Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 1497 | 38.84% | 1 | 1.92% |
George G. Davis | 1130 | 29.32% | 4 | 7.69% |
Russell King | 605 | 15.70% | 20 | 38.46% |
Steve Longerbeam | 250 | 6.49% | 1 | 1.92% |
Alexey Dobriyan | 95 | 2.46% | 2 | 3.85% |
Dave P Martin | 87 | 2.26% | 2 | 3.85% |
Lennert Buytenhek | 39 | 1.01% | 1 | 1.92% |
Arnd Bergmann | 32 | 0.83% | 2 | 3.85% |
Ben Dooks | 30 | 0.78% | 1 | 1.92% |
Robin Murphy | 20 | 0.52% | 1 | 1.92% |
Nico Pitre | 18 | 0.47% | 1 | 1.92% |
Kirill A. Shutemov | 16 | 0.42% | 3 | 5.77% |
Guido Barzini | 6 | 0.16% | 1 | 1.92% |
Yoann Padioleau | 4 | 0.10% | 1 | 1.92% |
Andrew Morton | 4 | 0.10% | 1 | 1.92% |
Ingo Molnar | 4 | 0.10% | 2 | 3.85% |
Eric W. Biedermann | 4 | 0.10% | 2 | 3.85% |
Ard Biesheuvel | 3 | 0.08% | 1 | 1.92% |
Viresh Kumar | 3 | 0.08% | 1 | 1.92% |
David Howells | 3 | 0.08% | 1 | 1.92% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.92% |
Catalin Marinas | 1 | 0.03% | 1 | 1.92% |
Sakari Ailus | 1 | 0.03% | 1 | 1.92% |
Total | 3854 | 52 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/alignment.c * * Copyright (C) 1995 Linus Torvalds * Modifications for ARM processor (c) 1995-2001 Russell King * Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc. * - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation. * Copyright (C) 1996, Cygnus Software Technologies Ltd. */ #include <linux/moduleparam.h> #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/sched/debug.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/sched/signal.h> #include <linux/uaccess.h> #include <asm/cp15.h> #include <asm/system_info.h> #include <asm/unaligned.h> #include <asm/opcodes.h> #include "fault.h" #include "mm.h" /* * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998 * /proc/sys/debug/alignment, modified and integrated into * Linux 2.1 by Russell King * * Speed optimisations and better fault handling by Russell King. * * *** NOTE *** * This code is not portable to processors with late data abort handling. */ #define CODING_BITS(i) (i & 0x0e000000) #define COND_BITS(i) (i & 0xf0000000) #define LDST_I_BIT(i) (i & (1 << 26)) /* Immediate constant */ #define LDST_P_BIT(i) (i & (1 << 24)) /* Preindex */ #define LDST_U_BIT(i) (i & (1 << 23)) /* Add offset */ #define LDST_W_BIT(i) (i & (1 << 21)) /* Writeback */ #define LDST_L_BIT(i) (i & (1 << 20)) /* Load */ #define LDST_P_EQ_U(i) ((((i) ^ ((i) >> 1)) & (1 << 23)) == 0) #define LDSTHD_I_BIT(i) (i & (1 << 22)) /* double/half-word immed */ #define LDM_S_BIT(i) (i & (1 << 22)) /* write CPSR from SPSR */ #define RN_BITS(i) ((i >> 16) & 15) /* Rn */ #define RD_BITS(i) ((i >> 12) & 15) /* Rd */ #define RM_BITS(i) (i & 15) /* Rm */ #define REGMASK_BITS(i) (i & 0xffff) #define OFFSET_BITS(i) (i & 0x0fff) #define IS_SHIFT(i) (i & 0x0ff0) #define SHIFT_BITS(i) ((i >> 7) & 0x1f) #define SHIFT_TYPE(i) (i & 0x60) #define SHIFT_LSL 0x00 #define SHIFT_LSR 0x20 #define SHIFT_ASR 0x40 #define SHIFT_RORRRX 0x60 #define BAD_INSTR 0xdeadc0de /* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */ #define IS_T32(hi16) \ (((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800)) static unsigned long ai_user; static unsigned long ai_sys; static