offset = 0;

	/*  */
	/*  Tested by MP, we found that CCK Index 0 equals to 8dbm, OFDM legacy equals to */
	/*  3dbm, and OFDM HT equals to 0dbm respectively. */
	/*  Note: */
	/*	The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */
	/*  By Bruce, 2008-01-29. */
	/*  */
	switch (WirelessMode) {
	case WIRELESS_MODE_B:
		Offset = -7;
		break;

	case WIRELESS_MODE_G:
	case WIRELESS_MODE_N_24G:
	default:
		Offset = -8;
		break;
	}

	if ((PowerInDbm - Offset) > 0)
		TxPwrIdx = (u8)((PowerInDbm - Offset) * 2);
	else
		TxPwrIdx = 0;

	/*  Tx Power Index is too large. */
	if (TxPwrIdx > MAX_TXPWR_IDX_NMODE_92S)
		TxPwrIdx = MAX_TXPWR_IDX_NMODE_92S;

	return TxPwrIdx;
}

/*  */
/*	Description: */
/*		Map Tx power index into dBm according to */
/*		current HW model, for example, RF and PA, and */
/*		current wireless mode. */
/*	By Bruce, 2008-01-29. */
/*  */
static int phy_TxPwrIdxToDbm(struct adapter *Adapter, enum wireless_mode WirelessMode, u8 TxPwrIdx)
{
	int				Offset = 0;
	int				PwrOutDbm = 0;

	/*  */
	/*  Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm. */
	/*  Note: */
	/*	The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */
	/*  By Bruce, 2008-01-29. */
	/*  */
	switch (WirelessMode) {
	case WIRELESS_MODE_B:
		Offset = -7;
		break;
	case WIRELESS_MODE_G:
	case WIRELESS_MODE_N_24G:
	default:
		Offset = -8;
		break;
	}

	PwrOutDbm = TxPwrIdx / 2 + Offset; /*  Discard the decimal part. */

	return PwrOutDbm;
}

/*-----------------------------------------------------------------------------
 * Function:    GetTxPowerLevel8190()
 *
 * Overview:    This function is export to "common" moudule
 *
 * Input:       struct adapter *Adapter
 *			psByte			Power Level
 *
 * Output:      NONE
 *
 * Return:      NONE
 *
 *---------------------------------------------------------------------------*/
void PHY_GetTxPowerLevel8188E(struct adapter *Adapter, u32 *powerlevel)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
	u8 TxPwrLevel = 0;
	int			TxPwrDbm;

	/*  */
	/*  Because the Tx power indexes are different, we report the maximum of them to */
	/*  meet the CCX TPC request. By Bruce, 2008-01-31. */
	/*  */

	/*  CCK */
	TxPwrLevel = pHalData->CurrentCckTxPwrIdx;
	TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_B, TxPwrLevel);

	/*  Legacy OFDM */
	TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx + pHalData->LegacyHTTxPowerDiff;

	/*  Compare with Legacy OFDM Tx power. */
	if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel) > TxPwrDbm)
		TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel);

	/*  HT OFDM */
	TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx;

	/*  Compare with HT OFDM Tx power. */
	if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel) > TxPwrDbm)
		TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel);

	*powerlevel = TxPwrDbm;
}

static void getTxPowerIndex88E(struct adapter *Adapter, u8 channel, u8 *cckPowerLevel,
			       u8 *ofdmPowerLevel, u8 *BW20PowerLevel,
			       u8 *BW40PowerLevel)
{
	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
	u8 index = (channel - 1);
	u8 TxCount = 0, path_nums;

	if ((RF_1T2R == pHalData->rf_type) || (RF_1T1R == pHalData->rf_type))
		path_nums = 1;
	else
		path_nums = 2;

	for (TxCount = 0; TxCount < path_nums; TxCount++) {
		if (TxCount == RF_PATH_A) {
			/*  1. CCK */
			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
			/* 2. OFDM */
			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
				pHalData->OFDM_24G_Diff[TxCount][RF_PATH_A];
			/*  1. BW20 */
			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
				pHalData->BW20_24G_Diff[TxCount][RF_PATH_A];
			/* 2. BW40 */
			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
		} else if (TxCount == RF_PATH_B) {
			/*  1. CCK */
			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
			/* 2. OFDM */
			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[TxCount][index];
			/*  1. BW20 */
			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[TxCount][RF_PATH_A] +
			pHalData->BW20_24G_Diff[TxCount][index];
			/* 2. BW40 */
			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
		} else if (TxCount == RF_PATH_C) {
			/*  1. CCK */
			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
			/* 2. OFDM */
			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_B][index] +
			pHalData->BW20_24G_Diff[TxCount][index];
			/*  1. BW20 */
			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_B][index] +
			pHalData->BW20_24G_Diff[TxCount][index];
			/* 2. BW40 */
			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
		} else if (TxCount == RF_PATH_D) {
			/*  1. CCK */
			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
			/* 2. OFDM */
			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_B][index] +
			pHalData->BW20_24G_Diff[RF_PATH_C][index] +
			pHalData->BW20_24G_Diff[TxCount][index];

