Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Morton | 2466 | 46.79% | 1 | 2.94% |
Manuel Lauss | 1454 | 27.59% | 11 | 32.35% |
Pete Popov | 664 | 12.60% | 4 | 11.76% |
Ralf Baechle | 574 | 10.89% | 5 | 14.71% |
Sergei Shtylyov | 86 | 1.63% | 2 | 5.88% |
Domen Puncer | 11 | 0.21% | 2 | 5.88% |
Kees Cook | 5 | 0.09% | 2 | 5.88% |
Roel Kluin | 2 | 0.04% | 1 | 2.94% |
Adam Buchbinder | 2 | 0.04% | 1 | 2.94% |
Julia Lawall | 2 | 0.04% | 1 | 2.94% |
Wolfgang Ocker | 1 | 0.02% | 1 | 2.94% |
Paul Gortmaker | 1 | 0.02% | 1 | 2.94% |
Frans Pop | 1 | 0.02% | 1 | 2.94% |
Yong Zhang | 1 | 0.02% | 1 | 2.94% |
Total | 5270 | 34 |
/* * * BRIEF MODULE DESCRIPTION * The Descriptor Based DMA channel manager that first appeared * on the Au1550. I started with dma.c, but I think all that is * left is this initial comment :-) * * Copyright 2004 Embedded Edge, LLC * dan@embeddededge.com * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/syscore_ops.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1xxx_dbdma.h> /* * The Descriptor Based DMA supports up to 16 channels. * * There are 32 devices defined. We keep an internal structure * of devices using these channels, along with additional * information. * * We allocate the descriptors and allow access to them through various * functions. The drivers allocate the data buffers and assign them * to the descriptors. */ static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); /* I couldn't find a macro that did this... */ #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); static int dbdma_initialized; static dbdev_tab_t *dbdev_tab; static dbdev_tab_t au1550_dbdev_tab[] __initdata = { /* UARTS */ { AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, { AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, { AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, { AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, /* EXT DMA */ { AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, { AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, /* USB DEV */ { AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, { AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, { AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, { AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, { AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, { AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, /* PSCs */ { AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, { AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, { AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ { AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ /* MAC 0 */ { AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, /* MAC 1 */ { AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, }; static dbdev_tab_t au1200_dbdev_tab[] __initdata = { { AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, { AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, { AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, { AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, { AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, { AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, { AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, { AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, { AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, { AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, { AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, { AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, { AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, { AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, { AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, { AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, { AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, { AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, }; static dbdev_tab_t au1300_dbdev_tab[] __initdata = { { AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 }, { AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 }, { AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 }, { AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 }, { AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 }, { AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 }, { AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 }, { AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 }, { AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, { AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, { AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 }, { AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 }, { AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, { AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, { AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 }, { AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 }, { AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 }, { AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 }, { AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 }, { AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 }, { AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 }, { AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 }, { AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, { AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 }, { AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 }, { AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 }, { AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, { AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, }; /* 32 predefined plus 32 custom */ #define DBDEV_TAB_SIZE 64 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; static dbdev_tab_t *find_dbdev_id(u32 id) { int i; dbdev_tab_t *p; for (i = 0; i < DBDEV_TAB_SIZE; ++i) { p = &dbdev_tab[i]; if (p->dev_id == id) return p; } return NULL; } void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) { return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); } EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) { u32 ret = 0; dbdev_tab_t *p; static u16 new_id = 0x1000; p = find_dbdev_id(~0); if (NULL != p) { memcpy(p, dev, sizeof(dbdev_tab_t)); p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); ret = p->dev_id; new_id++; #if 0 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", p->dev_id, p->dev_flags, p->dev_physaddr); #endif } return ret; } EXPORT_SYMBOL(au1xxx_ddma_add_device); void au1xxx_ddma_del_device(u32 devid) { dbdev_tab_t *p = find_dbdev_id(devid); if (p != NULL) { memset(p, 0, sizeof(dbdev_tab_t)); p->dev_id = ~0; } } EXPORT_SYMBOL(au1xxx_ddma_del_device); /* Allocate a channel and return a non-zero descriptor if successful. */ u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, void (*callback)(int, void *), void *callparam) { unsigned long flags; u32 used, chan; u32 dcp; int i; dbdev_tab_t *stp, *dtp; chan_tab_t *ctp; au1x_dma_chan_t *cp; /* * We do the initialization on the first channel allocation. * We have to wait because of the interrupt handler initialization * which can't be done successfully during board set up. */ if (!dbdma_initialized) return 0; stp = find_dbdev_id(srcid); if (stp == NULL) return 0; dtp = find_dbdev_id(destid); if (dtp == NULL) return 0; used = 0; /* Check to see if we can get both channels. */ spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); if (!(stp->dev_flags & DEV_FLAGS_INUSE) || (stp->dev_flags & DEV_FLAGS_ANYUSE)) { /* Got source */ stp->dev_flags |= DEV_FLAGS_INUSE; if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { /* Got destination */ dtp->dev_flags |= DEV_FLAGS_INUSE; } else { /* Can't get dest. Release src. */ stp->dev_flags &= ~DEV_FLAGS_INUSE; used++; } } else used++; spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); if (used) return 0; /* Let's see if we can allocate a channel for it. */ ctp = NULL; chan = 0; spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); for (i = 0; i < NUM_DBDMA_CHANS; i++) if (chan_tab_ptr[i] == NULL) { /* * If kmalloc fails, it is caught below same * as a channel not available. */ ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); chan_tab_ptr[i] = ctp; break; } spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); if (ctp != NULL) { memset(ctp, 0, sizeof(chan_tab_t)); ctp->chan_index = chan = i; dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); dcp += (0x0100 * chan); ctp->chan_ptr = (au1x_dma_chan_t *)dcp; cp = (au1x_dma_chan_t *)dcp; ctp->chan_src = stp; ctp->chan_dest = dtp; ctp->chan_callback = callback; ctp->chan_callparam = callparam; /* Initialize channel configuration. */ i = 0; if (stp->dev_intlevel) i |= DDMA_CFG_SED; if (stp->dev_intpolarity) i |= DDMA_CFG_SP; if (dtp->dev_intlevel) i |= DDMA_CFG_DED; if (dtp->dev_intpolarity) i |= DDMA_CFG_DP; if ((stp->dev_flags & DEV_FLAGS_SYNC) || (dtp->dev_flags & DEV_FLAGS_SYNC)) i |= DDMA_CFG_SYNC; cp->ddma_cfg = i; wmb(); /* drain writebuffer */ /* * Return a non-zero value that can be used to find the channel * information in subsequent operations. */ return (u32)(&chan_tab_ptr[chan]); } /* Release devices */ stp->dev_flags &= ~DEV_FLAGS_INUSE; dtp->dev_flags &= ~DEV_FLAGS_INUSE; return 0; } EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); /* * Set the device width if source or destination is a FIFO. * Should be 8, 16, or 32 bits. */ u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) { u32 rv; chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; rv = 0; if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ rv = stp->dev_devwidth; stp->dev_devwidth = bits; } if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ rv = dtp->dev_devwidth; dtp->dev_devwidth = bits; } return rv; } EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); /* Allocate a descriptor ring, initializing as much as possible. */ u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) { int i; u32 desc_base, srcid, destid; u32 cmd0, cmd1, src1, dest1; u32 src0, dest0; chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; au1x_ddma_desc_t *dp; /* * I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; /* * The descriptors must be 32-byte aligned. There is a * possibility the allocation will give us such an address, * and if we try that first we are likely to not waste larger * slabs of memory. */ desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t), GFP_KERNEL|GFP_DMA); if (desc_base == 0) return 0; if (desc_base & 0x1f) { /* * Lost....do it again, allocate extra, and round * the address base. */ kfree((const void *)desc_base); i = entries * sizeof(au1x_ddma_desc_t); i += (sizeof(au1x_ddma_desc_t) - 1); desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); if (desc_base == 0) return 0; ctp->cdb_membase = desc_base; desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); } else ctp->cdb_membase = desc_base; dp = (au1x_ddma_desc_t *)desc_base; /* Keep track of the base descriptor. */ ctp->chan_desc_base = dp; /* Initialize the rings with as much information as we know. */ srcid = stp->dev_id; destid = dtp->dev_id; cmd0 = cmd1 = src1 = dest1 = 0; src0 = dest0 = 0; cmd0 |= DSCR_CMD0_SID(srcid); cmd0 |= DSCR_CMD0_DID(destid); cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); /* Is it mem to mem transfer? */ if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) cmd0 |= DSCR_CMD0_MEM; switch (stp->dev_devwidth) { case 8: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); break; case 16: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); break; case 32: default: cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); break; } switch (dtp->dev_devwidth) { case 8: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); break; case 16: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); break; case 32: default: cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); break; } /* * If the device is marked as an in/out FIFO, ensure it is * set non-coherent. */ if (stp->dev_flags & DEV_FLAGS_IN) cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */ if (dtp->dev_flags & DEV_FLAGS_OUT) cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */ /* * Set up source1. For now, assume no stride and increment. * A channel attribute update can change this later. */ switch (stp->dev_tsize) { case 1: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); break; case 2: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); break; case 4: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); break; case 8: default: src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); break; } /* If source input is FIFO, set static address. */ if (stp->dev_flags & DEV_FLAGS_IN) { if (stp->dev_flags & DEV_FLAGS_BURSTABLE) src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); else src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); } if (stp->dev_physaddr) src0 = stp->dev_physaddr; /* * Set up dest1. For now, assume no stride and increment. * A channel attribute update can change this later. */ switch (dtp->dev_tsize) { case 1: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); break; case 2: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); break; case 4: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); break; case 8: default: dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); break; } /* If destination output is FIFO, set static address. */ if (dtp->dev_flags & DEV_FLAGS_OUT) { if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); else dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); } if (dtp->dev_physaddr) dest0 = dtp->dev_physaddr; #if 0 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " "source1:%x dest0:%x dest1:%x\n", dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, src1, dest0, dest1); #endif for (i = 0; i < entries; i++) { dp->dscr_cmd0 = cmd0; dp->dscr_cmd1 = cmd1; dp->dscr_source0 = src0; dp->dscr_source1 = src1; dp->dscr_dest0 = dest0; dp->dscr_dest1 = dest1; dp->dscr_stat = 0; dp->sw_context = 0; dp->sw_status = 0; dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); dp++; } /* Make last descrptor point to the first. */ dp--; dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; return (u32)ctp->chan_desc_base; } EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); /* * Put a source buffer into the DMA ring. * This updates the source pointer and byte count. Normally used * for memory to fifo transfers. */ u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; /* * I guess we could check this to be within the * range of the table...... */ ctp = *(chan_tab_t **)chanid; /* * We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->put_ptr; /* * If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Load up buffer address and byte count. */ dp->dscr_source0 = buf & ~0UL; dp->dscr_cmd1 = nbytes; /* Check flags */ if (flags & DDMA_FLAGS_IE) dp->dscr_cmd0 |= DSCR_CMD0_IE; if (flags & DDMA_FLAGS_NOIE) dp->dscr_cmd0 &= ~DSCR_CMD0_IE; /* * There is an errata on the Au1200/Au1550 parts that could result * in "stale" data being DMA'ed. It has to do with the snoop logic on * the cache eviction buffer. DMA_NONCOHERENT is on by default for * these parts. If it is fixed in the future, these dma_cache_inv will * just be nothing more than empty macros. See io.h. */ dma_cache_wback_inv((unsigned long)buf, nbytes); dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ wmb(); /* drain writebuffer */ dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); ctp->chan_ptr->ddma_dbell = 0; /* Get next descriptor pointer. */ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return nbytes; } EXPORT_SYMBOL(au1xxx_dbdma_put_source); /* Put