Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Varun Prakash | 10591 | 99.36% | 21 | 77.78% |
Bart Van Assche | 26 | 0.24% | 2 | 7.41% |
Santosh Rastapur | 20 | 0.19% | 1 | 3.70% |
Ganesh Goudar | 16 | 0.15% | 1 | 3.70% |
yuan linyu | 4 | 0.04% | 1 | 3.70% |
Thomas Gleixner | 2 | 0.02% | 1 | 3.70% |
Total | 10659 | 27 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016 Chelsio Communications, Inc. */ #include <linux/module.h> #include <linux/list.h> #include <linux/workqueue.h> #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/notifier.h> #include <linux/inetdevice.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/if_vlan.h> #include <net/neighbour.h> #include <net/netevent.h> #include <net/route.h> #include <net/tcp.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <libcxgb_cm.h> #include "cxgbit.h" #include "clip_tbl.h" static void cxgbit_init_wr_wait(struct cxgbit_wr_wait *wr_waitp) { wr_waitp->ret = 0; reinit_completion(&wr_waitp->completion); } static void cxgbit_wake_up(struct cxgbit_wr_wait *wr_waitp, const char *func, u8 ret) { if (ret == CPL_ERR_NONE) wr_waitp->ret = 0; else wr_waitp->ret = -EIO; if (wr_waitp->ret) pr_err("%s: err:%u", func, ret); complete(&wr_waitp->completion); } static int cxgbit_wait_for_reply(struct cxgbit_device *cdev, struct cxgbit_wr_wait *wr_waitp, u32 tid, u32 timeout, const char *func) { int ret; if (!test_bit(CDEV_STATE_UP, &cdev->flags)) { wr_waitp->ret = -EIO; goto out; } ret = wait_for_completion_timeout(&wr_waitp->completion, timeout * HZ); if (!ret) { pr_info("%s - Device %s not responding tid %u\n", func, pci_name(cdev->lldi.pdev), tid); wr_waitp->ret = -ETIMEDOUT; } out: if (wr_waitp->ret) pr_info("%s: FW reply %d tid %u\n", pci_name(cdev->lldi.pdev), wr_waitp->ret, tid); return wr_waitp->ret; } static int cxgbit_np_hashfn(const struct cxgbit_np *cnp) { return ((unsigned long)cnp >> 10) & (NP_INFO_HASH_SIZE - 1); } static struct np_info * cxgbit_np_hash_add(struct cxgbit_device *cdev, struct cxgbit_np *cnp, unsigned int stid) { struct np_info *p = kzalloc(sizeof(*p), GFP_KERNEL); if (p) { int bucket = cxgbit_np_hashfn(cnp); p->cnp = cnp; p->stid = stid; spin_lock(&cdev->np_lock); p->next = cdev->np_hash_tab[bucket]; cdev->np_hash_tab[bucket] = p; spin_unlock(&cdev->np_lock); } return p; } static int cxgbit_np_hash_find(struct cxgbit_device *cdev, struct cxgbit_np *cnp) { int stid = -1, bucket = cxgbit_np_hashfn(cnp); struct np_info *p; spin_lock(&cdev->np_lock); for (p = cdev->np_hash_tab[bucket]; p; p = p->next) { if (p->cnp == cnp) { stid = p->stid; break; } } spin_unlock(&cdev->np_lock); return stid; } static int cxgbit_np_hash_del(struct cxgbit_device *cdev, struct cxgbit_np *cnp) { int stid = -1, bucket = cxgbit_np_hashfn(cnp); struct np_info *p, **prev = &cdev->np_hash_tab[bucket]; spin_lock(&cdev->np_lock); for (p = *prev; p; prev = &p->next, p = p->next) { if (p->cnp == cnp) { stid = p->stid; *prev = p->next; kfree(p); break; } } spin_unlock(&cdev->np_lock); return stid; } void _cxgbit_free_cnp(struct kref *kref) { struct cxgbit_np *cnp; cnp = container_of(kref, struct cxgbit_np, kref); kfree(cnp); } static int cxgbit_create_server6(struct cxgbit_device *cdev, unsigned int stid, struct cxgbit_np *cnp) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &cnp->com.local_addr; int addr_type; int ret; pr_debug("%s: dev = %s; stid = %u; sin6_port = %u\n", __func__, cdev->lldi.ports[0]->name, stid, sin6->sin6_port); addr_type = ipv6_addr_type((const struct in6_addr *) &sin6->sin6_addr); if (addr_type != IPV6_ADDR_ANY) { ret = cxgb4_clip_get(cdev->lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); if (ret) { pr_err("Unable to find clip table entry. laddr %pI6. Error:%d.\n", sin6->sin6_addr.s6_addr, ret); return -ENOMEM; } } cxgbit_get_cnp(cnp); cxgbit_init_wr_wait(&cnp->com.wr_wait); ret = cxgb4_create_server6(cdev->lldi.ports[0], stid, &sin6->sin6_addr, sin6->sin6_port, cdev->lldi.rxq_ids[0]); if (!ret) ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait, 0, 10, __func__); else if (ret > 0) ret = net_xmit_errno(ret); else cxgbit_put_cnp(cnp); if (ret) { if (ret != -ETIMEDOUT) cxgb4_clip_release(cdev->lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); pr_err("create server6 err %d stid %d laddr %pI6 lport %d\n", ret, stid, sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); } return ret; } static int cxgbit_create_server4(struct cxgbit_device *cdev, unsigned int stid, struct cxgbit_np *cnp) { struct sockaddr_in *sin = (struct sockaddr_in *) &cnp->com.local_addr; int ret; pr_debug("%s: dev = %s; stid = %u; sin_port = %u\n", __func__, cdev->lldi.ports[0]->name, stid, sin->sin_port); cxgbit_get_cnp(cnp); cxgbit_init_wr_wait(&cnp->com.wr_wait); ret = cxgb4_create_server(cdev->lldi.ports[0], stid, sin->sin_addr.s_addr, sin->sin_port, 0, cdev->lldi.rxq_ids[0]); if (!ret) ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait, 0, 10, __func__); else if (ret > 0) ret = net_xmit_errno(ret); else cxgbit_put_cnp(cnp); if (ret) pr_err("create server failed err %d stid %d laddr %pI4 lport %d\n", ret, stid, &sin->sin_addr, ntohs(sin->sin_port)); return ret; } struct cxgbit_device *cxgbit_find_device(struct net_device *ndev, u8 *port_id) { struct cxgbit_device *cdev; u8 i; list_for_each_entry(cdev, &cdev_list_head, list) { struct cxgb4_lld_info *lldi = &cdev->lldi; for (i = 0; i < lldi->nports; i++) { if (lldi->ports[i] == ndev) { if (port_id) *port_id = i; return cdev; } } } return NULL; } static struct net_device *cxgbit_get_real_dev(struct net_device *ndev) { if (ndev->priv_flags & IFF_BONDING) { pr_err("Bond devices are not supported. Interface:%s\n", ndev->name); return NULL; } if (is_vlan_dev(ndev)) return vlan_dev_real_dev(ndev); return