Contributors: 22
Author Tokens Token Proportion Commits Commit Proportion
Micky Ching 3834 93.63% 1 3.85%
Anton Vasilyev 106 2.59% 1 3.85%
Vaibhav Gupta 42 1.03% 1 3.85%
Suraj Upadhyay 18 0.44% 1 3.85%
Chuhong Yuan 18 0.44% 1 3.85%
Wayne Porter 12 0.29% 4 15.38%
Wei Yongjun 8 0.20% 2 7.69%
MingChia Chung 7 0.17% 1 3.85%
Sergio Paracuellos 6 0.15% 1 3.85%
Hannes Reinecke 6 0.15% 1 3.85%
Benoit Taine 6 0.15% 1 3.85%
Gaurav Pathak 6 0.15% 1 3.85%
Fabio Falzoi 6 0.15% 1 3.85%
Evgeny Novikov 5 0.12% 1 3.85%
Eva Rachel Retuya 3 0.07% 1 3.85%
Nicholas Mc Guire 3 0.07% 1 3.85%
Vaishali Thakkar 3 0.07% 1 3.85%
Kim Bradley 2 0.05% 1 3.85%
Ronit Halder 1 0.02% 1 3.85%
Christoph Hellwig 1 0.02% 1 3.85%
Haneen Mohammed 1 0.02% 1 3.85%
Amitoj Kaur Chawla 1 0.02% 1 3.85%
Total 4095 26


// SPDX-License-Identifier: GPL-2.0+
/*
 * Driver for Realtek PCI-Express card reader
 *
 * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
 *
 * Author:
 *   Wei WANG (wei_wang@realsil.com.cn)
 *   Micky Ching (micky_ching@realsil.com.cn)
 */

#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/workqueue.h>

#include "rtsx.h"
#include "ms.h"
#include "sd.h"
#include "xd.h"

MODULE_DESCRIPTION("Realtek PCI-Express card reader rts5208/rts5288 driver");
MODULE_LICENSE("GPL");

static unsigned int delay_use = 1;
module_param(delay_use, uint, 0644);
MODULE_PARM_DESC(delay_use, "seconds to delay before using a new device");

static int ss_en;
module_param(ss_en, int, 0644);
MODULE_PARM_DESC(ss_en, "enable selective suspend");

static int ss_interval = 50;
module_param(ss_interval, int, 0644);
MODULE_PARM_DESC(ss_interval, "Interval to enter ss state in seconds");

static int auto_delink_en;
module_param(auto_delink_en, int, 0644);
MODULE_PARM_DESC(auto_delink_en, "enable auto delink");

static unsigned char aspm_l0s_l1_en;
module_param(aspm_l0s_l1_en, byte, 0644);
MODULE_PARM_DESC(aspm_l0s_l1_en, "enable device aspm");

static int msi_en;
module_param(msi_en, int, 0644);
MODULE_PARM_DESC(msi_en, "enable msi");

static irqreturn_t rtsx_interrupt(int irq, void *dev_id);

/***********************************************************************
 * Host functions
 ***********************************************************************/

static const char *host_info(struct Scsi_Host *host)
{
	return "SCSI emulation for PCI-Express Mass Storage devices";
}

static int slave_alloc(struct scsi_device *sdev)
{
	/*
	 * Set the INQUIRY transfer length to 36.  We don't use any of
	 * the extra data and many devices choke if asked for more or
	 * less than 36 bytes.
	 */
	sdev->inquiry_len = 36;
	return 0;
}

static int slave_configure(struct scsi_device *sdev)
{
	/*
	 * Scatter-gather buffers (all but the last) must have a length
	 * divisible by the bulk maxpacket size.  Otherwise a data packet
	 * would end up being short, causing a premature end to the data
	 * transfer.  Since high-speed bulk pipes have a maxpacket size
	 * of 512, we'll use that as the scsi device queue's DMA alignment
	 * mask.  Guaranteeing proper alignment of the first buffer will
	 * have the desired effect because, except at the beginning and
	 * the end, scatter-gather buffers follow page boundaries.
	 */
	blk_queue_dma_alignment(sdev->request_queue, (512 - 1));

