Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vincent Guittot | 836 | 84.19% | 5 | 26.32% |
Juri Lelli | 50 | 5.04% | 4 | 21.05% |
Sudeep Holla | 43 | 4.33% | 1 | 5.26% |
Lorenzo Pieralisi | 25 | 2.52% | 1 | 5.26% |
Nico Pitre | 12 | 1.21% | 1 | 5.26% |
Mark Brown | 12 | 1.21% | 2 | 10.53% |
Arnd Bergmann | 8 | 0.81% | 1 | 5.26% |
Ingo Molnar | 3 | 0.30% | 1 | 5.26% |
Russell King | 2 | 0.20% | 1 | 5.26% |
Rob Herring | 1 | 0.10% | 1 | 5.26% |
Venkatraman Sathiyamoorthy | 1 | 0.10% | 1 | 5.26% |
Total | 993 | 19 |
/* * arch/arm/kernel/topology.c * * Copyright (C) 2011 Linaro Limited. * Written by: Vincent Guittot * * based on arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/arch_topology.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/cpumask.h> #include <linux/export.h> #include <linux/init.h> #include <linux/percpu.h> #include <linux/node.h> #include <linux/nodemask.h> #include <linux/of.h> #include <linux/sched.h> #include <linux/sched/topology.h> #include <linux/slab.h> #include <linux/string.h> #include <asm/cpu.h> #include <asm/cputype.h> #include <asm/topology.h> /* * cpu capacity scale management */ /* * cpu capacity table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_capacity field so the scheduler * can take this difference into account during load balance. A per cpu * structure is preferred because each CPU updates its own cpu_capacity field * during the load balance except for idle cores. One idle core is selected * to run the rebalance_domains for all idle cores and the cpu_capacity can be * updated during this sequence. */ #ifdef CONFIG_OF struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 * in order to return at most 1 when DIV_ROUND_CLOSEST * is used to compute the capacity of a CPU. * Processors that are not defined in the table, * use the default SCHED_CAPACITY_SCALE value for cpu_scale. */ static const struct cpu_efficiency table_efficiency[] = { {"arm,cortex-a15", 3891}, {"arm,cortex-a7", 2048}, {NULL, }, }; static unsigned long *__cpu_capacity; #define cpu_capacity(cpu) __cpu_capacity[cpu] static unsigned long middle_capacity = 1; static bool cap_from_dt = true; /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Also calculate a middle efficiency * as close as possible to (max{eff_i} - min{eff_i}) / 2 * This is later used to scale the cpu_capacity field such that an * 'average' CPU is of middle capacity. Also see the comments near * table_efficiency[] and update_cpu_capacity(). */ static void __init parse_dt_topology(void) { const struct cpu_efficiency *cpu_eff; struct device_node *cn = NULL; unsigned long min_capacity = ULONG_MAX; unsigned long max_capacity = 0; unsigned long capacity = 0; int cpu = 0; __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), GFP_NOWAIT); for_each_possible_cpu(cpu) { const u32 *rate; int len; /* too early to use cpu->of_node */ cn = of_get_cpu_node(cpu, NULL); if (!cn) { pr_err("missing device node for CPU %d\n", cpu); continue; } if (topology_parse_cpu_capacity(cn, cpu)) { of_node_put(cn); continue; } cap_from_dt = false; for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) continue; rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%pOF missing clock-frequency property\n", cn); continue; } capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; /* Save min capacity of the system */ if (capacity < min_capacity) min_capacity = capacity; /* Save max capacity of the system */ if (capacity > max_capacity) max_capacity = capacity; cpu_capacity(cpu) = capacity; } /* If min and max capacities are equals, we bypass the update of the * cpu_scale because all CPUs have the same capacity. Otherwise, we * compute a middle_capacity factor that will ensure that the capacity * of an 'average' CPU of the system will be as close as possible to * SCHED_CAPACITY_SCALE, which is the default value, but with the * constraint explained near table_efficiency[]. */ if (4*max_capacity < (3*(max_capacity + min_capacity))) middle_capacity = (min_capacity + max_capacity) >> (SCHED_CAPACITY_SHIFT+1); else middle_capacity = ((max_capacity / 3) >> (SCHED_CAPACITY_SHIFT-1)) + 1; if (cap_from_dt) topology_normalize_cpu_scale(); } /* * Look for a customed capacity of a CPU in the cpu_capacity table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP system. */ static void update_cpu_capacity(unsigned int cpu) { if (!cpu_capacity(cpu) || cap_from_dt) return; topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity); pr_info("CPU%u: update cpu_capacity %lu\n", cpu, topology_get_cpu_scale(NULL, cpu)); } #else static inline void parse_dt_topology(void) {} static inline void update_cpu_capacity(unsigned int cpuid) {} #endif /* * cpu topology table */ struct cputopo_arm cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } /* * The current assumption is that we can power gate each core independently. * This will be superseded by DT binding once available. */ const struct cpumask *cpu_corepower_mask(int cpu) { return &cpu_topology[cpu].thread_sibling; } static void update_siblings_masks(unsigned int cpuid) { struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->socket_id != cpu_topo->socket_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } smp_wmb(); } /* * store_cpu_topology is called at boot when only one cpu is running * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, * which prevents simultaneous write access to cpu_topology array */ void store_cpu_topology(unsigned int cpuid) { struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; unsigned int mpidr; /* If the cpu topology has been already set, just return */ if (cpuid_topo->core_id != -1) return; mpidr = read_cpuid_mpidr(); /* create cpu topology mapping */ if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { /* * This is a multiprocessor system * multiprocessor format & multiprocessor mode field are set */ if (mpidr & MPIDR_MT_BITMASK) { /* core performance interdependency */ cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); } else { /* largely independent cores */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); } } else { /* * This is an uniprocessor system * we are in multiprocessor format but uniprocessor system * or in the old uniprocessor format */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = 0; cpuid_topo->socket_id = -1; } update_siblings_masks(cpuid); update_cpu_capacity(cpuid); pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", cpuid, cpu_topology[cpuid].thread_id, cpu_topology[cpuid].core_id, cpu_topology[cpuid].socket_id, mpidr); } static inline int cpu_corepower_flags(void) { return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN; } static struct sched_domain_topology_level arm_topology[] = { #ifdef CONFIG_SCHED_MC { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) }, { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, #endif { cpu_cpu_mask, SD_INIT_NAME(DIE) }, { NULL, }, }; /* * init_cpu_topology is called at boot when only one cpu is running * which prevent simultaneous write access to cpu_topology array */ void __init init_cpu_topology(void) { unsigned int cpu; /* init core mask and capacity */ for_each_possible_cpu(cpu) { struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); cpu_topo->thread_id = -1; cpu_topo->core_id = -1; cpu_topo->socket_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); } smp_wmb(); parse_dt_topology(); /* Set scheduler topology descriptor */ set_sched_topology(arm_topology); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1