			/*  1. BW20 */
			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_A][index] +
			pHalData->BW20_24G_Diff[RF_PATH_B][index] +
			pHalData->BW20_24G_Diff[RF_PATH_C][index] +
			pHalData->BW20_24G_Diff[TxCount][index];

			/* 2. BW40 */
			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
		}
	}
}

static void phy_PowerIndexCheck88E(struct adapter *Adapter, u8 channel, u8 *cckPowerLevel,
				   u8 *ofdmPowerLevel, u8 *BW20PowerLevel, u8 *BW40PowerLevel)
{
	struct hal_data_8188e		*pHalData = GET_HAL_DATA(Adapter);

	pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0];
	pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0];
	pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0];
	pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0];
}

/*-----------------------------------------------------------------------------
 * Function:    SetTxPowerLevel8190()
 *
 * Overview:    This function is export to "HalCommon" moudule
 *			We must consider RF path later!!!!!!!
 *
 * Input:       struct adapter *Adapter
 *			u8		channel
 *
 * Output:      NONE
 *
 * Return:      NONE
 *	2008/11/04	MHC		We remove EEPROM_93C56.
 *						We need to move CCX relative code to independet file.
 *	2009/01/21	MHC		Support new EEPROM format from SD3 requirement.
 *
 *---------------------------------------------------------------------------*/
void
PHY_SetTxPowerLevel8188E(
		struct adapter *Adapter,
		u8 channel
	)
{
	u8 cckPowerLevel[MAX_TX_COUNT] = {0};
	u8 ofdmPowerLevel[MAX_TX_COUNT] = {0};/*  [0]:RF-A, [1]:RF-B */
	u8 BW20PowerLevel[MAX_TX_COUNT] = {0};
	u8 BW40PowerLevel[MAX_TX_COUNT] = {0};

	getTxPowerIndex88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0], &BW20PowerLevel[0], &BW40PowerLevel[0]);

	phy_PowerIndexCheck88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0], &BW20PowerLevel[0], &BW40PowerLevel[0]);

	rtl8188e_PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]);
	rtl8188e_PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0], &BW20PowerLevel[0], &BW40PowerLevel[0], channel);
}

/*  */
/*	Description: */
/*		Update transmit power level of all channel supported. */
/*  */
/*	TODO: */
/*		A mode. */
/*	By Bruce, 2008-02-04. */
/*  */
bool
PHY_UpdateTxPowerDbm8188E(
		struct adapter *Adapter,
		int		powerInDbm
	)
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
	u8 idx;
	u8 rf_path;

	/*  TODO: A mode Tx power. */
	u8 CckTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, powerInDbm);
	u8 OfdmTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, powerInDbm);

	if (OfdmTxPwrIdx - pHalData->LegacyHTTxPowerDiff > 0)
		OfdmTxPwrIdx -= pHalData->LegacyHTTxPowerDiff;
	else
		OfdmTxPwrIdx = 0;

	for (idx = 0; idx < 14; idx++) {
		for (rf_path = 0; rf_path < 2; rf_path++) {
			pHalData->TxPwrLevelCck[rf_path][idx] = CckTxPwrIdx;
			pHalData->TxPwrLevelHT40_1S[rf_path][idx] =
			pHalData->TxPwrLevelHT40_2S[rf_path][idx] = OfdmTxPwrIdx;
		}
	}
	return true;
}

void
PHY_ScanOperationBackup8188E(
		struct adapter *Adapter,
		u8 Operation
	)
{
}

/*-----------------------------------------------------------------------------
 * Function:    PHY_SetBWModeCallback8192C()
 *
 * Overview:    Timer callback function for SetSetBWMode
 *
 * Input:		PRT_TIMER		pTimer
 *
 * Output:      NONE
 *
 * Return:      NONE
 *
 * Note:		(1) We do not take j mode into consideration now
 *			(2) Will two workitem of "switch channel" and "switch channel bandwidth" run
 *			     concurrently?
 *---------------------------------------------------------------------------*/
static void
_PHY_SetBWMode92C(
		struct adapter *Adapter
)
{
	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
	u8 regBwOpMode;
	u8 regRRSR_RSC;

	if (pHalData->rf_chip == RF_PSEUDO_11N)
		return;