	/* Set the SCSI level to at least 2.  We'll leave it at 3 if that's
	 * what is originally reported.  We need this to avoid confusing
	 * the SCSI layer with devices that report 0 or 1, but need 10-byte
	 * commands (ala ATAPI devices behind certain bridges, or devices
	 * which simply have broken INQUIRY data).
	 *
	 * NOTE: This means /dev/sg programs (ala cdrecord) will get the
	 * actual information.  This seems to be the preference for
	 * programs like that.
	 *
	 * NOTE: This also means that /proc/scsi/scsi and sysfs may report
	 * the actual value or the modified one, depending on where the
	 * data comes from.
	 */
	if (sdev->scsi_level < SCSI_2) {
		sdev->scsi_level = SCSI_2;
		sdev->sdev_target->scsi_level = SCSI_2;
	}

	return 0;
}

/***********************************************************************
 * /proc/scsi/ functions
 ***********************************************************************/

/* we use this macro to help us write into the buffer */
#undef SPRINTF
#define SPRINTF(args...) \
	do { \
		if (pos < buffer + length) \
			pos += sprintf(pos, ## args); \
	} while (0)

/* queue a command */
/* This is always called with scsi_lock(host) held */
static int queuecommand_lck(struct scsi_cmnd *srb,
			    void (*done)(struct scsi_cmnd *))
{
	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
	struct rtsx_chip *chip = dev->chip;

	/* check for state-transition errors */
	if (chip->srb) {
		dev_err(&dev->pci->dev, "Error: chip->srb = %p\n",
			chip->srb);
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* fail the command if we are disconnecting */
	if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
		dev_info(&dev->pci->dev, "Fail command during disconnect\n");
		srb->result = DID_NO_CONNECT << 16;
		done(srb);
		return 0;
	}

	/* enqueue the command and wake up the control thread */
	srb->scsi_done = done;
	chip->srb = srb;
	complete(&dev->cmnd_ready);

	return 0;
}

static DEF_SCSI_QCMD(queuecommand)

/***********************************************************************
 * Error handling functions
 ***********************************************************************/

/* Command timeout and abort */
static int command_abort(struct scsi_cmnd *srb)
{
	struct Scsi_Host *host = srb->device->host;
	struct rtsx_dev *dev = host_to_rtsx(host);
	struct rtsx_chip *chip = dev->chip;

	dev_info(&dev->pci->dev, "%s called\n", __func__);

	scsi_lock(host);

	/* Is this command still active? */
	if (chip->srb != srb) {
		scsi_unlock(host);
		dev_info(&dev->pci->dev, "-- nothing to abort\n");
		return FAILED;
	}

	rtsx_set_stat(chip, RTSX_STAT_ABORT);

	scsi_unlock(host);

	/* Wait for the aborted command to finish */
	wait_for_completion(&dev->notify);

	return SUCCESS;
}

/*
 * This invokes the transport reset mechanism to reset the state of the
 * device
 */
static int device_reset(struct scsi_cmnd *srb)
{
	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);

	dev_info(&dev->pci->dev, "%s called\n", __func__);

	return SUCCESS;
}

/*
 * this defines our host template, with which we'll allocate hosts
 */

static struct scsi_host_template rtsx_host_template = {
	/* basic userland interface stuff */
	.name =				CR_DRIVER_NAME,
	.proc_name =			CR_DRIVER_NAME,
	.info =				host_info,

	/* command interface -- queued only */
	.queuecommand =			queuecommand,

	/* error and abort handlers */
	.eh_abort_handler =		command_abort,
	.eh_device_reset_handler =	device_reset,

	/* queue commands only, only one command per LUN */
	.can_queue =			1,

	/* unknown initiator id */
	.this_id =			-1,

	.slave_alloc =			slave_alloc,
	.slave_configure =		slave_configure,

	/* lots of sg segments can be handled */
	.sg_tablesize =			SG_ALL,

	/* limit the total size of a transfer to 120 KB */
	.max_sectors =                  240,