ndev; } static struct net_device *cxgbit_ipv4_netdev(__be32 saddr) { struct net_device *ndev; ndev = __ip_dev_find(&init_net, saddr, false); if (!ndev) return NULL; return cxgbit_get_real_dev(ndev); } static struct net_device *cxgbit_ipv6_netdev(struct in6_addr *addr6) { struct net_device *ndev = NULL; bool found = false; if (IS_ENABLED(CONFIG_IPV6)) { for_each_netdev_rcu(&init_net, ndev) if (ipv6_chk_addr(&init_net, addr6, ndev, 1)) { found = true; break; } } if (!found) return NULL; return cxgbit_get_real_dev(ndev); } static struct cxgbit_device *cxgbit_find_np_cdev(struct cxgbit_np *cnp) { struct sockaddr_storage *sockaddr = &cnp->com.local_addr; int ss_family = sockaddr->ss_family; struct net_device *ndev = NULL; struct cxgbit_device *cdev = NULL; rcu_read_lock(); if (ss_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sockaddr; ndev = cxgbit_ipv4_netdev(sin->sin_addr.s_addr); } else if (ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sockaddr; ndev = cxgbit_ipv6_netdev(&sin6->sin6_addr); } if (!ndev) goto out; cdev = cxgbit_find_device(ndev, NULL); out: rcu_read_unlock(); return cdev; } static bool cxgbit_inaddr_any(struct cxgbit_np *cnp) { struct sockaddr_storage *sockaddr = &cnp->com.local_addr; int ss_family = sockaddr->ss_family; int addr_type; if (ss_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sockaddr; if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) return true; } else if (ss_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sockaddr; addr_type = ipv6_addr_type((const struct in6_addr *) &sin6->sin6_addr); if (addr_type == IPV6_ADDR_ANY) return true; } return false; } static int __cxgbit_setup_cdev_np(struct cxgbit_device *cdev, struct cxgbit_np *cnp) { int stid, ret; int ss_family = cnp->com.local_addr.ss_family; if (!test_bit(CDEV_STATE_UP, &cdev->flags)) return -EINVAL; stid = cxgb4_alloc_stid(cdev->lldi.tids, ss_family, cnp); if (stid < 0) return -EINVAL; if (!cxgbit_np_hash_add(cdev, cnp, stid)) { cxgb4_free_stid(cdev->lldi.tids, stid, ss_family); return -EINVAL; } if (ss_family == AF_INET) ret = cxgbit_create_server4(cdev, stid, cnp); else ret = cxgbit_create_server6(cdev, stid, cnp); if (ret) { if (ret != -ETIMEDOUT) cxgb4_free_stid(cdev->lldi.tids, stid, ss_family); cxgbit_np_hash_del(cdev, cnp); return ret; } return ret; } static int cxgbit_setup_cdev_np(struct cxgbit_np *cnp) { struct cxgbit_device *cdev; int ret = -1; mutex_lock(&cdev_list_lock); cdev = cxgbit_find_np_cdev(cnp); if (!cdev) goto out; if (cxgbit_np_hash_find(cdev, cnp) >= 0) goto out; if (__cxgbit_setup_cdev_np(cdev, cnp)) goto out; cnp->com.cdev = cdev; ret = 0; out: mutex_unlock(&cdev_list_lock); return ret; } static int cxgbit_setup_all_np(struct cxgbit_np *cnp) { struct cxgbit_device *cdev; int ret; u32 count = 0; mutex_lock(&cdev_list_lock); list_for_each_entry(cdev, &cdev_list_head, list) { if (cxgbit_np_hash_find(cdev, cnp) >= 0) { mutex_unlock(&cdev_list_lock); return -1; } } list_for_each_entry(cdev, &cdev_list_head, list) { ret = __cxgbit_setup_cdev_np(cdev, cnp); if (ret == -ETIMEDOUT) break; if (ret != 0) continue; count++; } mutex_unlock(&cdev_list_lock); return count ? 0 : -1; } int cxgbit_setup_np(struct iscsi_np *np, struct sockaddr_storage *ksockaddr) { struct cxgbit_np *cnp; int ret; if ((ksockaddr->ss_family != AF_INET) && (ksockaddr->ss_family != AF_INET6)) return -EINVAL; cnp = kzalloc(sizeof(*cnp), GFP_KERNEL); if (!cnp) return -ENOMEM; init_waitqueue_head(&cnp->accept_wait); init_completion(&cnp->com.wr_wait.completion); init_completion(&cnp->accept_comp); INIT_LIST_HEAD(&cnp->np_accept_list); spin_lock_init(&cnp->np_accept_lock); kref_init(&cnp->kref); memcpy(&np->np_sockaddr, ksockaddr, sizeof(struct sockaddr_storage)); memcpy(&cnp->com.local_addr, &np->np_sockaddr, sizeof(cnp->com.local_addr)); cnp->np = np; cnp->com.cdev = NULL; if (cxgbit_inaddr_any(cnp)) ret = cxgbit_setup_all_np(cnp); else ret = cxgbit_setup_cdev_np(cnp); if (ret) { cxgbit_put_cnp(cnp); return -EINVAL; } np->np_context = cnp; cnp->com.state = CSK_STATE_LISTEN; return 0; } static void cxgbit_set_conn_info(struct iscsi_np *np, struct iscsi_conn *conn, struct cxgbit_sock *csk) { conn->login_family = np->np_sockaddr.ss_family; conn->login_sockaddr = csk->com.remote_addr; conn->local_sockaddr = csk->com.local_addr; } int cxgbit_accept_np(struct iscsi_np *np, struct iscsi_conn *conn) { struct cxgbit_np *cnp = np->np_context; struct cxgbit_sock *csk; int ret = 0; accept_wait: ret = wait_for_completion_interruptible(&cnp->accept_comp); if (ret) return -ENODEV; spin_lock_bh(&np->np_thread_lock); if (np->np_thread_state >= ISCSI_NP_THREAD_RESET) { spin_unlock_bh(&np->np_thread_lock); /** * No point in stalling here when np_thread * is in state RESET/SHUTDOWN/EXIT - bail **/ return -ENODEV; } spin_unlock_bh(&np->np_thread_lock); spin_lock_bh(&cnp->np_accept_lock); if (list_empty(&cnp->np_accept_list)) { spin_unlock_bh(&cnp->np_accept_lock); goto accept_wait; } csk = list_first_entry(&cnp->np_accept_list, struct cxgbit_sock, accept_node); list_del_init(&csk->accept_node); spin_unlock_bh(&cnp->np_accept_lock); conn->context = csk; csk->conn = conn; cxgbit_set_conn_info(np, conn, csk); return 0; } static int __cxgbit_free_cdev_np(struct cxgbit_device *cdev, struct cxgbit_np *cnp) { int stid, ret; bool ipv6 = false; stid = cxgbit_np_hash_del(cdev, cnp); if (stid < 0) return -EINVAL; if (!test_bit(CDEV_STATE_UP, &cdev->flags)) return -EINVAL; if (cnp->np->np_sockaddr.ss_family == AF_INET6) ipv6 = true; cxgbit_get_cnp(cnp); cxgbit_init_wr_wait(&cnp->com.wr_wait); ret = cxgb4_remove_server(cdev->lldi.ports[0], stid, cdev->lldi.rxq_ids[0], ipv6); if (ret > 0) ret = net_xmit_errno(ret); if (ret) { cxgbit_put_cnp(cnp); return