	/*  There is no 40MHz mode in RF_8225. */
	if (pHalData->rf_chip == RF_8225)
		return;

	if (Adapter->bDriverStopped)
		return;

	/* 3 */
	/* 3<1>Set MAC register */
	/* 3 */

	regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE);
	regRRSR_RSC = rtw_read8(Adapter, REG_RRSR + 2);

	switch (pHalData->CurrentChannelBW) {
	case HT_CHANNEL_WIDTH_20:
		regBwOpMode |= BW_OPMODE_20MHZ;
		/*  2007/02/07 Mark by Emily because we have not verify whether this register works */
		rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
		break;
	case HT_CHANNEL_WIDTH_40:
		regBwOpMode &= ~BW_OPMODE_20MHZ;
		/*  2007/02/07 Mark by Emily because we have not verify whether this register works */
		rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
		regRRSR_RSC = (regRRSR_RSC & 0x90) | (pHalData->nCur40MhzPrimeSC << 5);
		rtw_write8(Adapter, REG_RRSR + 2, regRRSR_RSC);
		break;
	default:
		break;
	}

	/* 3  */
	/* 3 <2>Set PHY related register */
	/* 3 */
	switch (pHalData->CurrentChannelBW) {
	/* 20 MHz channel*/
	case HT_CHANNEL_WIDTH_20:
		PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
		PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
		break;
	/* 40 MHz channel*/
	case HT_CHANNEL_WIDTH_40:
		PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
		PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
		/*  Set Control channel to upper or lower. These settings are required only for 40MHz */
		PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC >> 1));
		PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
		PHY_SetBBReg(Adapter, 0x818, (BIT(26) | BIT(27)),
			     (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
		break;
	default:
		break;
	}
	/* Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 */

	/* 3<3>Set RF related register */
	switch (pHalData->rf_chip) {
	case RF_8225:
		break;
	case RF_8256:
		/*  Please implement this function in Hal8190PciPhy8256.c */
		break;
	case RF_PSEUDO_11N:
		break;
	case RF_6052:
		rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW);
		break;
	default:
		break;
	}
}

 /*-----------------------------------------------------------------------------
 * Function:   SetBWMode8190Pci()
 *
 * Overview:  This function is export to "HalCommon" moudule
 *
 * Input:		struct adapter *Adapter
 *			enum ht_channel_width Bandwidth	20M or 40M
 *
 * Output:      NONE
 *
 * Return:      NONE
 *
 * Note:		We do not take j mode into consideration now
 *---------------------------------------------------------------------------*/
void PHY_SetBWMode8188E(struct adapter *Adapter, enum ht_channel_width Bandwidth,	/*  20M or 40M */
			unsigned char	Offset)		/*  Upper, Lower, or Don't care */
{
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
	enum ht_channel_width tmpBW = pHalData->CurrentChannelBW;

	pHalData->CurrentChannelBW = Bandwidth;

	pHalData->nCur40MhzPrimeSC = Offset;

	if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved))
		_PHY_SetBWMode92C(Adapter);
	else
		pHalData->CurrentChannelBW = tmpBW;
}

static void _PHY_SwChnl8192C(struct adapter *Adapter, u8 channel)
{
	u8 eRFPath;
	u32 param1, param2;
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);

	if (Adapter->bNotifyChannelChange)
		DBG_88E("[%s] ch = %d\n", __func__, channel);

	/* s1. pre common command - CmdID_SetTxPowerLevel */
	PHY_SetTxPowerLevel8188E(Adapter, channel);

	/* s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel */
	param1 = RF_CHNLBW;
	param2 = channel;
	for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++) {
		pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2);
		PHY_SetRFReg(Adapter, (enum rf_radio_path)eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
	}
}

void PHY_SwChnl8188E(struct adapter *Adapter, u8 channel)
{
	/*  Call after initialization */
	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);

	if (pHalData->rf_chip == RF_PSEUDO_11N)
		return;		/* return immediately if it is peudo-phy */

	if (channel == 0)
		channel = 1;

	if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) {
		pHalData->CurrentChannel = channel;
		_PHY_SwChnl8192C(Adapter, channel);
	}
}