	/* emulated HBA */
	.emulated =			1,

	/* we do our own delay after a device or bus reset */
	.skip_settle_delay =		1,

	/* module management */
	.module =			THIS_MODULE
};

static int rtsx_acquire_irq(struct rtsx_dev *dev)
{
	struct rtsx_chip *chip = dev->chip;

	dev_info(&dev->pci->dev, "%s: chip->msi_en = %d, pci->irq = %d\n",
		 __func__, chip->msi_en, dev->pci->irq);

	if (request_irq(dev->pci->irq, rtsx_interrupt,
			chip->msi_en ? 0 : IRQF_SHARED,
			CR_DRIVER_NAME, dev)) {
		dev_err(&dev->pci->dev,
			"rtsx: unable to grab IRQ %d, disabling device\n",
			dev->pci->irq);
		return -1;
	}

	dev->irq = dev->pci->irq;
	pci_intx(dev->pci, !chip->msi_en);

	return 0;
}

/*
 * power management
 */
static int __maybe_unused rtsx_suspend(struct device *dev_d)
{
	struct pci_dev *pci = to_pci_dev(dev_d);
	struct rtsx_dev *dev = pci_get_drvdata(pci);
	struct rtsx_chip *chip;

	if (!dev)
		return 0;

	/* lock the device pointers */
	mutex_lock(&dev->dev_mutex);

	chip = dev->chip;

	rtsx_do_before_power_down(chip, PM_S3);

	if (dev->irq >= 0) {
		free_irq(dev->irq, (void *)dev);
		dev->irq = -1;
	}

	if (chip->msi_en)
		pci_free_irq_vectors(pci);

	device_wakeup_enable(dev_d);

	/* unlock the device pointers */
	mutex_unlock(&dev->dev_mutex);

	return 0;
}

static int __maybe_unused rtsx_resume(struct device *dev_d)
{
	struct pci_dev *pci = to_pci_dev(dev_d);
	struct rtsx_dev *dev = pci_get_drvdata(pci);
	struct rtsx_chip *chip;

	if (!dev)
		return 0;

	chip = dev->chip;

	/* lock the device pointers */
	mutex_lock(&dev->dev_mutex);

	pci_set_master(pci);

	if (chip->msi_en) {
		if (pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) < 0)
			chip->msi_en = 0;
	}

	if (rtsx_acquire_irq(dev) < 0) {
		/* unlock the device pointers */
		mutex_unlock(&dev->dev_mutex);
		return -EIO;
	}

	rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 0x00);
	rtsx_init_chip(chip);

	/* unlock the device pointers */
	mutex_unlock(&dev->dev_mutex);

	return 0;
}

static void rtsx_shutdown(struct pci_dev *pci)
{
	struct rtsx_dev *dev = pci_get_drvdata(pci);
	struct rtsx_chip *chip;

	if (!dev)
		return;

	chip = dev->chip;

	rtsx_do_before_power_down(chip, PM_S1);

	if (dev->irq >= 0) {
		free_irq(dev->irq, (void *)dev);
		dev->irq = -1;
	}

	if (chip->msi_en)
		pci_free_irq_vectors(pci);

	pci_disable_device(pci);
}

static int rtsx_control_thread(void *__dev)
{
	struct rtsx_dev *dev = __dev;
	struct rtsx_chip *chip = dev->chip;
	struct Scsi_Host *host = rtsx_to_host(dev);

	for (;;) {
		if (wait_for_completion_interruptible(&dev->cmnd_ready))
			break;

		/* lock the device pointers */
		mutex_lock(&dev->dev_mutex);

		/* if the device has disconnected, we are free to exit */
		if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
			dev_info(&dev->pci->dev, "-- rtsx-control exiting\n");
			mutex_unlock(&dev->dev_mutex);
			break;
		}

		/* lock access to the state */
		scsi_lock(host);

		/* has the command aborted ? */
		if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
			chip->srb->result = DID_ABORT << 16;
			goto skip_for_abort;
		}

		scsi_unlock(host);

		/* reject the command if the direction indicator
		 * is UNKNOWN
		 */
		if (chip->srb->sc_data_direction == DMA_BIDIRECTIONAL) {
			dev_err(&dev->pci->dev, "UNKNOWN data direction\n");
			chip->srb->result = DID_ERROR << 16;
		}