void *ai_sys_last_pc; static unsigned long ai_skipped; static unsigned long ai_half; static unsigned long ai_word; static unsigned long ai_dword; static unsigned long ai_multi; static int ai_usermode; static unsigned long cr_no_alignment; core_param(alignment, ai_usermode, int, 0600); #define UM_WARN (1 << 0) #define UM_FIXUP (1 << 1) #define UM_SIGNAL (1 << 2) /* Return true if and only if the ARMv6 unaligned access model is in use. */ static bool cpu_is_v6_unaligned(void) { return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U; } static int safe_usermode(int new_usermode, bool warn) { /* * ARMv6 and later CPUs can perform unaligned accesses for * most single load and store instructions up to word size. * LDM, STM, LDRD and STRD still need to be handled. * * Ignoring the alignment fault is not an option on these * CPUs since we spin re-faulting the instruction without * making any progress. */ if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) { new_usermode |= UM_FIXUP; if (warn) pr_warn("alignment: ignoring faults is unsafe on this CPU. Defaulting to fixup mode.\n"); } return new_usermode; } #ifdef CONFIG_PROC_FS static const char *usermode_action[] = { "ignored", "warn", "fixup", "fixup+warn", "signal", "signal+warn" }; static int alignment_proc_show(struct seq_file *m, void *v) { seq_printf(m, "User:\t\t%lu\n", ai_user); seq_printf(m, "System:\t\t%lu (%pS)\n", ai_sys, ai_sys_last_pc); seq_printf(m, "Skipped:\t%lu\n", ai_skipped); seq_printf(m, "Half:\t\t%lu\n", ai_half); seq_printf(m, "Word:\t\t%lu\n", ai_word); if (cpu_architecture() >= CPU_ARCH_ARMv5TE) seq_printf(m, "DWord:\t\t%lu\n", ai_dword); seq_printf(m, "Multi:\t\t%lu\n", ai_multi); seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode, usermode_action[ai_usermode]); return 0; } static int alignment_proc_open(struct inode *inode, struct file *file) { return single_open(file, alignment_proc_show, NULL); } static ssize_t alignment_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { char mode; if (count > 0) { if (get_user(mode, buffer)) return -EFAULT; if (mode >= '0' && mode <= '5') ai_usermode = safe_usermode(mode - '0', true); } return count; } static const struct file_operations alignment_proc_fops = { .open = alignment_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = alignment_proc_write, }; #endif /* CONFIG_PROC_FS */ union offset_union { unsigned long un; signed long sn; }; #define TYPE_ERROR 0 #define TYPE_FAULT 1 #define TYPE_LDST 2 #define TYPE_DONE 3 #ifdef __ARMEB__ #define BE 1 #define FIRST_BYTE_16 "mov %1, %1, ror #8\n" #define FIRST_BYTE_32 "mov %1, %1, ror #24\n" #define NEXT_BYTE "ror #24" #else #define BE 0 #define FIRST_BYTE_16 #define FIRST_BYTE_32 #define NEXT_BYTE "lsr #8" #endif #define __get8_unaligned_check(ins,val,addr,err) \ __asm__( \ ARM( "1: "ins" %1, [%2], #1\n" ) \ THUMB( "1: "ins" %1, [%2]\n" ) \ THUMB( " add %2, %2, #1\n" ) \ "2:\n" \ " .pushsection .text.fixup,\"ax\"\n" \ " .align 2\n" \ "3: mov %0, #1\n" \ " b 2b\n" \ " .popsection\n" \ " .pushsection __ex_table,\"a\"\n" \ " .align 3\n" \ " .long 1b, 3b\n" \ " .popsection\n" \ : "=r" (err), "=&r" (val), "=r" (addr) \ : "0" (err), "2" (addr)) #define __get16_unaligned_check(ins,val,addr) \ do { \ unsigned int err = 0, v, a = addr; \ __get8_unaligned_check(ins,v,a,err); \ val = v << ((BE) ? 