ret; } ret = cxgbit_wait_for_reply(cdev, &cnp->com.wr_wait, 0, 10, __func__); if (ret == -ETIMEDOUT) return ret; if (ipv6 && cnp->com.cdev) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&cnp->com.local_addr; cxgb4_clip_release(cdev->lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); } cxgb4_free_stid(cdev->lldi.tids, stid, cnp->com.local_addr.ss_family); return 0; } static void cxgbit_free_all_np(struct cxgbit_np *cnp) { struct cxgbit_device *cdev; int ret; mutex_lock(&cdev_list_lock); list_for_each_entry(cdev, &cdev_list_head, list) { ret = __cxgbit_free_cdev_np(cdev, cnp); if (ret == -ETIMEDOUT) break; } mutex_unlock(&cdev_list_lock); } static void cxgbit_free_cdev_np(struct cxgbit_np *cnp) { struct cxgbit_device *cdev; bool found = false; mutex_lock(&cdev_list_lock); list_for_each_entry(cdev, &cdev_list_head, list) { if (cdev == cnp->com.cdev) { found = true; break; } } if (!found) goto out; __cxgbit_free_cdev_np(cdev, cnp); out: mutex_unlock(&cdev_list_lock); } static void __cxgbit_free_conn(struct cxgbit_sock *csk); void cxgbit_free_np(struct iscsi_np *np) { struct cxgbit_np *cnp = np->np_context; struct cxgbit_sock *csk, *tmp; cnp->com.state = CSK_STATE_DEAD; if (cnp->com.cdev) cxgbit_free_cdev_np(cnp); else cxgbit_free_all_np(cnp); spin_lock_bh(&cnp->np_accept_lock); list_for_each_entry_safe(csk, tmp, &cnp->np_accept_list, accept_node) { list_del_init(&csk->accept_node); __cxgbit_free_conn(csk); } spin_unlock_bh(&cnp->np_accept_lock); np->np_context = NULL; cxgbit_put_cnp(cnp); } static void cxgbit_send_halfclose(struct cxgbit_sock *csk) { struct sk_buff *skb; u32 len = roundup(sizeof(struct cpl_close_con_req), 16); skb = alloc_skb(len, GFP_ATOMIC); if (!skb) return; cxgb_mk_close_con_req(skb, len, csk->tid, csk->txq_idx, NULL, NULL); cxgbit_skcb_flags(skb) |= SKCBF_TX_FLAG_COMPL; __skb_queue_tail(&csk->txq, skb); cxgbit_push_tx_frames(csk); } static void cxgbit_arp_failure_discard(void *handle, struct sk_buff *skb) { struct cxgbit_sock *csk = handle; pr_debug("%s cxgbit_device %p\n", __func__, handle); kfree_skb(skb); cxgbit_put_csk(csk); } static void cxgbit_abort_arp_failure(void *handle, struct sk_buff *skb) { struct cxgbit_device *cdev = handle; struct cpl_abort_req *req = cplhdr(skb); pr_debug("%s cdev %p\n", __func__, cdev); req->cmd = CPL_ABORT_NO_RST; cxgbit_ofld_send(cdev, skb); } static int cxgbit_send_abort_req(struct cxgbit_sock *csk) { struct sk_buff *skb; u32 len = roundup(sizeof(struct cpl_abort_req), 16); pr_debug("%s: csk %p tid %u; state %d\n", __func__, csk, csk->tid, csk->com.state); __skb_queue_purge(&csk->txq); if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags)) cxgbit_send_tx_flowc_wr(csk); skb = __skb_dequeue(&csk->skbq); cxgb_mk_abort_req(skb, len, csk->tid, csk->txq_idx, csk->com.cdev, cxgbit_abort_arp_failure); return cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t); } static void __cxgbit_abort_conn(struct cxgbit_sock *csk, struct sk_buff *skb) { __kfree_skb(skb); if (csk->com.state != CSK_STATE_ESTABLISHED) goto no_abort; set_bit(CSK_ABORT_RPL_WAIT, &csk->com.flags); csk->com.state = CSK_STATE_ABORTING; cxgbit_send_abort_req(csk); return; no_abort: cxgbit_wake_up(&csk->com.wr_wait, __func__, CPL_ERR_NONE); cxgbit_put_csk(csk); } void cxgbit_abort_conn(struct cxgbit_sock *csk) { struct sk_buff *skb = alloc_skb(0, GFP_KERNEL | __GFP_NOFAIL); cxgbit_get_csk(csk); cxgbit_init_wr_wait(&csk->com.wr_wait); spin_lock_bh(&csk->lock); if (csk->lock_owner) { cxgbit_skcb_rx_backlog_fn(skb) = __cxgbit_abort_conn; __skb_queue_tail(&csk->backlogq, skb); } else { __cxgbit_abort_conn(csk, skb); } spin_unlock_bh(&csk->lock); cxgbit_wait_for_reply(csk->com.cdev, &csk->com.wr_wait, csk->tid, 600, __func__); } static void __cxgbit_free_conn(struct cxgbit_sock *csk) { struct iscsi_conn *conn = csk->conn; bool release = false; pr_debug("%s: state %d\n", __func__, csk->com.state); spin_lock_bh(&csk->lock); switch (csk->com.state) { case CSK_STATE_ESTABLISHED: if (conn && (conn->conn_state == TARG_CONN_STATE_IN_LOGOUT)) { csk->com.state = CSK_STATE_CLOSING; cxgbit_send_halfclose(csk); } else { csk->com.state = CSK_STATE_ABORTING; cxgbit_send_abort_req(csk); } break; case CSK_STATE_CLOSING: csk->com.state = CSK_STATE_MORIBUND; cxgbit_send_halfclose(csk); break; case CSK_STATE_DEAD: release = true; break; default: pr_err("%s: csk %p; state %d\n", __func__, csk, csk->com.state); } spin_unlock_bh(&csk->lock); if (release) cxgbit_put_csk(csk); } void cxgbit_free_conn(struct iscsi_conn *conn) { __cxgbit_free_conn(conn->context); } static void cxgbit_set_emss(struct cxgbit_sock *csk, u16 opt) { csk->emss = csk->com.cdev->lldi.mtus[TCPOPT_MSS_G(opt)] - ((csk->com.remote_addr.ss_family == AF_INET) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - sizeof(struct tcphdr); csk->mss = csk->emss; if (TCPOPT_TSTAMP_G(opt)) csk->emss -= round_up(TCPOLEN_TIMESTAMP, 4); if (csk->emss < 128) csk->emss = 128; if (csk->emss & 7) pr_info("Warning: misaligned mtu idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), csk->mss, csk->emss); pr_debug("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt), csk->mss, csk->emss); } static void cxgbit_free_skb(struct cxgbit_sock *csk) { struct sk_buff *skb; __skb_queue_purge(&csk->txq); __skb_queue_purge(&csk->rxq); __skb_queue_purge(&csk->backlogq); __skb_queue_purge(&csk->ppodq); __skb_queue_purge(&csk->skbq); while ((skb = cxgbit_sock_dequeue_wr(csk))) kfree_skb(skb); __kfree_skb(csk->lro_hskb); } void _cxgbit_free_csk(struct kref *kref) { struct cxgbit_sock *csk; struct cxgbit_device *cdev; csk = container_of(kref, struct cxgbit_sock, kref); pr_debug("%s csk %p state %d\n", __func__, csk, csk->com.state); if (csk->com.local_addr.ss_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &csk->com.local_addr; cxgb4_clip_release(csk->com.cdev->lldi.ports[0], (const u32 *) &sin6->sin6_addr.s6_addr, 1); } cxgb4_remove_tid(csk->com.cdev->lldi.tids, 0, csk->tid, csk->com.local_addr.ss_family); dst_release(csk->dst); cxgb4_l2t_release(csk->l2t); cdev = csk->com.cdev; spin_lock_bh(&cdev->cskq.lock); list_del(&csk->list); spin_unlock_bh(&cdev->cskq.lock); cxgbit_free_skb(csk); cxgbit_put_cnp(csk->cnp); cxgbit_put_cdev(cdev); kfree(csk); } static void cxgbit_set_tcp_window(struct cxgbit_sock *csk, struct port_info *pi) { unsigned int linkspeed; u8 scale; linkspeed = pi->link_cfg.speed; scale = linkspeed / SPEED_10000; #define CXGBIT_10G_RCV_WIN (256 * 1024) csk->rcv_win = CXGBIT_10G_RCV_WIN; if (scale) csk->rcv_win *= scale; #define CXGBIT_10G_SND_WIN (256 * 1024) csk->snd_win = CXGBIT_10G_SND_WIN; if (scale) csk->snd_win *= scale; pr_debug("%s snd_win %d rcv_win %d\n", __func__, csk->snd_win, csk->rcv_win); } #ifdef CONFIG_CHELSIO_T4_DCB static u8 cxgbit_get_iscsi_dcb_state(struct net_device *ndev) { return ndev->dcbnl_ops->getstate(ndev); } static int cxgbit_select_priority(int pri_mask) { if (!pri_mask) return 0; return (ffs(pri_mask) - 1); } static u8 cxgbit_get_iscsi_dcb_priority(struct net_device *ndev, u16 local_port) { int ret; u8 caps; struct dcb_app iscsi_dcb_app = { .protocol = local_port }; ret = (int)ndev->dcbnl_ops->getcap(ndev, DCB_CAP_ATTR_DCBX, &caps); if (ret) return 0; if (caps & DCB_CAP_DCBX_VER_IEEE) { iscsi_dcb_app.selector = IEEE_8021QAZ_APP_SEL_STREAM; ret = dcb_ieee_getapp_mask(ndev, &iscsi_dcb_app); if (!ret) { iscsi_dcb_app.selector = IEEE_8021QAZ_APP_SEL_ANY; ret = dcb_ieee_getapp_mask(ndev, &iscsi_dcb_app); } } else if (caps & DCB_CAP_DCBX_VER_CEE) { iscsi_dcb_app.selector = DCB_APP_IDTYPE_PORTNUM; ret = dcb_getapp(ndev, &iscsi_dcb_app); } pr_info("iSCSI priority is set to %u\n", cxgbit_select_priority(ret)); return cxgbit_select_priority(ret); } #endif static int cxgbit_offload_init(struct cxgbit_sock *csk, int iptype, __u8 *peer_ip, u16 local_port, struct dst_entry *dst, struct cxgbit_device *cdev) { struct neighbour *n; int ret, step; struct net_device *ndev; u16 rxq_idx, port_id; #ifdef CONFIG_CHELSIO_T4_DCB u8 priority = 0; #endif n = dst_neigh_lookup(dst, peer_ip); if (!n) return -ENODEV; rcu_read_lock(); if (!(n->nud_state & NUD_VALID)) neigh_event_send(n, NULL); ret = -ENOMEM; if (n->dev->flags & IFF_LOOPBACK) { if (iptype == 4) ndev = cxgbit_ipv4_netdev(*(__be32 *)peer_ip); else if (IS_ENABLED(CONFIG_IPV6)) ndev = cxgbit_ipv6_netdev((struct in6_addr *)peer_ip); else ndev = NULL; if (!ndev) { ret = -ENODEV; goto out; } csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, 0); if (!csk->l2t) goto out; csk->mtu = ndev->mtu; csk->tx_chan = cxgb4_port_chan(ndev); csk->smac_idx = ((struct port_info *)netdev_priv(ndev))->smt_idx; step = cdev->lldi.ntxq / cdev->lldi.nchan; csk->txq_idx = cxgb4_port_idx(ndev) * step; step = cdev->lldi.nrxq / cdev->lldi.nchan; csk->ctrlq_idx = cxgb4_port_idx(ndev); csk->rss_qid = cdev->lldi.rxq_ids[ cxgb4_port_idx(ndev) * step]; csk->port_id = cxgb4_port_idx(ndev); cxgbit_set_tcp_window(csk, (struct port_info *)netdev_priv(ndev)); } else { ndev = cxgbit_get_real_dev(n->dev); if (!ndev) { ret = -ENODEV; goto out; } #ifdef CONFIG_CHELSIO_T4_DCB if (cxgbit_get_iscsi_dcb_state(ndev)) priority = cxgbit_get_iscsi_dcb_priority(ndev, local_port); csk->dcb_priority = priority; csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, priority); #else csk->l2t = cxgb4_l2t_get(cdev->lldi.l2t, n, ndev, 0); #endif if (!csk->l2t) goto out; port_id = cxgb4_port_idx(ndev); csk->mtu = dst_mtu(dst); csk->tx_chan = cxgb4_port_chan(ndev); csk->smac_idx = ((struct port_info *)netdev_priv(ndev))->smt_idx; step = cdev->lldi.ntxq / cdev->lldi.nports; csk->txq_idx = (port_id * step) + (cdev->selectq[port_id][0]++ % step); csk->ctrlq_idx = cxgb4_port_idx(ndev); step = cdev->lldi.nrxq / cdev->lldi.nports; rxq_idx = (port_id * step) + (cdev->selectq[port_id][1]++ % step); csk->rss_qid = cdev->lldi.rxq_ids[rxq_idx]; csk->port_id = port_id; cxgbit_set_tcp_window(csk, (struct port_info *)netdev_priv(ndev)); } ret = 0; out: rcu_read_unlock(); neigh_release(n); return ret; } int cxgbit_ofld_send(struct cxgbit_device *cdev, struct sk_buff *skb) { int ret = 0; if (!test_bit(CDEV_STATE_UP, &cdev->flags)) { kfree_skb(skb); pr_err("%s - device not up - dropping\n", __func__); return -EIO; } ret = cxgb4_ofld_send(cdev->lldi.ports[0], skb); if (ret < 0) kfree_skb(skb); return ret < 0 ? ret : 0; } static void cxgbit_release_tid(struct cxgbit_device *cdev, u32 tid) { u32 len = roundup(sizeof(struct cpl_tid_release), 16); struct sk_buff *skb; skb = alloc_skb(len, GFP_ATOMIC); if (!skb) return; cxgb_mk_tid_release(skb, len, tid, 0); cxgbit_ofld_send(cdev, skb); } int cxgbit_l2t_send(struct cxgbit_device *cdev, struct sk_buff *skb, struct l2t_entry *l2e) { int ret = 0; if (!test_bit(CDEV_STATE_UP, &cdev->flags)) { kfree_skb(skb); pr_err("%s - device not up - dropping\n", __func__); return -EIO; } ret = cxgb4_l2t_send(cdev->lldi.ports[0], skb, l2e); if (ret < 0) kfree_skb(skb); return ret < 0 ? ret : 0; } static void cxgbit_send_rx_credits(struct cxgbit_sock *csk, struct sk_buff *skb) { if (csk->com.state != CSK_STATE_ESTABLISHED) { __kfree_skb(skb); return; } cxgbit_ofld_send(csk->com.cdev, skb); } /* * CPL connection rx data ack: host -> * Send RX credits through an RX_DATA_ACK CPL message. * Returns the number of credits sent. */ int cxgbit_rx_data_ack(struct cxgbit_sock *csk) { struct sk_buff *skb; u32 len = roundup(sizeof(struct cpl_rx_data_ack), 16); u32 credit_dack; skb = alloc_skb(len, GFP_KERNEL); if (!skb) return -1; credit_dack = RX_DACK_CHANGE_F | RX_DACK_MODE_V(1) | RX_CREDITS_V(csk->rx_credits); cxgb_mk_rx_data_ack(skb, len, csk->tid, csk->ctrlq_idx, credit_dack); csk->rx_credits = 0; spin_lock_bh(&csk->lock); if (csk->lock_owner) { cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_send_rx_credits; __skb_queue_tail(&csk->backlogq, skb); spin_unlock_bh(&csk->lock); return 0; } cxgbit_send_rx_credits(csk, skb); spin_unlock_bh(&csk->lock); return 0; } #define FLOWC_WR_NPARAMS_MIN 9 #define FLOWC_WR_NPARAMS_MAX 11 static int cxgbit_alloc_csk_skb(struct cxgbit_sock *csk) { struct sk_buff *skb; u32 len, flowclen; u8 i; flowclen = offsetof(struct fw_flowc_wr, mnemval[FLOWC_WR_NPARAMS_MAX]); len = max_t(u32, sizeof(struct cpl_abort_req), sizeof(struct cpl_abort_rpl)); len = max(len, flowclen); len = roundup(len, 16); for (i = 0; i < 3; i++) { skb = alloc_skb(len, GFP_ATOMIC); if (!skb) goto out; __skb_queue_tail(&csk->skbq, skb); } skb = alloc_skb(LRO_SKB_MIN_HEADROOM, GFP_ATOMIC); if (!skb) goto out; memset(skb->data, 0, LRO_SKB_MIN_HEADROOM); csk->lro_hskb = skb; return 0; out: __skb_queue_purge(&csk->skbq); return -ENOMEM; } static void cxgbit_pass_accept_rpl(struct cxgbit_sock *csk, struct cpl_pass_accept_req *req) { struct sk_buff *skb; const struct tcphdr *tcph; struct cpl_t5_pass_accept_rpl *rpl5; struct cxgb4_lld_info *lldi = &csk->com.cdev->lldi; unsigned int len = roundup(sizeof(*rpl5), 16); unsigned int mtu_idx; u64 opt0; u32 opt2, hlen; u32 wscale; u32 win; pr_debug("%s csk %p tid %u\n", __func__, csk, csk->tid); skb = alloc_skb(len, GFP_ATOMIC); if (!skb) { cxgbit_put_csk(csk); return; } rpl5 = __skb_put_zero(skb, len); INIT_TP_WR(rpl5, csk->tid); OPCODE_TID(rpl5) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, csk->tid)); cxgb_best_mtu(csk->com.cdev->lldi.mtus, csk->mtu, &mtu_idx, req->tcpopt.tstamp, (csk->com.remote_addr.ss_family == AF_INET) ? 0 : 1); wscale = cxgb_compute_wscale(csk->rcv_win); /* * Specify the largest window that will fit in opt0. The * remainder will be specified in the rx_data_ack. */ win = csk->rcv_win >> 10; if (win > RCV_BUFSIZ_M) win = RCV_BUFSIZ_M; opt0 = TCAM_BYPASS_F | WND_SCALE_V(wscale) | MSS_IDX_V(mtu_idx) | L2T_IDX_V(csk->l2t->idx) | TX_CHAN_V(csk->tx_chan) | SMAC_SEL_V(csk->smac_idx) | DSCP_V(csk->tos >> 2) | ULP_MODE_V(ULP_MODE_ISCSI) | RCV_BUFSIZ_V(win); opt2 = RX_CHANNEL_V(0) | RSS_QUEUE_VALID_F | RSS_QUEUE_V(csk->rss_qid); if (!is_t5(lldi->adapter_type)) opt2 |= RX_FC_DISABLE_F; if (req->tcpopt.tstamp) opt2 |= TSTAMPS_EN_F; if (req->tcpopt.sack) opt2 |= SACK_EN_F; if (wscale) opt2 |= WND_SCALE_EN_F; hlen = ntohl(req->hdr_len); if (is_t5(lldi->adapter_type)) tcph = (struct tcphdr *)((u8 *)(req + 1) + ETH_HDR_LEN_G(hlen) + IP_HDR_LEN_G(hlen)); else tcph = (struct tcphdr *)((u8 *)(req + 1) + T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen)); if (tcph->ece && tcph->cwr) opt2 |= CCTRL_ECN_V(1); opt2 |= RX_COALESCE_V(3); opt2 |= CONG_CNTRL_V(CONG_ALG_NEWRENO); opt2 |= T5_ISS_F; rpl5->iss = cpu_to_be32((prandom_u32() & ~7UL) - 1); opt2 |= T5_OPT_2_VALID_F; rpl5->opt0 = cpu_to_be64(opt0); rpl5->opt2 = cpu_to_be32(opt2); set_wr_txq(skb, CPL_PRIORITY_SETUP, csk->ctrlq_idx); t4_set_arp_err_handler(skb, csk, cxgbit_arp_failure_discard); cxgbit_l2t_send(csk->com.cdev, skb, csk->l2t); } static void cxgbit_pass_accept_req(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cxgbit_sock *csk = NULL; struct cxgbit_np *cnp; struct cpl_pass_accept_req *req = cplhdr(skb); unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); struct tid_info *t = cdev->lldi.tids; unsigned int tid = GET_TID(req); u16 peer_mss = ntohs(req->tcpopt.mss); unsigned short hdrs; struct dst_entry *dst; __u8 local_ip[16], peer_ip[16]; __be16 local_port, peer_port; int ret; int iptype; pr_debug("%s: cdev = %p; stid = %u; tid = %u\n", __func__, cdev, stid, tid); cnp = lookup_stid(t, stid); if (!cnp) { pr_err("%s connect request on invalid stid %d\n", __func__, stid); goto rel_skb; } if (cnp->com.state != CSK_STATE_LISTEN) { pr_err("%s - listening parent not in CSK_STATE_LISTEN\n", __func__); goto reject; } csk = lookup_tid(t, tid); if (csk) { pr_err("%s csk not null tid %u\n", __func__, tid); goto rel_skb; } cxgb_get_4tuple(req, cdev->lldi.adapter_type, &iptype, local_ip, peer_ip, &local_port, &peer_port); /* Find output route */ if (iptype == 4) { pr_debug("%s parent sock %p tid %u laddr %pI4 raddr %pI4 " "lport %d rport %d peer_mss %d\n" , __func__, cnp, tid, local_ip, peer_ip, ntohs(local_port), ntohs(peer_port), peer_mss); dst = cxgb_find_route(&cdev->lldi, cxgbit_get_real_dev, *(__be32 *)local_ip, *(__be32 *)peer_ip, local_port, peer_port, PASS_OPEN_TOS_G(ntohl(req->tos_stid))); } else { pr_debug("%s parent sock %p tid %u laddr %pI6 raddr %pI6 " "lport %d rport %d peer_mss %d\n" , __func__, cnp, tid, local_ip, peer_ip, ntohs(local_port), ntohs(peer_port), peer_mss); dst = cxgb_find_route6(&cdev->lldi, cxgbit_get_real_dev, local_ip, peer_ip, local_port, peer_port, PASS_OPEN_TOS_G(ntohl(req->tos_stid)), ((struct sockaddr_in6 *) &cnp->com.local_addr)->sin6_scope_id); } if (!dst) { pr_err("%s - failed to find dst entry!\n", __func__); goto reject; } csk = kzalloc(sizeof(*csk), GFP_ATOMIC); if (!csk) { dst_release(dst); goto rel_skb; } ret = cxgbit_offload_init(csk, iptype, peer_ip, ntohs(local_port), dst, cdev); if (ret) { pr_err("%s - failed to allocate l2t entry!\n", __func__); dst_release(dst); kfree(csk); goto reject; } kref_init(&csk->kref); init_completion(&csk->com.wr_wait.completion); INIT_LIST_HEAD(&csk->accept_node); hdrs = (iptype == 4 ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + sizeof(struct tcphdr) + (req->tcpopt.tstamp ? 