		/* reject if target != 0 or if LUN is higher than
		 * the maximum known LUN
		 */
		else if (chip->srb->device->id) {
			dev_err(&dev->pci->dev, "Bad target number (%d:%d)\n",
				chip->srb->device->id,
				(u8)chip->srb->device->lun);
			chip->srb->result = DID_BAD_TARGET << 16;
		}

		else if (chip->srb->device->lun > chip->max_lun) {
			dev_err(&dev->pci->dev, "Bad LUN (%d:%d)\n",
				chip->srb->device->id,
				(u8)chip->srb->device->lun);
			chip->srb->result = DID_BAD_TARGET << 16;
		}

		/* we've got a command, let's do it! */
		else {
			scsi_show_command(chip);
			rtsx_invoke_transport(chip->srb, chip);
		}

		/* lock access to the state */
		scsi_lock(host);

		/* did the command already complete because of a disconnect? */
		if (!chip->srb)
			;		/* nothing to do */

		/* indicate that the command is done */
		else if (chip->srb->result != DID_ABORT << 16) {
			chip->srb->scsi_done(chip->srb);
		} else {
skip_for_abort:
			dev_err(&dev->pci->dev, "scsi command aborted\n");
		}

		if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
			complete(&dev->notify);

			rtsx_set_stat(chip, RTSX_STAT_IDLE);
		}

		/* finished working on this command */
		chip->srb = NULL;
		scsi_unlock(host);

		/* unlock the device pointers */
		mutex_unlock(&dev->dev_mutex);
	} /* for (;;) */

	/* notify the exit routine that we're actually exiting now
	 *
	 * complete()/wait_for_completion() is similar to up()/down(),
	 * except that complete() is safe in the case where the structure
	 * is getting deleted in a parallel mode of execution (i.e. just
	 * after the down() -- that's necessary for the thread-shutdown
	 * case.
	 *
	 * complete_and_exit() goes even further than this -- it is safe in
	 * the case that the thread of the caller is going away (not just
	 * the structure) -- this is necessary for the module-remove case.
	 * This is important in preemption kernels, which transfer the flow
	 * of execution immediately upon a complete().
	 */
	complete_and_exit(&dev->control_exit, 0);
}

static int rtsx_polling_thread(void *__dev)
{
	struct rtsx_dev *dev = __dev;
	struct rtsx_chip *chip = dev->chip;
	struct sd_info *sd_card = &chip->sd_card;
	struct xd_info *xd_card = &chip->xd_card;
	struct ms_info *ms_card = &chip->ms_card;

	sd_card->cleanup_counter = 0;
	xd_card->cleanup_counter = 0;
	ms_card->cleanup_counter = 0;

	/* Wait until SCSI scan finished */
	wait_timeout((delay_use + 5) * 1000);

	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(msecs_to_jiffies(POLLING_INTERVAL));

		/* lock the device pointers */
		mutex_lock(&dev->dev_mutex);

		/* if the device has disconnected, we are free to exit */
		if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
			dev_info(&dev->pci->dev, "-- rtsx-polling exiting\n");
			mutex_unlock(&dev->dev_mutex);
			break;
		}

		mutex_unlock(&dev->dev_mutex);

		mspro_polling_format_status(chip);

		/* lock the device pointers */
		mutex_lock(&dev->dev_mutex);

		rtsx_polling_func(chip);

		/* unlock the device pointers */
		mutex_unlock(&dev->dev_mutex);
	}

	complete_and_exit(&dev->polling_exit, 0);
}

/*
 * interrupt handler
 */
static irqreturn_t rtsx_interrupt(int irq, void *dev_id)
{
	struct rtsx_dev *dev = dev_id;
	struct rtsx_chip *chip;
	int retval;
	u32 status;

	if (dev)
		chip = dev->chip;
	else
		return IRQ_NONE;

	if (!chip)
		return IRQ_NONE;

	spin_lock(&dev->reg_lock);

	retval = rtsx_pre_handle_interrupt(chip);
	if (retval == STATUS_FAIL) {
		spin_unlock(&dev->reg_lock);
		if (chip->int_reg == 0xFFFFFFFF)
			return IRQ_HANDLED;
		return IRQ_NONE;
	}

	status = chip->int_reg;