8 : 0); \ __get8_unaligned_check(ins,v,a,err); \ val |= v << ((BE) ? 0 : 8); \ if (err) \ goto fault; \ } while (0) #define get16_unaligned_check(val,addr) \ __get16_unaligned_check("ldrb",val,addr) #define get16t_unaligned_check(val,addr) \ __get16_unaligned_check("ldrbt",val,addr) #define __get32_unaligned_check(ins,val,addr) \ do { \ unsigned int err = 0, v, a = addr; \ __get8_unaligned_check(ins,v,a,err); \ val = v << ((BE) ? 24 : 0); \ __get8_unaligned_check(ins,v,a,err); \ val |= v << ((BE) ? 16 : 8); \ __get8_unaligned_check(ins,v,a,err); \ val |= v << ((BE) ? 8 : 16); \ __get8_unaligned_check(ins,v,a,err); \ val |= v << ((BE) ? 0 : 24); \ if (err) \ goto fault; \ } while (0) #define get32_unaligned_check(val,addr) \ __get32_unaligned_check("ldrb",val,addr) #define get32t_unaligned_check(val,addr) \ __get32_unaligned_check("ldrbt",val,addr) #define __put16_unaligned_check(ins,val,addr) \ do { \ unsigned int err = 0, v = val, a = addr; \ __asm__( FIRST_BYTE_16 \ ARM( "1: "ins" %1, [%2], #1\n" ) \ THUMB( "1: "ins" %1, [%2]\n" ) \ THUMB( " add %2, %2, #1\n" ) \ " mov %1, %1, "NEXT_BYTE"\n" \ "2: "ins" %1, [%2]\n" \ "3:\n" \ " .pushsection .text.fixup,\"ax\"\n" \ " .align 2\n" \ "4: mov %0, #1\n" \ " b 3b\n" \ " .popsection\n" \ " .pushsection __ex_table,\"a\"\n" \ " .align 3\n" \ " .long 1b, 4b\n" \ " .long 2b, 4b\n" \ " .popsection\n" \ : "=r" (err), "=&r" (v), "=&r" (a) \ : "0" (err), "1" (v), "2" (a)); \ if (err) \ goto fault; \ } while (0) #define put16_unaligned_check(val,addr) \ __put16_unaligned_check("strb",val,addr) #define put16t_unaligned_check(val,addr) \ __put16_unaligned_check("strbt",val,addr) #define __put32_unaligned_check(ins,val,addr) \ do { \ unsigned int err = 0, v = val, a = addr; \ __asm__( FIRST_BYTE_32 \ ARM( "1: "ins" %1, [%2], #1\n" ) \ THUMB( "1: "ins" %1, [%2]\n" ) \ THUMB( " add %2, %2, #1\n" ) \ " mov %1, %1, "NEXT_BYTE"\n" \ ARM( "2: "ins" %1, [%2], #1\n" ) \ THUMB( "2: "ins" %1, [%2]\n" ) \ THUMB( " add %2, %2, #1\n" ) \ " mov %1, %1, "NEXT_BYTE"\n" \ ARM( "3: "ins" %1, [%2], #1\n" ) \ THUMB( "3: "ins" %1, [%2]\n" ) \ THUMB( " add %2, %2, #1\n" ) \ " mov %1, %1, "NEXT_BYTE"\n" \ "4: "ins" %1, [%2]\n" \ "5:\n" \ " .pushsection .text.fixup,\"ax\"\n" \ " .align 2\n" \ "6: mov %0, #1\n" \ " b 5b\n" \ " .popsection\n" \ " .pushsection __ex_table,\"a\"\n" \ " .align 3\n" \ " .long 1b, 6b\n" \ " .long 2b, 6b\n" \ " .long 3b, 6b\n" \ " .long 4b, 6b\n" \ " .popsection\n" \ : "=r" (err), "=&r" (v), "=&r" (a) \ : "0" (err), "1" (v), "2" (a)); \ if (err) \ goto fault; \ } while (0) #define put32_unaligned_check(val,addr) \ __put32_unaligned_check("strb", val, addr) #define put32t_unaligned_check(val,addr) \ __put32_unaligned_check("strbt", val, addr) static void do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset) { if (!LDST_U_BIT(instr)) offset.un = -offset.un; if (!LDST_P_BIT(instr)) addr += offset.un; if (!LDST_P_BIT(instr) || LDST_W_BIT(instr)) regs->uregs[RN_BITS(instr)] = addr; } static int do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs) { unsigned int rd = RD_BITS(instr); ai_half += 1; if (user_mode(regs)) goto user; if (LDST_L_BIT(instr)) { unsigned long val; get16_unaligned_check(val, addr); /* signed half-word? */ if (instr & 0x40) val = (signed long)((signed short) val); regs->uregs[rd] = val; } else put16_unaligned_check(regs->uregs[rd], addr); return TYPE_LDST; user: if (LDST_L_BIT(instr)) { unsigned long val; unsigned int __ua_flags = uaccess_save_and_enable(); get16t_unaligned_check(val, addr); uaccess_restore(__ua_flags); /* signed half-word? */ if (instr & 0x40) val = (signed long)((signed short) val); regs->uregs[rd] = val; } else { unsigned int __ua_flags = uaccess_save_and_enable(); put16t_unaligned_check(regs->uregs[rd], addr); uaccess_restore(__ua_flags); } return TYPE_LDST; fault: return TYPE_FAULT; } static int do_alignment_ldrdstrd(unsigned long addr, unsigned long instr, struct pt_regs *regs) { unsigned int rd = RD_BITS(instr); unsigned int rd2; int load; if ((instr & 0xfe000000) == 0xe8000000) { /* ARMv7 Thumb-2 32-bit LDRD/STRD */ rd2 = (instr >> 8) & 0xf; load = !!(LDST_L_BIT(instr)); } else if (((rd & 1) == 1) || (rd == 14)) goto bad; else { load = ((instr & 0xf0) == 0xd0); rd2 = rd + 1; } ai_dword += 1; if (user_mode(regs)) goto user; if (load) { unsigned long val; get32_unaligned_check(val, addr); regs->uregs[rd] = val; get32_unaligned_check(val, addr + 4); regs->uregs[rd2] = val; } else { put32_unaligned_check(regs->uregs[rd], addr); put32_unaligned_check(regs->uregs[rd2], addr + 4); } return TYPE_LDST; user: if (load) { unsigned long val, val2; unsigned int __ua_flags = uaccess_save_and_enable(); get32t_unaligned_check(val, addr); get32t_unaligned_check(val2, addr + 4); uaccess_restore(__ua_flags); regs->uregs[rd] = val; regs->uregs[rd2] = val2; } else { unsigned int __ua_flags = uaccess_save_and_enable(); put32t_unaligned_check(regs->uregs[rd], addr); put32t_unaligned_check(regs->uregs[rd2], addr + 4); uaccess_restore(__ua_flags); } return TYPE_LDST; bad: return TYPE_ERROR; fault: return TYPE_FAULT; } static int do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs) { unsigned int rd = RD_BITS(instr); ai_word += 1; if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs)) goto trans; if (LDST_L_BIT(instr)) { unsigned int val; get32_unaligned_check(val, addr); regs->uregs[rd] = val; } else put32_unaligned_check(regs->uregs[rd], addr); return TYPE_LDST; trans: if (LDST_L_BIT(instr)) { unsigned int val; unsigned int __ua_flags = uaccess_save_and_enable(); get32t_unaligned_check(val, addr); uaccess_restore(__ua_flags); regs->uregs[rd] = val; } else { unsigned int __ua_flags = uaccess_save_and_enable(); put32t_unaligned_check(regs->uregs[rd], addr); uaccess_restore(__ua_flags); } return TYPE_LDST; fault: return TYPE_FAULT; } /* * LDM/STM alignment handler. * * There are 4 variants of this instruction: * * B = rn pointer before instruction, A = rn pointer after instruction * ------ increasing address -----> * | | r0 | r1 | ... | rx | | * PU = 01 B A * PU = 11 B A * PU = 00 A B * PU = 10 A B */ static int do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs) { unsigned int rd, rn, correction, nr_regs, regbits; unsigned long eaddr, newaddr; if (LDM_S_BIT(instr)) goto