Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Blumenstingl | 1553 | 99.81% | 1 | 33.33% |
Thomas Gleixner | 2 | 0.13% | 1 | 33.33% |
Colin Ian King | 1 | 0.06% | 1 | 33.33% |
Total | 1556 | 3 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2015 Carlo Caione <carlo@endlessm.com> * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com> */ #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/smp.h> #include <linux/mfd/syscon.h> #include <asm/cacheflush.h> #include <asm/cp15.h> #include <asm/smp_scu.h> #include <asm/smp_plat.h> #define MESON_SMP_SRAM_CPU_CTRL_REG (0x00) #define MESON_SMP_SRAM_CPU_CTRL_ADDR_REG(c) (0x04 + ((c - 1) << 2)) #define MESON_CPU_AO_RTI_PWR_A9_CNTL0 (0x00) #define MESON_CPU_AO_RTI_PWR_A9_CNTL1 (0x04) #define MESON_CPU_AO_RTI_PWR_A9_MEM_PD0 (0x14) #define MESON_CPU_PWR_A9_CNTL0_M(c) (0x03 << ((c * 2) + 16)) #define MESON_CPU_PWR_A9_CNTL1_M(c) (0x03 << ((c + 1) << 1)) #define MESON_CPU_PWR_A9_MEM_PD0_M(c) (0x0f << (32 - (c * 4))) #define MESON_CPU_PWR_A9_CNTL1_ST(c) (0x01 << (c + 16)) static void __iomem *sram_base; static void __iomem *scu_base; static struct regmap *pmu; static struct reset_control *meson_smp_get_core_reset(int cpu) { struct device_node *np = of_get_cpu_node(cpu, 0); return of_reset_control_get_exclusive(np, NULL); } static void meson_smp_set_cpu_ctrl(int cpu, bool on_off) { u32 val = readl(sram_base + MESON_SMP_SRAM_CPU_CTRL_REG); if (on_off) val |= BIT(cpu); else val &= ~BIT(cpu); /* keep bit 0 always enabled */ val |= BIT(0); writel(val, sram_base + MESON_SMP_SRAM_CPU_CTRL_REG); } static void __init meson_smp_prepare_cpus(const char *scu_compatible, const char *pmu_compatible, const char *sram_compatible) { static struct device_node *node; /* SMP SRAM */ node = of_find_compatible_node(NULL, NULL, sram_compatible); if (!node) { pr_err("Missing SRAM node\n"); return; } sram_base = of_iomap(node, 0); if (!sram_base) { pr_err("Couldn't map SRAM registers\n"); return; } /* PMU */ pmu = syscon_regmap_lookup_by_compatible(pmu_compatible); if (IS_ERR(pmu)) { pr_err("Couldn't map PMU registers\n"); return; } /* SCU */ node = of_find_compatible_node(NULL, NULL, scu_compatible); if (!node) { pr_err("Missing SCU node\n"); return; } scu_base = of_iomap(node, 0); if (!scu_base) { pr_err("Couldn't map SCU registers\n"); return; } scu_enable(scu_base); } static void __init meson8b_smp_prepare_cpus(unsigned int max_cpus) { meson_smp_prepare_cpus("arm,cortex-a5-scu", "amlogic,meson8b-pmu", "amlogic,meson8b-smp-sram"); } static void __init meson8_smp_prepare_cpus(unsigned int max_cpus) { meson_smp_prepare_cpus("arm,cortex-a9-scu", "amlogic,meson8-pmu", "amlogic,meson8-smp-sram"); } static void meson_smp_begin_secondary_boot(unsigned int cpu) { /* * Set the entry point before powering on the CPU through the SCU. This * is needed if the CPU is in "warm" state (= after rebooting the * system without power-cycling, or when taking the CPU offline and * then taking it online again. */ writel(__pa_symbol(secondary_startup), sram_base + MESON_SMP_SRAM_CPU_CTRL_ADDR_REG(cpu)); /* * SCU Power on CPU (needs to be done before starting the CPU, * otherwise the secondary CPU will not start). */ scu_cpu_power_enable(scu_base, cpu); } static int meson_smp_finalize_secondary_boot(unsigned int cpu) { unsigned long timeout; timeout = jiffies + (10 * HZ); while (readl(sram_base + MESON_SMP_SRAM_CPU_CTRL_ADDR_REG(cpu))) { if (!time_before(jiffies, timeout)) { pr_err("Timeout while waiting for CPU%d status\n", cpu); return -ETIMEDOUT; } } writel(__pa_symbol(secondary_startup), sram_base + MESON_SMP_SRAM_CPU_CTRL_ADDR_REG(cpu)); meson_smp_set_cpu_ctrl(cpu, true); return 0; } static int meson8_smp_boot_secondary(unsigned int cpu, struct task_struct *idle) { struct reset_control *rstc; int ret; rstc = meson_smp_get_core_reset(cpu); if (IS_ERR(rstc)) { pr_err("Couldn't get the reset controller for CPU%d\n", cpu); return PTR_ERR(rstc); } meson_smp_begin_secondary_boot(cpu); /* Reset enable */ ret = reset_control_assert(rstc); if (ret) { pr_err("Failed to assert CPU%d reset\n", cpu); goto out; } /* CPU power ON */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL1, MESON_CPU_PWR_A9_CNTL1_M(cpu), 0); if (ret < 0) { pr_err("Couldn't wake up CPU%d\n", cpu); goto out; } udelay(10); /* Isolation disable */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL0, BIT(cpu), 0); if (ret < 0) { pr_err("Error when disabling isolation of CPU%d\n", cpu); goto out; } /* Reset disable */ ret = reset_control_deassert(rstc); if (ret) { pr_err("Failed to de-assert CPU%d reset\n", cpu); goto out; } ret = meson_smp_finalize_secondary_boot(cpu); if (ret) goto out; out: reset_control_put(rstc); return 0; } static int meson8b_smp_boot_secondary(unsigned int cpu, struct task_struct *idle) { struct reset_control *rstc; int ret; u32 val; rstc = meson_smp_get_core_reset(cpu); if (IS_ERR(rstc)) { pr_err("Couldn't get the reset controller for CPU%d\n", cpu); return PTR_ERR(rstc); } meson_smp_begin_secondary_boot(cpu); /* CPU power UP */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL0, MESON_CPU_PWR_A9_CNTL0_M(cpu), 0); if (ret < 0) { pr_err("Couldn't power up CPU%d\n", cpu); goto out; } udelay(5); /* Reset enable */ ret = reset_control_assert(rstc); if (ret) { pr_err("Failed to assert CPU%d reset\n", cpu); goto out; } /* Memory power UP */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_MEM_PD0, MESON_CPU_PWR_A9_MEM_PD0_M(cpu), 0); if (ret < 0) { pr_err("Couldn't power up the memory for CPU%d\n", cpu); goto out; } /* Wake up CPU */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL1, MESON_CPU_PWR_A9_CNTL1_M(cpu), 0); if (ret < 0) { pr_err("Couldn't wake up CPU%d\n", cpu); goto out; } udelay(10); ret = regmap_read_poll_timeout(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL1, val, val & MESON_CPU_PWR_A9_CNTL1_ST(cpu), 10, 10000); if (ret) { pr_err("Timeout while polling PMU for CPU%d status\n", cpu); goto out; } /* Isolation disable */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL0, BIT(cpu), 0); if (ret < 0) { pr_err("Error when disabling isolation of CPU%d\n", cpu); goto out; } /* Reset disable */ ret = reset_control_deassert(rstc); if (ret) { pr_err("Failed to de-assert CPU%d reset\n", cpu); goto out; } ret = meson_smp_finalize_secondary_boot(cpu); if (ret) goto out; out: reset_control_put(rstc); return 0; } #ifdef CONFIG_HOTPLUG_CPU static void meson8_smp_cpu_die(unsigned int cpu) { meson_smp_set_cpu_ctrl(cpu, false); v7_exit_coherency_flush(louis); scu_power_mode(scu_base, SCU_PM_POWEROFF); dsb(); wfi(); /* we should never get here */ WARN_ON(1); } static int meson8_smp_cpu_kill(unsigned int cpu) { int ret, power_mode; unsigned long timeout; timeout = jiffies + (50 * HZ); do { power_mode = scu_get_cpu_power_mode(scu_base, cpu); if (power_mode == SCU_PM_POWEROFF) break; usleep_range(10000, 15000); } while (time_before(jiffies, timeout)); if (power_mode != SCU_PM_POWEROFF) { pr_err("Error while waiting for SCU power-off on CPU%d\n", cpu); return -ETIMEDOUT; } msleep(30); /* Isolation enable */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL0, BIT(cpu), 0x3); if (ret < 0) { pr_err("Error when enabling isolation for CPU%d\n", cpu); return ret; } udelay(10); /* CPU power OFF */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL1, MESON_CPU_PWR_A9_CNTL1_M(cpu), 0x3); if (ret < 0) { pr_err("Couldn't change sleep status of CPU%d\n", cpu); return ret; } return 1; } static int meson8b_smp_cpu_kill(unsigned int cpu) { int ret, power_mode, count = 5000; do { power_mode = scu_get_cpu_power_mode(scu_base, cpu); if (power_mode == SCU_PM_POWEROFF) break; udelay(10); } while (++count); if (power_mode != SCU_PM_POWEROFF) { pr_err("Error while waiting for SCU power-off on CPU%d\n", cpu); return -ETIMEDOUT; } udelay(10); /* CPU power DOWN */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL0, MESON_CPU_PWR_A9_CNTL0_M(cpu), 0x3); if (ret < 0) { pr_err("Couldn't power down CPU%d\n", cpu); return ret; } /* Isolation enable */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL0, BIT(cpu), 0x3); if (ret < 0) { pr_err("Error when enabling isolation for CPU%d\n", cpu); return ret; } udelay(10); /* Sleep status */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_CNTL1, MESON_CPU_PWR_A9_CNTL1_M(cpu), 0x3); if (ret < 0) { pr_err("Couldn't change sleep status of CPU%d\n", cpu); return ret; } /* Memory power DOWN */ ret = regmap_update_bits(pmu, MESON_CPU_AO_RTI_PWR_A9_MEM_PD0, MESON_CPU_PWR_A9_MEM_PD0_M(cpu), 0xf); if (ret < 0) { pr_err("Couldn't power down the memory of CPU%d\n", cpu); return ret; } return 1; } #endif static struct smp_operations meson8_smp_ops __initdata = { .smp_prepare_cpus = meson8_smp_prepare_cpus, .smp_boot_secondary = meson8_smp_boot_secondary, #ifdef CONFIG_HOTPLUG_CPU .cpu_die = meson8_smp_cpu_die, .cpu_kill = meson8_smp_cpu_kill, #endif }; static struct smp_operations meson8b_smp_ops __initdata = { .smp_prepare_cpus = meson8b_smp_prepare_cpus, .smp_boot_secondary = meson8b_smp_boot_secondary, #ifdef CONFIG_HOTPLUG_CPU .cpu_die = meson8_smp_cpu_die, .cpu_kill = meson8b_smp_cpu_kill, #endif }; CPU_METHOD_OF_DECLARE(meson8_smp, "amlogic,meson8-smp", &meson8_smp_ops); CPU_METHOD_OF_DECLARE(meson8b_smp, "amlogic,meson8b-smp", &meson8b_smp_ops);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1