	if (dev->check_card_cd) {
		if (!(dev->check_card_cd & status)) {
			/* card not exist, return TRANS_RESULT_FAIL */
			dev->trans_result = TRANS_RESULT_FAIL;
			if (dev->done)
				complete(dev->done);
			goto exit;
		}
	}

	if (status & (NEED_COMPLETE_INT | DELINK_INT)) {
		if (status & (TRANS_FAIL_INT | DELINK_INT)) {
			if (status & DELINK_INT)
				RTSX_SET_DELINK(chip);
			dev->trans_result = TRANS_RESULT_FAIL;
			if (dev->done)
				complete(dev->done);
		} else if (status & TRANS_OK_INT) {
			dev->trans_result = TRANS_RESULT_OK;
			if (dev->done)
				complete(dev->done);
		} else if (status & DATA_DONE_INT) {
			dev->trans_result = TRANS_NOT_READY;
			if (dev->done && (dev->trans_state == STATE_TRANS_SG))
				complete(dev->done);
		}
	}

exit:
	spin_unlock(&dev->reg_lock);
	return IRQ_HANDLED;
}

/* Release all our dynamic resources */
static void rtsx_release_resources(struct rtsx_dev *dev)
{
	dev_info(&dev->pci->dev, "-- %s\n", __func__);

	/* Tell the control thread to exit.  The SCSI host must
	 * already have been removed so it won't try to queue
	 * any more commands.
	 */
	dev_info(&dev->pci->dev, "-- sending exit command to thread\n");
	complete(&dev->cmnd_ready);
	if (dev->ctl_thread)
		wait_for_completion(&dev->control_exit);
	if (dev->polling_thread)
		wait_for_completion(&dev->polling_exit);

	wait_timeout(200);

	if (dev->rtsx_resv_buf) {
		dev->chip->host_cmds_ptr = NULL;
		dev->chip->host_sg_tbl_ptr = NULL;
	}

	if (dev->irq > 0)
		free_irq(dev->irq, (void *)dev);
	if (dev->chip->msi_en)
		pci_free_irq_vectors(dev->pci);
	if (dev->remap_addr)
		iounmap(dev->remap_addr);

	rtsx_release_chip(dev->chip);
	kfree(dev->chip);
}

/*
 * First stage of disconnect processing: stop all commands and remove
 * the host
 */
static void quiesce_and_remove_host(struct rtsx_dev *dev)
{
	struct Scsi_Host *host = rtsx_to_host(dev);
	struct rtsx_chip *chip = dev->chip;

	/*
	 * Prevent new transfers, stop the current command, and
	 * interrupt a SCSI-scan or device-reset delay
	 */
	mutex_lock(&dev->dev_mutex);
	scsi_lock(host);
	rtsx_set_stat(chip, RTSX_STAT_DISCONNECT);
	scsi_unlock(host);
	mutex_unlock(&dev->dev_mutex);
	wake_up(&dev->delay_wait);
	wait_for_completion(&dev->scanning_done);

	/* Wait some time to let other threads exist */
	wait_timeout(100);

	/*
	 * queuecommand won't accept any new commands and the control
	 * thread won't execute a previously-queued command.  If there
	 * is such a command pending, complete it with an error.
	 */
	mutex_lock(&dev->dev_mutex);
	if (chip->srb) {
		chip->srb->result = DID_NO_CONNECT << 16;
		scsi_lock(host);
		chip->srb->scsi_done(dev->chip->srb);
		chip->srb = NULL;
		scsi_unlock(host);
	}
	mutex_unlock(&dev->dev_mutex);

	/* Now we own no commands so it's safe to remove the SCSI host */
	scsi_remove_host(host);
}

/* Second stage of disconnect processing: deallocate all resources */
static void release_everything(struct rtsx_dev *dev)
{
	rtsx_release_resources(dev);

	/*
	 * Drop our reference to the host; the SCSI core will free it
	 * when the refcount becomes 0.
	 */
	scsi_host_put(rtsx_to_host(dev));
}

/* Thread to carry out delayed SCSI-device scanning */
static int rtsx_scan_thread(void *__dev)
{
	struct rtsx_dev *dev = __dev;
	struct rtsx_chip *chip = dev->chip;