bad; correction = 4; /* processor implementation defined */ regs->ARM_pc += correction; ai_multi += 1; /* count the number of registers in the mask to be transferred */ nr_regs = hweight16(REGMASK_BITS(instr)) * 4; rn = RN_BITS(instr); newaddr = eaddr = regs->uregs[rn]; if (!LDST_U_BIT(instr)) nr_regs = -nr_regs; newaddr += nr_regs; if (!LDST_U_BIT(instr)) eaddr = newaddr; if (LDST_P_EQ_U(instr)) /* U = P */ eaddr += 4; /* * For alignment faults on the ARM922T/ARM920T the MMU makes * the FSR (and hence addr) equal to the updated base address * of the multiple access rather than the restored value. * Switch this message off if we've got a ARM92[02], otherwise * [ls]dm alignment faults are noisy! */ #if !(defined CONFIG_CPU_ARM922T) && !(defined CONFIG_CPU_ARM920T) /* * This is a "hint" - we already have eaddr worked out by the * processor for us. */ if (addr != eaddr) { pr_err("LDMSTM: PC = %08lx, instr = %08lx, " "addr = %08lx, eaddr = %08lx\n", instruction_pointer(regs), instr, addr, eaddr); show_regs(regs); } #endif if (user_mode(regs)) { unsigned int __ua_flags = uaccess_save_and_enable(); for (regbits = REGMASK_BITS(instr), rd = 0; regbits; regbits >>= 1, rd += 1) if (regbits & 1) { if (LDST_L_BIT(instr)) { unsigned int val; get32t_unaligned_check(val, eaddr); regs->uregs[rd] = val; } else put32t_unaligned_check(regs->uregs[rd], eaddr); eaddr += 4; } uaccess_restore(__ua_flags); } else { for (regbits = REGMASK_BITS(instr), rd = 0; regbits; regbits >>= 1, rd += 1) if (regbits & 1) { if (LDST_L_BIT(instr)) { unsigned int val; get32_unaligned_check(val, eaddr); regs->uregs[rd] = val; } else put32_unaligned_check(regs->uregs[rd], eaddr); eaddr += 4; } } if (LDST_W_BIT(instr)) regs->uregs[rn] = newaddr; if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15))) regs->ARM_pc -= correction; return TYPE_DONE; fault: regs->ARM_pc -= correction; return TYPE_FAULT; bad: pr_err("Alignment trap: not handling ldm with s-bit set\n"); return TYPE_ERROR; } /* * Convert Thumb ld/st instruction forms to equivalent ARM instructions so * we can reuse ARM userland alignment fault fixups for Thumb. * * This implementation was initially based on the algorithm found in * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same * to convert only Thumb ld/st instruction forms to equivalent ARM forms. * * NOTES: * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections. * 2. If for some reason we're passed an non-ld/st Thumb instruction to * decode, we return 0xdeadc0de. This should never happen under normal * circumstances but if it does, we've got other problems to deal with * elsewhere and we obviously can't fix those problems here. */ static unsigned long thumb2arm(u16 tinstr) { u32 L = (tinstr & (1<<11)) >> 11; switch ((tinstr & 0xf800) >> 11) { /* 6.5.1 Format 1: */ case 0x6000 >> 11: /* 7.1.52 STR(1) */ case 0x6800 >> 11: /* 7.1.26 LDR(1) */ case 0x7000 >> 11: /* 7.1.55 STRB(1) */ case 0x7800 >> 11: /* 7.1.30 LDRB(1) */ return 0xe5800000 | ((tinstr & (1<<12)) << (22-12)) | /* fixup */ (L<<20) | /* L==1? */ ((tinstr & (7<<0)) << (12-0)) | /* Rd */ ((tinstr & (7<<3)) << (16-3)) | /* Rn */ ((tinstr & (31<<6)) >> /* immed_5 */ (6 - ((tinstr & (1<<12)) ? 