Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 1899 | 82.53% | 5 | 45.45% |
Herbert Xu | 369 | 16.04% | 1 | 9.09% |
Stephan Mueller | 22 | 0.96% | 2 | 18.18% |
Eric Biggers | 7 | 0.30% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.09% | 1 | 9.09% |
Vasyl Gomonovych | 2 | 0.09% | 1 | 9.09% |
Total | 2301 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Bit sliced AES using NEON instructions * * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <asm/neon.h> #include <crypto/aes.h> #include <crypto/cbc.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/xts.h> #include <linux/module.h> MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds); asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 ctr[], u8 final[]); asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); struct aesbs_ctx { int rounds; u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE); }; struct aesbs_cbc_ctx { struct aesbs_ctx key; struct crypto_cipher *enc_tfm; }; struct aesbs_xts_ctx { struct aesbs_ctx key; struct crypto_cipher *tweak_tfm; }; static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = crypto_aes_expand_key(&rk, in_key, key_len); if (err) return err; ctx->rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds); kernel_neon_end(); return 0; } static int __ecb_crypt(struct skcipher_request *req, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk, ctx->rounds, blocks); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int ecb_encrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_encrypt); } static int ecb_decrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_decrypt); } static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = crypto_aes_expand_key(&rk, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds); kernel_neon_end(); return crypto_cipher_setkey(ctx->enc_tfm, in_key, key_len); } static void cbc_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst) { struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_cipher_encrypt_one(ctx->enc_tfm, dst, src); } static int cbc_encrypt(struct skcipher_request *req) { return crypto_cbc_encrypt_walk(req, cbc_encrypt_one); } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int cbc_init(struct crypto_tfm *tfm) { struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm); ctx->enc_tfm = crypto_alloc_cipher("aes", 0, 0); return PTR_ERR_OR_ZERO(ctx->enc_tfm); } static void cbc_exit(struct crypto_tfm *tfm) { struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher(ctx->enc_tfm); } static int ctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; u8 buf[AES_BLOCK_SIZE]; int err; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); while (walk.nbytes > 0) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL; if (walk.nbytes < walk.total) { blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); final = NULL; } aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk, ctx->rounds, blocks, walk.iv, final); if (final) { u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE; u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE; crypto_xor_cpy(dst, src, final, walk.total % AES_BLOCK_SIZE); err = skcipher_walk_done(&walk, 0); break; } err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = xts_verify_key(tfm, in_key, key_len); if (err) return err; key_len /= 2; err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len); if (err) return err; return aesbs_setkey(tfm, in_key, key_len); } static int xts_init(struct crypto_tfm *tfm) { struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm); ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0); return PTR_ERR_OR_ZERO(ctx->tweak_tfm); } static void xts_exit(struct crypto_tfm *tfm) { struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher(ctx->tweak_tfm); } static int __xts_crypt(struct skcipher_request *req, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[])) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, true); if (err) return err; crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv); kernel_neon_begin(); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int xts_encrypt(struct skcipher_request *req) { return __xts_crypt(req, aesbs_xts_encrypt); } static int xts_decrypt(struct skcipher_request *req) { return __xts_crypt(req, aesbs_xts_decrypt); } static struct skcipher_alg aes_algs[] = { { .base.cra_name = "__ecb(aes)", .base.cra_driver_name = "__ecb-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "__cbc(aes)", .base.cra_driver_name = "__cbc-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_init = cbc_init, .base.cra_exit = cbc_exit, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_cbc_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base.cra_name = "__ctr(aes)", .base.cra_driver_name = "__ctr-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .chunksize = AES_BLOCK_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, { .base.cra_name = "__xts(aes)", .base.cra_driver_name = "__xts-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_init = xts_init, .base.cra_exit = xts_exit, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_xts_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, } }; static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)]; static void aes_exit(void) { int i; for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++) if (aes_simd_algs[i]) simd_skcipher_free(aes_simd_algs[i]); crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } static int __init aes_init(void) { struct simd_skcipher_alg *simd; const char *basename; const char *algname; const char *drvname; int err; int i; if (!(elf_hwcap & HWCAP_NEON)) return -ENODEV; err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); if (err) return err; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL)) continue; algname = aes_algs[i].base.cra_name + 2; drvname = aes_algs[i].base.cra_driver_name + 2; basename = aes_algs[i].base.cra_driver_name; simd = simd_skcipher_create_compat(algname, drvname, basename); err = PTR_ERR(simd); if (IS_ERR(simd)) goto unregister_simds; aes_simd_algs[i] = simd; } return 0; unregister_simds: aes_exit(); return err; } late_initcall(aes_init); module_exit(aes_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1