Contributors: 4
Author Tokens Token Proportion Commits Commit Proportion
Phillip Potter 1214 99.51% 1 25.00%
Nathan Chancellor 3 0.25% 1 25.00%
Larry Finger 2 0.16% 1 25.00%
Greg Kroah-Hartman 1 0.08% 1 25.00%
Total 1220 4


/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/* Copyright(c) 2007 - 2011 Realtek Corporation. */

#ifndef __OSDEP_SERVICE_H_
#define __OSDEP_SERVICE_H_

#include <linux/sched/signal.h>
#include "basic_types.h"

#define _FAIL		0
#define _SUCCESS	1
#define RTW_RX_HANDLED 2

#include <linux/spinlock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/circ_buf.h>
#include <linux/uaccess.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <linux/io.h>
#include <linux/semaphore.h>
#include <linux/sem.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <net/iw_handler.h>
#include <linux/if_arp.h>
#include <linux/rtnetlink.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>	/*  Necessary because we use the proc fs */
#include <linux/interrupt.h>	/*  for struct tasklet_struct */
#include <linux/ip.h>
#include <linux/kthread.h>
#include <linux/vmalloc.h>

#include <linux/usb.h>
#include <linux/usb/ch9.h>

struct	__queue	{
	struct	list_head	queue;
	spinlock_t lock;
};

#define thread_exit() complete_and_exit(NULL, 0)

static inline struct list_head *get_list_head(struct __queue *queue)
{
	return (&(queue->queue));
}

static inline int _enter_critical_mutex(struct mutex *pmutex, unsigned long *pirqL)
{
	int ret;

	ret = mutex_lock_interruptible(pmutex);
	return ret;
}

static inline void _exit_critical_mutex(struct mutex *pmutex, unsigned long *pirqL)
{
		mutex_unlock(pmutex);
}

static inline void rtw_list_delete(struct list_head *plist)
{
	list_del_init(plist);
}

static inline void _set_timer(struct timer_list *ptimer,u32 delay_time)
{
	mod_timer(ptimer , (jiffies+(delay_time*HZ/1000)));
}

static inline void _cancel_timer(struct timer_list *ptimer,u8 *bcancelled)
{
	del_timer_sync(ptimer);
	*bcancelled=  true;/* true ==1; false==0 */
}

#define RTW_TIMER_HDL_ARGS void *FunctionContext
#define RTW_TIMER_HDL_NAME(name) rtw_##name##_timer_hdl
#define RTW_DECLARE_TIMER_HDL(name) void RTW_TIMER_HDL_NAME(name)(RTW_TIMER_HDL_ARGS)

static inline void _init_workitem(struct work_struct *pwork, void *pfunc, void * cntx)
{
	INIT_WORK(pwork, pfunc);
}

static inline void _set_workitem(struct work_struct *pwork)
{
	schedule_work(pwork);
}

static inline void _cancel_workitem_sync(struct work_struct *pwork)
{
	cancel_work_sync(pwork);
}
/*  */
/*  Global Mutex: can only be used at PASSIVE level. */
/*  */

#define ACQUIRE_GLOBAL_MUTEX(_MutexCounter)                              \
{                                                               \
	while (atomic_inc_return((atomic_t *)&(_MutexCounter)) != 1)\
	{                                                           \
		atomic_dec((atomic_t *)&(_MutexCounter));        \
		msleep(10);                          \
	}                                                           \
}

#define RELEASE_GLOBAL_MUTEX(_MutexCounter)                              \
{                                                               \
	atomic_dec((atomic_t *)&(_MutexCounter));        \
}

static inline int rtw_netif_queue_stopped(struct net_device *pnetdev)
{
	return  netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 0)) &&
		netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 1)) &&
		netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 2)) &&
		netif_tx_queue_stopped(netdev_get_tx_queue(pnetdev, 3));
}

static inline void rtw_netif_wake_queue(struct net_device *pnetdev)
{
	netif_tx_wake_all_queues(pnetdev);
}

static inline void rtw_netif_start_queue(struct net_device *pnetdev)
{
	netif_tx_start_all_queues(pnetdev);
}

static inline void rtw_netif_stop_queue(struct net_device *pnetdev)
{
	netif_tx_stop_all_queues(pnetdev);
}

extern int RTW_STATUS_CODE(int error_code);