0 : 2))); case 0x8000 >> 11: /* 7.1.57 STRH(1) */ case 0x8800 >> 11: /* 7.1.32 LDRH(1) */ return 0xe1c000b0 | (L<<20) | /* L==1? */ ((tinstr & (7<<0)) << (12-0)) | /* Rd */ ((tinstr & (7<<3)) << (16-3)) | /* Rn */ ((tinstr & (7<<6)) >> (6-1)) | /* immed_5[2:0] */ ((tinstr & (3<<9)) >> (9-8)); /* immed_5[4:3] */ /* 6.5.1 Format 2: */ case 0x5000 >> 11: case 0x5800 >> 11: { static const u32 subset[8] = { 0xe7800000, /* 7.1.53 STR(2) */ 0xe18000b0, /* 7.1.58 STRH(2) */ 0xe7c00000, /* 7.1.56 STRB(2) */ 0xe19000d0, /* 7.1.34 LDRSB */ 0xe7900000, /* 7.1.27 LDR(2) */ 0xe19000b0, /* 7.1.33 LDRH(2) */ 0xe7d00000, /* 7.1.31 LDRB(2) */ 0xe19000f0 /* 7.1.35 LDRSH */ }; return subset[(tinstr & (7<<9)) >> 9] | ((tinstr & (7<<0)) << (12-0)) | /* Rd */ ((tinstr & (7<<3)) << (16-3)) | /* Rn */ ((tinstr & (7<<6)) >> (6-0)); /* Rm */ } /* 6.5.1 Format 3: */ case 0x4800 >> 11: /* 7.1.28 LDR(3) */ /* NOTE: This case is not technically possible. We're * loading 32-bit memory data via PC relative * addressing mode. So we can and should eliminate * this case. But I'll leave it here for now. */ return 0xe59f0000 | ((tinstr & (7<<8)) << (12-8)) | /* Rd */ ((tinstr & 255) << (2-0)); /* immed_8 */ /* 6.5.1 Format 4: */ case 0x9000 >> 11: /* 7.1.54 STR(3) */ case 0x9800 >> 11: /* 7.1.29 LDR(4) */ return 0xe58d0000 | (L<<20) | /* L==1? */ ((tinstr & (7<<8)) << (12-8)) | /* Rd */ ((tinstr & 255) << 2); /* immed_8 */ /* 6.6.1 Format 1: */ case 0xc000 >> 11: /* 7.1.51 STMIA */ case 0xc800 >> 11: /* 7.1.25 LDMIA */ { u32 Rn = (tinstr & (7<<8)) >> 8; u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21; return 0xe8800000 | W | (L<<20) | (Rn<<16) | (tinstr&255); } /* 6.6.1 Format 2: */ case 0xb000 >> 11: /* 7.1.48 PUSH */ case 0xb800 >> 11: /* 7.1.47 POP */ if ((tinstr & (3 << 9)) == 0x0400) { static const u32 subset[4] = { 0xe92d0000, /* STMDB sp!,{registers} */ 0xe92d4000, /* STMDB sp!,{registers,lr} */ 0xe8bd0000, /* LDMIA sp!,{registers} */ 0xe8bd8000 /* LDMIA sp!,{registers,pc} */ }; return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] | (tinstr & 255); /* register_list */ } /* Else fall through for illegal instruction case */ default: return BAD_INSTR; } } /* * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction * handlable by ARM alignment handler, also find the corresponding handler, * so that we can reuse ARM userland alignment fault fixups for Thumb. * * @pinstr: original Thumb-2 instruction; returns new handlable instruction * @regs: register context. * @poffset: return offset from faulted addr for later writeback * * NOTES: * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections. * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt) */ static void * do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs, union offset_union *poffset) { unsigned long instr = *pinstr; u16 tinst1 = (instr >> 16) & 0xffff; u16 tinst2 = instr & 0xffff; switch (tinst1 & 0xffe0) { /* A6.3.5 Load/Store multiple */ case 0xe880: /* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */ case 0xe8a0: /* ...above writeback version */ case 0xe900: /* STMDB/STMFD, LDMDB/LDMEA */ case 0xe920: /* ...above writeback version */ /* no need offset decision since handler calculates it */ return do_alignment_ldmstm; case 0xf840: /* POP/PUSH T3 (single register) */ if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) { u32 L = !!