	/* Wait for the timeout to expire or for a disconnect */
	if (delay_use > 0) {
		dev_info(&dev->pci->dev,
			 "%s: waiting for device to settle before scanning\n",
			 CR_DRIVER_NAME);
		wait_event_interruptible_timeout
			(dev->delay_wait,
			 rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT),
			 delay_use * HZ);
	}

	/* If the device is still connected, perform the scanning */
	if (!rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
		scsi_scan_host(rtsx_to_host(dev));
		dev_info(&dev->pci->dev, "%s: device scan complete\n",
			 CR_DRIVER_NAME);

		/* Should we unbind if no devices were detected? */
	}

	complete_and_exit(&dev->scanning_done, 0);
}

static void rtsx_init_options(struct rtsx_chip *chip)
{
	chip->vendor_id = chip->rtsx->pci->vendor;
	chip->product_id = chip->rtsx->pci->device;
	chip->adma_mode = 1;
	chip->lun_mc = 0;
	chip->driver_first_load = 1;
#ifdef HW_AUTO_SWITCH_SD_BUS
	chip->sdio_in_charge = 0;
#endif

	chip->mspro_formatter_enable = 1;
	chip->ignore_sd = 0;
	chip->use_hw_setting = 0;
	chip->lun_mode = DEFAULT_SINGLE;
	chip->auto_delink_en = auto_delink_en;
	chip->ss_en = ss_en;
	chip->ss_idle_period = ss_interval * 1000;
	chip->remote_wakeup_en = 0;
	chip->aspm_l0s_l1_en = aspm_l0s_l1_en;
	chip->dynamic_aspm = 1;
	chip->fpga_sd_sdr104_clk = CLK_200;
	chip->fpga_sd_ddr50_clk = CLK_100;
	chip->fpga_sd_sdr50_clk = CLK_100;
	chip->fpga_sd_hs_clk = CLK_100;
	chip->fpga_mmc_52m_clk = CLK_80;
	chip->fpga_ms_hg_clk = CLK_80;
	chip->fpga_ms_4bit_clk = CLK_80;
	chip->fpga_ms_1bit_clk = CLK_40;
	chip->asic_sd_sdr104_clk = 203;
	chip->asic_sd_sdr50_clk = 98;
	chip->asic_sd_ddr50_clk = 98;
	chip->asic_sd_hs_clk = 98;
	chip->asic_mmc_52m_clk = 98;
	chip->asic_ms_hg_clk = 117;
	chip->asic_ms_4bit_clk = 78;
	chip->asic_ms_1bit_clk = 39;
	chip->ssc_depth_sd_sdr104 = SSC_DEPTH_2M;
	chip->ssc_depth_sd_sdr50 = SSC_DEPTH_2M;
	chip->ssc_depth_sd_ddr50 = SSC_DEPTH_1M;
	chip->ssc_depth_sd_hs = SSC_DEPTH_1M;
	chip->ssc_depth_mmc_52m = SSC_DEPTH_1M;
	chip->ssc_depth_ms_hg = SSC_DEPTH_1M;
	chip->ssc_depth_ms_4bit = SSC_DEPTH_512K;
	chip->ssc_depth_low_speed = SSC_DEPTH_512K;
	chip->ssc_en = 1;
	chip->sd_speed_prior = 0x01040203;
	chip->sd_current_prior = 0x00010203;
	chip->sd_ctl = SD_PUSH_POINT_AUTO |
		       SD_SAMPLE_POINT_AUTO |
		       SUPPORT_MMC_DDR_MODE;
	chip->sd_ddr_tx_phase = 0;
	chip->mmc_ddr_tx_phase = 1;
	chip->sd_default_tx_phase = 15;
	chip->sd_default_rx_phase = 15;
	chip->pmos_pwr_on_interval = 200;
	chip->sd_voltage_switch_delay = 1000;
	chip->ms_power_class_en = 3;

	chip->sd_400mA_ocp_thd = 1;
	chip->sd_800mA_ocp_thd = 5;
	chip->ms_ocp_thd = 2;

	chip->card_drive_sel = 0x55;
	chip->sd30_drive_sel_1v8 = 0x03;
	chip->sd30_drive_sel_3v3 = 0x01;

	chip->do_delink_before_power_down = 1;
	chip->auto_power_down = 1;
	chip->polling_config = 0;