extern unsigned char MCS_rate_2R[16];
extern unsigned char MCS_rate_1R[16];
extern unsigned char RTW_WPA_OUI[];
extern unsigned char WPA_TKIP_CIPHER[4];
extern unsigned char RSN_TKIP_CIPHER[4];

void *rtw_malloc2d(int h, int w, int size);

u32  _rtw_down_sema(struct semaphore *sema);
void _rtw_mutex_init(struct mutex *pmutex);
void _rtw_mutex_free(struct mutex *pmutex);

void _rtw_init_queue(struct __queue *pqueue);

u32  rtw_systime_to_ms(u32 systime);
u32  rtw_ms_to_systime(u32 ms);
s32  rtw_get_passing_time_ms(u32 start);

void rtw_usleep_os(int us);

u32  rtw_atoi(u8 *s);

static inline unsigned char _cancel_timer_ex(struct timer_list *ptimer)
{
	return del_timer_sync(ptimer);
}

static __inline void thread_enter(char *name)
{
#ifdef daemonize
	daemonize("%s", name);
#endif
	allow_signal(SIGTERM);
}

static inline void flush_signals_thread(void)
{
	if (signal_pending (current))
		flush_signals(current);
}

static inline int res_to_status(int res)
{
	return res;
}

#define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r))
#define RND4(x)	(((x >> 2) + (((x & 3) == 0) ?  0: 1)) << 2)

static inline u32 _RND4(u32 sz)
{
	u32	val;

	val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2;
	return val;
}

static inline u32 _RND8(u32 sz)
{
	u32	val;

	val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3;
	return val;
}

static inline u32 _RND128(u32 sz)
{
	u32	val;

	val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7;
	return val;
}

static inline u32 _RND256(u32 sz)
{
	u32	val;

	val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8;
	return val;
}

static inline u32 _RND512(u32 sz)
{
	u32	val;

	val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9;
	return val;
}

static inline u32 bitshift(u32 bitmask)
{
	u32 i;

	for (i = 0; i <= 31; i++)
		if (((bitmask>>i) &  0x1) == 1) break;
	return i;
}

/*  limitation of path length */
#define PATH_LENGTH_MAX PATH_MAX

struct rtw_netdev_priv_indicator {
	void *priv;
	u32 sizeof_priv;
};
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv,
						    void *old_priv);
struct net_device *rtw_alloc_etherdev(int sizeof_priv);

#define rtw_netdev_priv(netdev)					\
	(((struct rtw_netdev_priv_indicator *)netdev_priv(netdev))->priv)
void rtw_free_netdev(struct net_device *netdev);

#define NDEV_FMT "%s"
#define NDEV_ARG(ndev) ndev->name
#define ADPT_FMT "%s"
#define ADPT_ARG(adapter) adapter->pnetdev->name
#define FUNC_NDEV_FMT "%s(%s)"
#define FUNC_NDEV_ARG(ndev) __func__, ndev->name
#define FUNC_ADPT_FMT "%s(%s)"
#define FUNC_ADPT_ARG(adapter) __func__, adapter->pnetdev->name

#define rtw_signal_process(pid, sig) kill_pid(find_vpid((pid)),(sig), 1)

/* Macros for handling unaligned memory accesses */

#define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1]))
#define RTW_PUT_BE16(a, val)			\
	do {					\
		(a)[0] = ((u16) (val)) >> 8;	\
		(a)[1] = ((u16) (val)) & 0xff;	\
	} while (0)

#define RTW_PUT_LE16(a, val)			\
	do {					\
		(a)[1] = ((u16) (val)) >> 8;	\
		(a)[0] = ((u16) (val)) & 0xff;	\
	} while (0)

#define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \
			 ((u32) (a)[2]))

#define RTW_PUT_BE32(a, val)					\
	do {							\
		(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff);	\
		(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff);	\
		(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff);	\
		(a)[3] = (u8) (((u32) (val)) & 0xff);		\
	} while (0)

void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len);

struct rtw_cbuf {
	u32 write;
	u32 read;
	u32 size;
	void *bufs[0];
};

bool rtw_cbuf_full(struct rtw_cbuf *cbuf);
bool rtw_cbuf_empty(struct rtw_cbuf *cbuf);
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf);
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf);
struct rtw_cbuf *rtw_cbuf_alloc(u32 size);
int wifirate2_ratetbl_inx(unsigned char rate);

#endif