a destination buffer into the DMA ring. * This updates the destination pointer and byte count. Normally used * to place an empty buffer into the ring for fifo to memory transfers. */ u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; /* I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); /* We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->put_ptr; /* If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Load up buffer address and byte count */ /* Check flags */ if (flags & DDMA_FLAGS_IE) dp->dscr_cmd0 |= DSCR_CMD0_IE; if (flags & DDMA_FLAGS_NOIE) dp->dscr_cmd0 &= ~DSCR_CMD0_IE; dp->dscr_dest0 = buf & ~0UL; dp->dscr_cmd1 = nbytes; #if 0 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); #endif /* * There is an errata on the Au1200/Au1550 parts that could result in * "stale" data being DMA'ed. It has to do with the snoop logic on the * cache eviction buffer. DMA_NONCOHERENT is on by default for these * parts. If it is fixed in the future, these dma_cache_inv will just * be nothing more than empty macros. See io.h. */ dma_cache_inv((unsigned long)buf, nbytes); dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ wmb(); /* drain writebuffer */ dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); ctp->chan_ptr->ddma_dbell = 0; /* Get next descriptor pointer. */ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return nbytes; } EXPORT_SYMBOL(au1xxx_dbdma_put_dest); /* * Get a destination buffer into the DMA ring. * Normally used to get a full buffer from the ring during fifo * to memory transfers. This does not set the valid bit, you will * have to put another destination buffer to keep the DMA going. */ u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; u32 rv; /* * I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); /* * We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->get_ptr; /* * If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Return buffer address and byte count. */ *buf = (void *)(phys_to_virt(dp->dscr_dest0)); *nbytes = dp->dscr_cmd1; rv = dp->dscr_stat; /* Get next descriptor pointer. */ ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return rv; } EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); void au1xxx_dbdma_stop(u32 chanid) { chan_tab_t *ctp; au1x_dma_chan_t *cp; int halt_timeout = 0; ctp = *((chan_tab_t **)chanid); cp = ctp->chan_ptr; cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ wmb(); /* drain writebuffer */ while (!(cp->ddma_stat & DDMA_STAT_H)) { udelay(1); halt_timeout++; if (halt_timeout > 100) { printk(KERN_WARNING "warning: DMA channel won't halt\n"); break; } } /* clear current desc valid and doorbell */ cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); wmb(); /* drain writebuffer */ } EXPORT_SYMBOL(au1xxx_dbdma_stop); /* * Start using the current descriptor pointer. If the DBDMA encounters * a non-valid descriptor, it will stop. In this case, we can just * continue by adding a buffer to the list and starting again. */ void au1xxx_dbdma_start(u32 chanid) { chan_tab_t *ctp; au1x_dma_chan_t *cp; ctp = *((chan_tab_t **)chanid); cp = ctp->chan_ptr; cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ wmb(); /* drain writebuffer */ cp->ddma_dbell = 0; wmb(); /* drain writebuffer */ } EXPORT_SYMBOL(au1xxx_dbdma_start); void au1xxx_dbdma_reset(u32 chanid) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; au1xxx_dbdma_stop(chanid); ctp = *((chan_tab_t **)chanid); ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; /* Run through the descriptors and reset the valid indicator. */ dp = ctp->chan_desc_base; do { dp->dscr_cmd0 &= ~DSCR_CMD0_V; /* * Reset our software status -- this is used to determine * if a descriptor is in use by upper level software. Since * posting can reset 'V' bit. */ dp->sw_status = 0; dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); } while (dp != ctp->chan_desc_base); } EXPORT_SYMBOL(au1xxx_dbdma_reset); u32 au1xxx_get_dma_residue(u32 chanid) { chan_tab_t *ctp; au1x_dma_chan_t *cp; u32 rv; ctp = *((chan_tab_t **)chanid); cp = ctp->chan_ptr; /* This is only valid if the channel is stopped. */ rv = cp->ddma_bytecnt; wmb(); /* drain writebuffer */ return rv; } EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); void au1xxx_dbdma_chan_free(u32 chanid) { chan_tab_t *ctp; dbdev_tab_t *stp, *dtp; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; au1xxx_dbdma_stop(chanid); kfree((void *)ctp->cdb_membase); stp->dev_flags &= ~DEV_FLAGS_INUSE; dtp->dev_flags &= ~DEV_FLAGS_INUSE; chan_tab_ptr[ctp->chan_index] = NULL; kfree(ctp); } EXPORT_SYMBOL(au1xxx_dbdma_chan_free); static irqreturn_t dbdma_interrupt(int irq, void *dev_id) { u32 intstat; u32 chan_index; chan_tab_t *ctp; au1x_ddma_desc_t *dp; au1x_dma_chan_t *cp; intstat = dbdma_gptr->ddma_intstat; wmb(); /* drain writebuffer */ chan_index = __ffs(intstat); ctp = chan_tab_ptr[chan_index]; cp = ctp->chan_ptr; dp = ctp->cur_ptr; /* Reset interrupt. */ cp->ddma_irq = 0; wmb(); /* drain writebuffer */ if (ctp->chan_callback) ctp->chan_callback(irq, ctp->chan_callparam); ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); return IRQ_RETVAL(1); } void au1xxx_dbdma_dump(u32 chanid) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; dbdev_tab_t *stp, *dtp; au1x_dma_chan_t *cp; u32 i = 0; ctp = *((chan_tab_t **)chanid); stp = ctp->chan_src; dtp = ctp->chan_dest; cp = ctp->chan_ptr; printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n", (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, dtp - dbdev_tab); printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, cp->ddma_bytecnt); /* Run through the descriptors */ dp = ctp->chan_desc_base; do { printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", dp->dscr_source0, dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", dp->dscr_stat, dp->dscr_nxtptr); dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); } while (dp != ctp->chan_desc_base); } /* Put a descriptor into the DMA ring. * This updates the source/destination pointers and byte count. */ u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) { chan_tab_t *ctp; au1x_ddma_desc_t *dp; u32 nbytes = 0; /* * I guess we could check this to be within the * range of the table...... */ ctp = *((chan_tab_t **)chanid); /* * We should have multiple callers for a particular channel, * an interrupt doesn't affect this pointer nor the descriptor, * so no locking should be needed. */ dp = ctp->put_ptr; /* * If the descriptor is valid, we are way ahead of the DMA * engine, so just return an error condition. */ if (dp->dscr_cmd0 & DSCR_CMD0_V) return 0; /* Load up buffer addresses and byte count. */ dp->dscr_dest0 = dscr->dscr_dest0; dp->dscr_source0 = dscr->dscr_source0; dp->dscr_dest1 = dscr->dscr_dest1; dp->dscr_source1 = dscr->dscr_source1; dp->dscr_cmd1 = dscr->dscr_cmd1; nbytes = dscr->dscr_cmd1; /* Allow the caller to specify if an interrupt is generated */ dp->dscr_cmd0 &= ~DSCR_CMD0_IE; dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; ctp->chan_ptr->ddma_dbell = 0; /* Get next descriptor pointer. */ ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); /* Return something non-zero. */ return nbytes; } static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6]; static int alchemy_dbdma_suspend(void) { int i; void __iomem *addr; addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00); alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04); alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08); alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c); /* save channel configurations */ addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); for (i = 1; i <= NUM_DBDMA_CHANS; i++) { alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00); alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04); alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08); alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c); alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10); alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14); /* halt channel */ __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00); wmb(); while (!(__raw_readl(addr + 0x14) & 1)) wmb(); addr += 0x100; /* next channel base */ } /* disable channel interrupts */ addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); __raw_writel(0, addr + 0x0c); wmb(); return 0; } static void alchemy_dbdma_resume(void) { int i; void __iomem *addr; addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00); __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04); __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08); __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c); /* restore channel configurations */ addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); for (i = 1; i <= NUM_DBDMA_CHANS; i++) { __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00); __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04); __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08); __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c); __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10); __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14); wmb(); addr += 0x100; /* next channel base */ } } static struct syscore_ops alchemy_dbdma_syscore_ops = { .suspend = alchemy_dbdma_suspend, .resume = alchemy_dbdma_resume, }; static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable) { int ret; dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL); if (!dbdev_tab) return -ENOMEM; memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t)); for (ret = 32; ret < DBDEV_TAB_SIZE; ret++) dbdev_tab[ret].dev_id = ~0; dbdma_gptr->ddma_config = 0; dbdma_gptr->ddma_throttle = 0; dbdma_gptr->ddma_inten = 0xffff; wmb(); /* drain writebuffer */ ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr); if (ret) printk(KERN_ERR "Cannot grab DBDMA interrupt!\n"); else { dbdma_initialized = 1; register_syscore_ops(&alchemy_dbdma_syscore_ops); } return ret; } static int __init alchemy_dbdma_init(void) { switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1550: return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab); case ALCHEMY_CPU_AU1200: return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab); case ALCHEMY_CPU_AU1300: return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab); } return 0; } subsys_initcall(alchemy_dbdma_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1