12 : 0); if (peer_mss && csk->mtu > (peer_mss + hdrs)) csk->mtu = peer_mss + hdrs; csk->com.state = CSK_STATE_CONNECTING; csk->com.cdev = cdev; csk->cnp = cnp; csk->tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); csk->dst = dst; csk->tid = tid; csk->wr_cred = cdev->lldi.wr_cred - DIV_ROUND_UP(sizeof(struct cpl_abort_req), 16); csk->wr_max_cred = csk->wr_cred; csk->wr_una_cred = 0; if (iptype == 4) { struct sockaddr_in *sin = (struct sockaddr_in *) &csk->com.local_addr; sin->sin_family = AF_INET; sin->sin_port = local_port; sin->sin_addr.s_addr = *(__be32 *)local_ip; sin = (struct sockaddr_in *)&csk->com.remote_addr; sin->sin_family = AF_INET; sin->sin_port = peer_port; sin->sin_addr.s_addr = *(__be32 *)peer_ip; } else { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &csk->com.local_addr; sin6->sin6_family = PF_INET6; sin6->sin6_port = local_port; memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); cxgb4_clip_get(cdev->lldi.ports[0], (const u32 *)&sin6->sin6_addr.s6_addr, 1); sin6 = (struct sockaddr_in6 *)&csk->com.remote_addr; sin6->sin6_family = PF_INET6; sin6->sin6_port = peer_port; memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); } skb_queue_head_init(&csk->rxq); skb_queue_head_init(&csk->txq); skb_queue_head_init(&csk->ppodq); skb_queue_head_init(&csk->backlogq); skb_queue_head_init(&csk->skbq); cxgbit_sock_reset_wr_list(csk); spin_lock_init(&csk->lock); init_waitqueue_head(&csk->waitq); csk->lock_owner = false; if (cxgbit_alloc_csk_skb(csk)) { dst_release(dst); kfree(csk); goto rel_skb; } cxgbit_get_cnp(cnp); cxgbit_get_cdev(cdev); spin_lock(&cdev->cskq.lock); list_add_tail(&csk->list, &cdev->cskq.list); spin_unlock(&cdev->cskq.lock); cxgb4_insert_tid(t, csk, tid, csk->com.local_addr.ss_family); cxgbit_pass_accept_rpl(csk, req); goto rel_skb; reject: cxgbit_release_tid(cdev, tid); rel_skb: __kfree_skb(skb); } static u32 cxgbit_tx_flowc_wr_credits(struct cxgbit_sock *csk, u32 *nparamsp, u32 *flowclenp) { u32 nparams, flowclen16, flowclen; nparams = FLOWC_WR_NPARAMS_MIN; if (csk->snd_wscale) nparams++; #ifdef CONFIG_CHELSIO_T4_DCB nparams++; #endif flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]); flowclen16 = DIV_ROUND_UP(flowclen, 16); flowclen = flowclen16 * 16; /* * Return the number of 16-byte credits used by the flowc request. * Pass back the nparams and actual flowc length if requested. */ if (nparamsp) *nparamsp = nparams; if (flowclenp) *flowclenp = flowclen; return flowclen16; } u32 cxgbit_send_tx_flowc_wr(struct cxgbit_sock *csk) { struct cxgbit_device *cdev = csk->com.cdev; struct fw_flowc_wr *flowc; u32 nparams, flowclen16, flowclen; struct sk_buff *skb; u8 index; #ifdef CONFIG_CHELSIO_T4_DCB u16 vlan = ((struct l2t_entry *)csk->l2t)->vlan; #endif flowclen16 = cxgbit_tx_flowc_wr_credits(csk, &nparams, &flowclen); skb = __skb_dequeue(&csk->skbq); flowc = __skb_put_zero(skb, flowclen); flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | FW_FLOWC_WR_NPARAMS_V(nparams)); flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) | FW_WR_FLOWID_V(csk->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V (csk->com.cdev->lldi.pf)); flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; flowc->mnemval[1].val = cpu_to_be32(csk->tx_chan); flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; flowc->mnemval[2].val = cpu_to_be32(csk->tx_chan); flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; flowc->mnemval[3].val = cpu_to_be32(csk->rss_qid); flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; flowc->mnemval[4].val = cpu_to_be32(csk->snd_nxt); flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; flowc->mnemval[5].val = cpu_to_be32(csk->rcv_nxt); flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; flowc->mnemval[6].val = cpu_to_be32(csk->snd_win); flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; flowc->mnemval[7].val = cpu_to_be32(csk->emss); flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_TXDATAPLEN_MAX; if (test_bit(CDEV_ISO_ENABLE, &cdev->flags)) flowc->mnemval[8].val = cpu_to_be32(CXGBIT_MAX_ISO_PAYLOAD); else flowc->mnemval[8].val = cpu_to_be32(16384); index = 9; if (csk->snd_wscale) { flowc->mnemval[index].mnemonic = FW_FLOWC_MNEM_RCV_SCALE; flowc->mnemval[index].val = cpu_to_be32(csk->snd_wscale); index++; } #ifdef CONFIG_CHELSIO_T4_DCB flowc->mnemval[index].mnemonic = FW_FLOWC_MNEM_DCBPRIO; if (vlan == VLAN_NONE) { pr_warn("csk %u without VLAN Tag on DCB Link\n", csk->tid); flowc->mnemval[index].val = cpu_to_be32(0); } else flowc->mnemval[index].val = cpu_to_be32( (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT); #endif pr_debug("%s: csk %p; tx_chan = %u; rss_qid = %u; snd_seq = %u;" " rcv_seq = %u; snd_win = %u; emss = %u\n", __func__, csk, csk->tx_chan, csk->rss_qid, csk->snd_nxt, csk->rcv_nxt, csk->snd_win, csk->emss); set_wr_txq(skb, CPL_PRIORITY_DATA, csk->txq_idx); cxgbit_ofld_send(csk->com.cdev, skb); return flowclen16; } static int cxgbit_send_tcb_skb(struct cxgbit_sock *csk, struct sk_buff *skb) { spin_lock_bh(&csk->lock); if (unlikely(csk->com.state != CSK_STATE_ESTABLISHED)) { spin_unlock_bh(&csk->lock); pr_err("%s: csk 0x%p, tid %u, state %u\n", __func__, csk, csk->tid, csk->com.state); __kfree_skb(skb); return -1; } cxgbit_get_csk(csk); cxgbit_init_wr_wait(&csk->com.wr_wait); cxgbit_ofld_send(csk->com.cdev, skb); spin_unlock_bh(&csk->lock); return 0; } int cxgbit_setup_conn_digest(struct cxgbit_sock *csk) { struct sk_buff *skb; struct cpl_set_tcb_field *req; u8 hcrc = csk->submode & CXGBIT_SUBMODE_HCRC; u8 dcrc = csk->submode & CXGBIT_SUBMODE_DCRC; unsigned int len = roundup(sizeof(*req), 16); int ret; skb = alloc_skb(len, GFP_KERNEL); if (!skb) return -ENOMEM; /* set up ulp submode */ req = __skb_put_zero(skb, len); INIT_TP_WR(req, csk->tid); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, csk->tid)); req->reply_ctrl = htons(NO_REPLY_V(0) | QUEUENO_V(csk->rss_qid)); req->word_cookie = htons(0); req->mask = cpu_to_be64(0x3 << 4); req->val = cpu_to_be64(((hcrc ? ULP_CRC_HEADER : 0) | (dcrc ? ULP_CRC_DATA : 0)) << 4); set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->ctrlq_idx); if (cxgbit_send_tcb_skb(csk, skb)) return -1; ret = cxgbit_wait_for_reply(csk->com.cdev, &csk->com.wr_wait, csk->tid, 5, __func__); if (ret) return -1; return 0; } int cxgbit_setup_conn_pgidx(struct cxgbit_sock *csk, u32 pg_idx) { struct sk_buff *skb; struct cpl_set_tcb_field *req; unsigned int len = roundup(sizeof(*req), 16); int ret; skb = alloc_skb(len, GFP_KERNEL); if (!skb) return -ENOMEM; req = __skb_put_zero(skb, len); INIT_TP_WR(req, csk->tid); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, csk->tid)); req->reply_ctrl = htons(NO_REPLY_V(0) | QUEUENO_V(csk->rss_qid)); req->word_cookie = htons(0); req->mask = cpu_to_be64(0x3 << 8); req->val = cpu_to_be64(pg_idx << 8); set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->ctrlq_idx); if (cxgbit_send_tcb_skb(csk, skb)) return -1; ret = cxgbit_wait_for_reply(csk->com.cdev, &csk->com.wr_wait, csk->tid, 5, __func__); if (ret) return -1; return 0; } static void cxgbit_pass_open_rpl(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cpl_pass_open_rpl *rpl = cplhdr(skb); struct tid_info *t = cdev->lldi.tids; unsigned int stid = GET_TID(rpl); struct cxgbit_np *cnp = lookup_stid(t, stid); pr_debug("%s: cnp = %p; stid = %u; status = %d\n", __func__, cnp, stid, rpl->status); if (!cnp) { pr_info("%s stid %d lookup failure\n", __func__, stid); goto rel_skb; } cxgbit_wake_up(&cnp->com.wr_wait, __func__, rpl->status); cxgbit_put_cnp(cnp); rel_skb: __kfree_skb(skb); } static void cxgbit_close_listsrv_rpl(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); struct tid_info *t = cdev->lldi.tids; unsigned int stid = GET_TID(rpl); struct cxgbit_np *cnp = lookup_stid(t, stid); pr_debug("%s: cnp = %p; stid = %u; status = %d\n", __func__, cnp, stid, rpl->status); if (!cnp) { pr_info("%s stid %d lookup failure\n", __func__, stid); goto rel_skb; } cxgbit_wake_up(&cnp->com.wr_wait, __func__, rpl->status); cxgbit_put_cnp(cnp); rel_skb: __kfree_skb(skb); } static void cxgbit_pass_establish(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cpl_pass_establish *req = cplhdr(skb); struct tid_info *t = cdev->lldi.tids; unsigned int tid = GET_TID(req); struct cxgbit_sock *csk; struct cxgbit_np *cnp; u16 tcp_opt = be16_to_cpu(req->tcp_opt); u32 snd_isn = be32_to_cpu(req->snd_isn); u32 rcv_isn = be32_to_cpu(req->rcv_isn); csk = lookup_tid(t, tid); if (unlikely(!csk)) { pr_err("can't find connection for tid %u.\n", tid); goto rel_skb; } cnp = csk->cnp; pr_debug("%s: csk %p; tid %u; cnp %p\n", __func__, csk, tid, cnp); csk->write_seq = snd_isn; csk->snd_una = snd_isn; csk->snd_nxt = snd_isn; csk->rcv_nxt = rcv_isn; if (csk->rcv_win > (RCV_BUFSIZ_M << 10)) csk->rx_credits = (csk->rcv_win - (RCV_BUFSIZ_M << 10)); csk->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); cxgbit_set_emss(csk, tcp_opt); dst_confirm(csk->dst); csk->com.state = CSK_STATE_ESTABLISHED; spin_lock_bh(&cnp->np_accept_lock); list_add_tail(&csk->accept_node, &cnp->np_accept_list); spin_unlock_bh(&cnp->np_accept_lock); complete(&cnp->accept_comp); rel_skb: __kfree_skb(skb); } static void cxgbit_queue_rx_skb(struct cxgbit_sock *csk, struct sk_buff *skb) { cxgbit_skcb_flags(skb) = 0; spin_lock_bh(&csk->rxq.lock); __skb_queue_tail(&csk->rxq, skb); spin_unlock_bh(&csk->rxq.lock); wake_up(&csk->waitq); } static void cxgbit_peer_close(struct cxgbit_sock *csk, struct sk_buff *skb) { pr_debug("%s: csk %p; tid %u; state %d\n", __func__, csk, csk->tid, csk->com.state); switch (csk->com.state) { case CSK_STATE_ESTABLISHED: csk->com.state = CSK_STATE_CLOSING; cxgbit_queue_rx_skb(csk, skb); return; case CSK_STATE_CLOSING: /* simultaneous close */ csk->com.state = CSK_STATE_MORIBUND; break; case CSK_STATE_MORIBUND: csk->com.state = CSK_STATE_DEAD; cxgbit_put_csk(csk); break; case CSK_STATE_ABORTING: break; default: pr_info("%s: cpl_peer_close in bad state %d\n", __func__, csk->com.state); } __kfree_skb(skb); } static void cxgbit_close_con_rpl(struct cxgbit_sock *csk, struct sk_buff *skb) { pr_debug("%s: csk %p; tid %u; state %d\n", __func__, csk, csk->tid, csk->com.state); switch (csk->com.state) { case CSK_STATE_CLOSING: csk->com.state = CSK_STATE_MORIBUND; break; case CSK_STATE_MORIBUND: csk->com.state = CSK_STATE_DEAD; cxgbit_put_csk(csk); break; case CSK_STATE_ABORTING: case CSK_STATE_DEAD: break; default: pr_info("%s: cpl_close_con_rpl in bad state %d\n", __func__, csk->com.state); } __kfree_skb(skb); } static void cxgbit_abort_req_rss(struct cxgbit_sock *csk, struct sk_buff *skb) { struct cpl_abort_req_rss *hdr = cplhdr(skb); unsigned int tid = GET_TID(hdr); struct sk_buff *rpl_skb; bool release = false; bool wakeup_thread = false; u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); pr_debug("%s: csk %p; tid %u; state %d\n", __func__, csk, tid, csk->com.state); if (cxgb_is_neg_adv(hdr->status)) { pr_err("%s: got neg advise %d on tid %u\n", __func__, hdr->status, tid); goto rel_skb; } switch (csk->com.state) { case CSK_STATE_CONNECTING: case CSK_STATE_MORIBUND: csk->com.state = CSK_STATE_DEAD; release = true; break; case CSK_STATE_ESTABLISHED: csk->com.state = CSK_STATE_DEAD; wakeup_thread = true; break; case CSK_STATE_CLOSING: csk->com.state = CSK_STATE_DEAD; if (!csk->conn) release = true; break; case CSK_STATE_ABORTING: break; default: pr_info("%s: cpl_abort_req_rss in bad state %d\n", __func__, csk->com.state); csk->com.state = CSK_STATE_DEAD; } __skb_queue_purge(&csk->txq); if (!test_and_set_bit(CSK_TX_DATA_SENT, &csk->com.flags)) cxgbit_send_tx_flowc_wr(csk); rpl_skb = __skb_dequeue(&csk->skbq); cxgb_mk_abort_rpl(rpl_skb, len, csk->tid, csk->txq_idx); cxgbit_ofld_send(csk->com.cdev, rpl_skb); if (wakeup_thread) { cxgbit_queue_rx_skb(csk, skb); return; } if (release) cxgbit_put_csk(csk); rel_skb: __kfree_skb(skb); } static void cxgbit_abort_rpl_rss(struct cxgbit_sock *csk, struct sk_buff *skb) { struct cpl_abort_rpl_rss *rpl = cplhdr(skb); pr_debug("%s: csk %p; tid %u; state %d\n", __func__, csk, csk->tid, csk->com.state); switch (csk->com.state) { case CSK_STATE_ABORTING: csk->com.state = CSK_STATE_DEAD; if (test_bit(CSK_ABORT_RPL_WAIT, &csk->com.flags)) cxgbit_wake_up(&csk->com.wr_wait, __func__, rpl->status); cxgbit_put_csk(csk); break; default: pr_info("%s: cpl_abort_rpl_rss in state %d\n", __func__, csk->com.state); } __kfree_skb(skb); } static bool cxgbit_credit_err(const struct cxgbit_sock *csk) { const struct sk_buff *skb = csk->wr_pending_head; u32 credit = 0; if (unlikely(csk->wr_cred > csk->wr_max_cred)) { pr_err("csk 0x%p, tid %u, credit %u > %u\n", csk, csk->tid, csk->wr_cred, csk->wr_max_cred); return true; } while (skb) { credit += (__force u32)skb->csum; skb = cxgbit_skcb_tx_wr_next(skb); } if (unlikely((csk->wr_cred + credit) != csk->wr_max_cred)) { pr_err("csk 0x%p, tid %u, credit %u + %u != %u.\n", csk, csk->tid, csk->wr_cred, credit, csk->wr_max_cred); return true; } return false; } static void cxgbit_fw4_ack(struct cxgbit_sock *csk, struct sk_buff *skb) { struct cpl_fw4_ack *rpl = (struct cpl_fw4_ack *)cplhdr(skb); u32 credits = rpl->credits; u32 snd_una = ntohl(rpl->snd_una); csk->wr_cred += credits; if (csk->wr_una_cred > (csk->wr_max_cred - csk->wr_cred)) csk->wr_una_cred = csk->wr_max_cred - csk->wr_cred; while (credits) { struct sk_buff *p = cxgbit_sock_peek_wr(csk); u32 csum; if (unlikely(!p)) { pr_err("csk 0x%p,%u, cr %u,%u+%u, empty.\n", csk, csk->tid, credits, csk->wr_cred, csk->wr_una_cred); break; } csum = (__force u32)p->csum; if (unlikely(credits < csum)) { pr_warn("csk 0x%p,%u, cr %u,%u+%u, < %u.\n", csk, csk->tid, credits, csk->wr_cred, csk->wr_una_cred, csum); p->csum = (__force __wsum)(csum - credits); break; } cxgbit_sock_dequeue_wr(csk); credits -= csum; kfree_skb(p); } if (unlikely(cxgbit_credit_err(csk))) { cxgbit_queue_rx_skb(csk, skb); return; } if (rpl->seq_vld & CPL_FW4_ACK_FLAGS_SEQVAL) { if (unlikely(before(snd_una, csk->snd_una))) { pr_warn("csk 0x%p,%u, snd_una %u/%u.", csk, csk->tid, snd_una, csk->snd_una); goto rel_skb; } if (csk->snd_una != snd_una) { csk->snd_una = snd_una; dst_confirm(csk->dst); } } if (skb_queue_len(&csk->txq)) cxgbit_push_tx_frames(csk); rel_skb: __kfree_skb(skb); } static void cxgbit_set_tcb_rpl(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cxgbit_sock *csk; struct cpl_set_tcb_rpl *rpl = (struct cpl_set_tcb_rpl *)skb->data; unsigned int tid = GET_TID(rpl); struct cxgb4_lld_info *lldi = &cdev->lldi; struct tid_info *t = lldi->tids; csk = lookup_tid(t, tid); if (unlikely(!csk)) { pr_err("can't find connection for tid %u.\n", tid); goto rel_skb; } else { cxgbit_wake_up(&csk->com.wr_wait, __func__, rpl->status); } cxgbit_put_csk(csk); rel_skb: __kfree_skb(skb); } static void cxgbit_rx_data(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cxgbit_sock *csk; struct cpl_rx_data *cpl = cplhdr(skb); unsigned int tid = GET_TID(cpl); struct cxgb4_lld_info *lldi = &cdev->lldi; struct tid_info *t = lldi->tids; csk = lookup_tid(t, tid); if (unlikely(!csk)) { pr_err("can't find conn. for tid %u.\n", tid); goto rel_skb; } cxgbit_queue_rx_skb(csk, skb); return; rel_skb: __kfree_skb(skb); } static void __cxgbit_process_rx_cpl(struct cxgbit_sock *csk, struct sk_buff *skb) { spin_lock(&csk->lock); if (csk->lock_owner) { __skb_queue_tail(&csk->backlogq, skb); spin_unlock(&csk->lock); return; } cxgbit_skcb_rx_backlog_fn(skb)(csk, skb); spin_unlock(&csk->lock); } static void cxgbit_process_rx_cpl(struct cxgbit_sock *csk, struct sk_buff *skb) { cxgbit_get_csk(csk); __cxgbit_process_rx_cpl(csk, skb); cxgbit_put_csk(csk); } static void cxgbit_rx_cpl(struct cxgbit_device *cdev, struct sk_buff *skb) { struct cxgbit_sock *csk; struct cpl_tx_data *cpl = cplhdr(skb); struct cxgb4_lld_info *lldi = &cdev->lldi; struct tid_info *t = lldi->tids; unsigned int tid = GET_TID(cpl); u8 opcode = cxgbit_skcb_rx_opcode(skb); bool ref = true; switch (opcode) { case CPL_FW4_ACK: cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_fw4_ack; ref = false; break; case CPL_PEER_CLOSE: cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_peer_close; break; case CPL_CLOSE_CON_RPL: cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_close_con_rpl; break; case CPL_ABORT_REQ_RSS: cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_abort_req_rss; break; case CPL_ABORT_RPL_RSS: cxgbit_skcb_rx_backlog_fn(skb) = cxgbit_abort_rpl_rss; break; default: goto rel_skb; } csk = lookup_tid(t, tid); if (unlikely(!csk)) { pr_err("can't find conn. for tid %u.\n", tid); goto rel_skb; } if (ref) cxgbit_process_rx_cpl(csk, skb); else __cxgbit_process_rx_cpl(csk, skb); return; rel_skb: __kfree_skb(skb); } cxgbit_cplhandler_func cxgbit_cplhandlers[NUM_CPL_CMDS] = { [CPL_PASS_OPEN_RPL] = cxgbit_pass_open_rpl, [CPL_CLOSE_LISTSRV_RPL] = cxgbit_close_listsrv_rpl, [CPL_PASS_ACCEPT_REQ] = cxgbit_pass_accept_req, [CPL_PASS_ESTABLISH] = cxgbit_pass_establish, [CPL_SET_TCB_RPL] = cxgbit_set_tcb_rpl, [CPL_RX_DATA] = cxgbit_rx_data, [CPL_FW4_ACK] = cxgbit_rx_cpl, [CPL_PEER_CLOSE] = cxgbit_rx_cpl, [CPL_CLOSE_CON_RPL] = cxgbit_rx_cpl, [CPL_ABORT_REQ_RSS] = cxgbit_rx_cpl, [CPL_ABORT_RPL_RSS] = cxgbit_rx_cpl, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1