	chip->force_clkreq_0 = 1;
	chip->ft2_fast_mode = 0;

	chip->sdio_retry_cnt = 1;

	chip->xd_timeout = 2000;
	chip->sd_timeout = 10000;
	chip->ms_timeout = 2000;
	chip->mspro_timeout = 15000;

	chip->power_down_in_ss = 1;

	chip->sdr104_en = 1;
	chip->sdr50_en = 1;
	chip->ddr50_en = 1;

	chip->delink_stage1_step = 100;
	chip->delink_stage2_step = 40;
	chip->delink_stage3_step = 20;

	chip->auto_delink_in_L1 = 1;
	chip->blink_led = 1;
	chip->msi_en = msi_en;
	chip->hp_watch_bios_hotplug = 0;
	chip->max_payload = 0;
	chip->phy_voltage = 0;

	chip->support_ms_8bit = 1;
	chip->s3_pwr_off_delay = 1000;
}

static int rtsx_probe(struct pci_dev *pci,
		      const struct pci_device_id *pci_id)
{
	struct Scsi_Host *host;
	struct rtsx_dev *dev;
	int err = 0;
	struct task_struct *th;

	dev_dbg(&pci->dev, "Realtek PCI-E card reader detected\n");

	err = pcim_enable_device(pci);
	if (err < 0) {
		dev_err(&pci->dev, "PCI enable device failed!\n");
		return err;
	}

	err = pci_request_regions(pci, CR_DRIVER_NAME);
	if (err < 0) {
		dev_err(&pci->dev, "PCI request regions for %s failed!\n",
			CR_DRIVER_NAME);
		return err;
	}

	/*
	 * Ask the SCSI layer to allocate a host structure, with extra
	 * space at the end for our private rtsx_dev structure.
	 */
	host = scsi_host_alloc(&rtsx_host_template, sizeof(*dev));
	if (!host) {
		dev_err(&pci->dev, "Unable to allocate the scsi host\n");
		err = -ENOMEM;
		goto scsi_host_alloc_fail;
	}

	dev = host_to_rtsx(host);
	memset(dev, 0, sizeof(struct rtsx_dev));

	dev->chip = kzalloc(sizeof(*dev->chip), GFP_KERNEL);
	if (!dev->chip) {
		err = -ENOMEM;
		goto chip_alloc_fail;
	}

	spin_lock_init(&dev->reg_lock);
	mutex_init(&dev->dev_mutex);
	init_completion(&dev->cmnd_ready);
	init_completion(&dev->control_exit);
	init_completion(&dev->polling_exit);
	init_completion(&dev->notify);
	init_completion(&dev->scanning_done);
	init_waitqueue_head(&dev->delay_wait);

	dev->pci = pci;
	dev->irq = -1;

	dev_info(&pci->dev, "Resource length: 0x%x\n",
		 (unsigned int)pci_resource_len(pci, 0));
	dev->addr = pci_resource_start(pci, 0);
	dev->remap_addr = ioremap(dev->addr, pci_resource_len(pci, 0));
	if (!dev->remap_addr) {
		dev_err(&pci->dev, "ioremap error\n");
		err = -ENXIO;
		goto ioremap_fail;
	}

	/*
	 * Using "unsigned long" cast here to eliminate gcc warning in
	 * 64-bit system
	 */
	dev_info(&pci->dev, "Original address: 0x%lx, remapped address: 0x%lx\n",
		 (unsigned long)(dev->addr), (unsigned long)(dev->remap_addr));

	dev->rtsx_resv_buf = dmam_alloc_coherent(&pci->dev, RTSX_RESV_BUF_LEN,
						 &dev->rtsx_resv_buf_addr,
						 GFP_KERNEL);
	if (!dev->rtsx_resv_buf) {
		dev_err(&pci->dev, "alloc dma buffer fail\n");
		err = -ENXIO;
		goto dma_alloc_fail;
	}
	dev->chip->host_cmds_ptr = dev->rtsx_resv_buf;
	dev->chip->host_cmds_addr = dev->rtsx_resv_buf_addr;
	dev->chip->host_sg_tbl_ptr = dev->rtsx_resv_buf + HOST_CMDS_BUF_LEN;
	dev->chip->host_sg_tbl_addr = dev->rtsx_resv_buf_addr +
				      HOST_CMDS_BUF_LEN;