(LDST_L_BIT(instr)); const u32 subset[2] = { 0xe92d0000, /* STMDB sp!,{registers} */ 0xe8bd0000, /* LDMIA sp!,{registers} */ }; *pinstr = subset[L] | (1<<RD_BITS(instr)); return do_alignment_ldmstm; } /* Else fall through for illegal instruction case */ break; /* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */ case 0xe860: case 0xe960: case 0xe8e0: case 0xe9e0: poffset->un = (tinst2 & 0xff) << 2; case 0xe940: case 0xe9c0: return do_alignment_ldrdstrd; /* * No need to handle load/store instructions up to word size * since ARMv6 and later CPUs can perform unaligned accesses. */ default: break; } return NULL; } static int do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { union offset_union uninitialized_var(offset); unsigned long instr = 0, instrptr; int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs); unsigned int type; unsigned int fault; u16 tinstr = 0; int isize = 4; int thumb2_32b = 0; if (interrupts_enabled(regs)) local_irq_enable(); instrptr = instruction_pointer(regs); if (thumb_mode(regs)) { u16 *ptr = (u16 *)(instrptr & ~1); fault = probe_kernel_address(ptr, tinstr); tinstr = __mem_to_opcode_thumb16(tinstr); if (!fault) { if (cpu_architecture() >= CPU_ARCH_ARMv7 && IS_T32(tinstr)) { /* Thumb-2 32-bit */ u16 tinst2 = 0; fault = probe_kernel_address(ptr + 1, tinst2); tinst2 = __mem_to_opcode_thumb16(tinst2); instr = __opcode_thumb32_compose(tinstr, tinst2); thumb2_32b = 1; } else { isize = 2; instr = thumb2arm(tinstr); } } } else { fault = probe_kernel_address((void *)instrptr, instr); instr = __mem_to_opcode_arm(instr); } if (fault) { type = TYPE_FAULT; goto bad_or_fault; } if (user_mode(regs)) goto user; ai_sys += 1; ai_sys_last_pc = (void *)instruction_pointer(regs); fixup: regs->ARM_pc += isize; switch (CODING_BITS(instr)) { case 0x00000000: /* 3.13.4 load/store instruction extensions */ if (LDSTHD_I_BIT(instr)) offset.un = (instr & 0xf00) >> 4 | (instr & 15); else offset.un = regs->uregs[RM_BITS(instr)]; if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */ (instr & 0x001000f0) == 0x001000f0) /* LDRSH */ handler = do_alignment_ldrhstrh; else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */ (instr & 0x001000f0) == 0x000000f0) /* STRD */ handler = do_alignment_ldrdstrd; else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */ goto swp; else goto bad; break; case 0x04000000: /* ldr or str immediate */ if (COND_BITS(instr) == 0xf0000000) /* NEON VLDn, VSTn */ goto bad; offset.un = OFFSET_BITS(instr); handler = do_alignment_ldrstr; break; case 0x06000000: /* ldr or str register */ offset.un = regs->uregs[RM_BITS(instr)]; if (IS_SHIFT(instr)) { unsigned int shiftval = SHIFT_BITS(instr); switch(SHIFT_TYPE(instr)) { case SHIFT_LSL: offset.un <<= shiftval; break; case SHIFT_LSR: offset.un >>= shiftval; break; case SHIFT_ASR: offset.sn >>= shiftval; break; case SHIFT_RORRRX: if (shiftval == 0) { offset.un >>= 1; if (regs->ARM_cpsr & PSR_C_BIT) offset.un |= 1 << 31; } else offset.un = offset.un >> shiftval | offset.un << (32 - shiftval); break; } } handler = do_alignment_ldrstr; break; case 0x08000000: /* ldm or stm, or thumb-2 32bit instruction */ if (thumb2_32b) { offset.un = 0; handler = do_alignment_t32_to_handler(&instr, regs, &offset); } else { offset.un = 0; handler = do_alignment_ldmstm; } break; default: goto bad; } if (!handler) goto bad; type = handler(addr, instr, regs); if (type == TYPE_ERROR || type == TYPE_FAULT) { regs->ARM_pc -= isize; goto bad_or_fault; } if (type == TYPE_LDST) do_alignment_finish_ldst(addr, instr, regs, offset); return 0; bad_or_fault: if (type == TYPE_ERROR) goto bad; /* * We got a fault - fix it up, or die. */ do_bad_area(addr, fsr, regs); return 0; swp: pr_err("Alignment trap: not handling swp instruction\n"); bad: /* * Oops, we didn't handle the instruction. */ pr_err("Alignment trap: not handling instruction " "%0*lx at [<%08lx>]\n", isize << 1, isize == 2 ? tinstr : instr, instrptr); ai_skipped += 1; return 1; user: ai_user += 1; if (ai_usermode & UM_WARN) printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx " "Address=0x%08lx FSR 0x%03x\n", current->comm, task_pid_nr(current), instrptr, isize << 1, isize == 2 ? tinstr : instr, addr, fsr); if (ai_usermode & UM_FIXUP) goto fixup; if (ai_usermode & UM_SIGNAL) { force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)addr, current); } else { /* * We're about to disable the alignment trap and return to * user space. But if an interrupt occurs before actually * reaching user space, then the IRQ vector entry code will * notice that we were still in kernel space and therefore * the alignment trap won't be re-enabled in that case as it * is presumed to be always on from kernel space. * Let's prevent that race by disabling interrupts here (they * are disabled on the way back to user space anyway in * entry-common.S) and disable the alignment trap only if * there is no work pending for this thread. */ raw_local_irq_disable(); if (!(current_thread_info()->flags & _TIF_WORK_MASK)) set_cr(cr_no_alignment); } return 0; } static int __init noalign_setup(char *__unused) { set_cr(__clear_cr(CR_A)); return 1; } __setup("noalign", noalign_setup); /* * This needs to be done after sysctl_init, otherwise sys/ will be * overwritten. Actually, this shouldn't be in sys/ at all since * it isn't a sysctl, and it doesn't contain sysctl information. * We now locate it in /proc/cpu/alignment instead. */ static int __init alignment_init(void) { #ifdef CONFIG_PROC_FS struct proc_dir_entry *res; res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL, &alignment_proc_fops); if (!res) return -ENOMEM; #endif if (cpu_is_v6_unaligned()) { set_cr(__clear_cr(CR_A)); ai_usermode = safe_usermode(ai_usermode, false); } cr_no_alignment = get_cr() & ~CR_A; hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN, "alignment exception"); /* * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section * fault, not as alignment error. * * TODO: handle ARMv6K properly. Runtime check for 'K' extension is * needed. */ if (cpu_architecture() <= CPU_ARCH_ARMv6) { hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN, "alignment exception"); } return 0; } fs_initcall(alignment_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1