	dev->chip->rtsx = dev;

	rtsx_init_options(dev->chip);

	dev_info(&pci->dev, "pci->irq = %d\n", pci->irq);

	if (dev->chip->msi_en) {
		if (pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) < 0)
			dev->chip->msi_en = 0;
	}

	if (rtsx_acquire_irq(dev) < 0) {
		err = -EBUSY;
		goto irq_acquire_fail;
	}

	pci_set_master(pci);
	synchronize_irq(dev->irq);

	rtsx_init_chip(dev->chip);

	/*
	 * set the supported max_lun and max_id for the scsi host
	 * NOTE: the minimal value of max_id is 1
	 */
	host->max_id = 1;
	host->max_lun = dev->chip->max_lun;

	/* Start up our control thread */
	th = kthread_run(rtsx_control_thread, dev, CR_DRIVER_NAME);
	if (IS_ERR(th)) {
		dev_err(&pci->dev, "Unable to start control thread\n");
		err = PTR_ERR(th);
		goto control_thread_fail;
	}
	dev->ctl_thread = th;

	err = scsi_add_host(host, &pci->dev);
	if (err) {
		dev_err(&pci->dev, "Unable to add the scsi host\n");
		goto scsi_add_host_fail;
	}

	/* Start up the thread for delayed SCSI-device scanning */
	th = kthread_run(rtsx_scan_thread, dev, "rtsx-scan");
	if (IS_ERR(th)) {
		dev_err(&pci->dev, "Unable to start the device-scanning thread\n");
		complete(&dev->scanning_done);
		err = PTR_ERR(th);
		goto scan_thread_fail;
	}

	/* Start up the thread for polling thread */
	th = kthread_run(rtsx_polling_thread, dev, "rtsx-polling");
	if (IS_ERR(th)) {
		dev_err(&pci->dev, "Unable to start the device-polling thread\n");
		err = PTR_ERR(th);
		goto scan_thread_fail;
	}
	dev->polling_thread = th;

	pci_set_drvdata(pci, dev);

	return 0;

	/* We come here if there are any problems */
scan_thread_fail:
	quiesce_and_remove_host(dev);
scsi_add_host_fail:
	complete(&dev->cmnd_ready);
	wait_for_completion(&dev->control_exit);
control_thread_fail:
	free_irq(dev->irq, (void *)dev);
	rtsx_release_chip(dev->chip);
irq_acquire_fail:
	dev->chip->host_cmds_ptr = NULL;
	dev->chip->host_sg_tbl_ptr = NULL;
	if (dev->chip->msi_en)
		pci_free_irq_vectors(dev->pci);
dma_alloc_fail:
	iounmap(dev->remap_addr);
ioremap_fail:
	kfree(dev->chip);
chip_alloc_fail:
	dev_err(&pci->dev, "%s failed\n", __func__);
	scsi_host_put(host);
scsi_host_alloc_fail:
	pci_release_regions(pci);
	return err;
}

static void rtsx_remove(struct pci_dev *pci)
{
	struct rtsx_dev *dev = pci_get_drvdata(pci);

	dev_info(&pci->dev, "%s called\n", __func__);

	quiesce_and_remove_host(dev);
	release_everything(dev);
	pci_release_regions(pci);
}

/* PCI IDs */
static const struct pci_device_id rtsx_ids[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5208),
		PCI_CLASS_OTHERS << 16, 0xFF0000 },
	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5288),
		PCI_CLASS_OTHERS << 16, 0xFF0000 },
	{ 0, },
};

MODULE_DEVICE_TABLE(pci, rtsx_ids);

static SIMPLE_DEV_PM_OPS(rtsx_pm_ops, rtsx_suspend, rtsx_resume);

/* pci_driver definition */
static struct pci_driver rtsx_driver = {
	.name = CR_DRIVER_NAME,
	.id_table = rtsx_ids,
	.probe = rtsx_probe,
	.remove = rtsx_remove,
	.driver.pm = &rtsx_pm_ops,
	.shutdown = rtsx_shutdown,
};

module_pci_driver(rtsx_driver);