Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Florian Fainelli | 2339 | 95.16% | 3 | 42.86% |
Geert Uytterhoeven | 108 | 4.39% | 1 | 14.29% |
Jonas Gorski | 8 | 0.33% | 1 | 14.29% |
Thomas Gleixner | 2 | 0.08% | 1 | 14.29% |
Paul Gortmaker | 1 | 0.04% | 1 | 14.29% |
Total | 2458 | 7 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2007 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2007 Eugene Konev <ejka@openwrt.org> * Copyright (C) 2009 Florian Fainelli <florian@openwrt.org> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/export.h> #include <linux/delay.h> #include <linux/gcd.h> #include <linux/io.h> #include <linux/err.h> #include <linux/clk.h> #include <asm/addrspace.h> #include <asm/mach-ar7/ar7.h> #define BOOT_PLL_SOURCE_MASK 0x3 #define CPU_PLL_SOURCE_SHIFT 16 #define BUS_PLL_SOURCE_SHIFT 14 #define USB_PLL_SOURCE_SHIFT 18 #define DSP_PLL_SOURCE_SHIFT 22 #define BOOT_PLL_SOURCE_AFE 0 #define BOOT_PLL_SOURCE_BUS 0 #define BOOT_PLL_SOURCE_REF 1 #define BOOT_PLL_SOURCE_XTAL 2 #define BOOT_PLL_SOURCE_CPU 3 #define BOOT_PLL_BYPASS 0x00000020 #define BOOT_PLL_ASYNC_MODE 0x02000000 #define BOOT_PLL_2TO1_MODE 0x00008000 #define TNETD7200_CLOCK_ID_CPU 0 #define TNETD7200_CLOCK_ID_DSP 1 #define TNETD7200_CLOCK_ID_USB 2 #define TNETD7200_DEF_CPU_CLK 211000000 #define TNETD7200_DEF_DSP_CLK 125000000 #define TNETD7200_DEF_USB_CLK 48000000 struct tnetd7300_clock { u32 ctrl; #define PREDIV_MASK 0x001f0000 #define PREDIV_SHIFT 16 #define POSTDIV_MASK 0x0000001f u32 unused1[3]; u32 pll; #define MUL_MASK 0x0000f000 #define MUL_SHIFT 12 #define PLL_MODE_MASK 0x00000001 #define PLL_NDIV 0x00000800 #define PLL_DIV 0x00000002 #define PLL_STATUS 0x00000001 u32 unused2[3]; }; struct tnetd7300_clocks { struct tnetd7300_clock bus; struct tnetd7300_clock cpu; struct tnetd7300_clock usb; struct tnetd7300_clock dsp; }; struct tnetd7200_clock { u32 ctrl; u32 unused1[3]; #define DIVISOR_ENABLE_MASK 0x00008000 u32 mul; u32 prediv; u32 postdiv; u32 postdiv2; u32 unused2[6]; u32 cmd; u32 status; u32 cmden; u32 padding[15]; }; struct tnetd7200_clocks { struct tnetd7200_clock cpu; struct tnetd7200_clock dsp; struct tnetd7200_clock usb; }; static struct clk bus_clk = { .rate = 125000000, }; static struct clk cpu_clk = { .rate = 150000000, }; static struct clk dsp_clk; static struct clk vbus_clk; static void approximate(int base, int target, int *prediv, int *postdiv, int *mul) { int i, j, k, freq, res = target; for (i = 1; i <= 16; i++) for (j = 1; j <= 32; j++) for (k = 1; k <= 32; k++) { freq = abs(base / j * i / k - target); if (freq < res) { res = freq; *mul = i; *prediv = j; *postdiv = k; } } } static void calculate(int base, int target, int *prediv, int *postdiv, int *mul) { int tmp_gcd, tmp_base, tmp_freq; for (*prediv = 1; *prediv <= 32; (*prediv)++) { tmp_base = base / *prediv; tmp_gcd = gcd(target, tmp_base); *mul = target / tmp_gcd; *postdiv = tmp_base / tmp_gcd; if ((*mul < 1) || (*mul >= 16)) continue; if ((*postdiv > 0) & (*postdiv <= 32)) break; } if (base / *prediv * *mul / *postdiv != target) { approximate(base, target, prediv, postdiv, mul); tmp_freq = base / *prediv * *mul / *postdiv; printk(KERN_WARNING "Adjusted requested frequency %d to %d\n", target, tmp_freq); } printk(KERN_DEBUG "Clocks: prediv: %d, postdiv: %d, mul: %d\n", *prediv, *postdiv, *mul); } static int tnetd7300_dsp_clock(void) { u32 didr1, didr2; u8 rev = ar7_chip_rev(); didr1 = readl((void *)KSEG1ADDR(AR7_REGS_GPIO + 0x18)); didr2 = readl((void *)KSEG1ADDR(AR7_REGS_GPIO + 0x1c)); if (didr2 & (1 << 23)) return 0; if ((rev >= 0x23) && (rev != 0x57)) return 250000000; if ((((didr2 & 0x1fff) << 10) | ((didr1 & 0xffc00000) >> 22)) > 4208000) return 250000000; return 0; } static int tnetd7300_get_clock(u32 shift, struct tnetd7300_clock *clock, u32 *bootcr, u32 bus_clock) { int product; int base_clock = AR7_REF_CLOCK; u32 ctrl = readl(&clock->ctrl); u32 pll = readl(&clock->pll); int prediv = ((ctrl & PREDIV_MASK) >> PREDIV_SHIFT) + 1; int postdiv = (ctrl & POSTDIV_MASK) + 1; int divisor = prediv * postdiv; int mul = ((pll & MUL_MASK) >> MUL_SHIFT) + 1; switch ((*bootcr & (BOOT_PLL_SOURCE_MASK << shift)) >> shift) { case BOOT_PLL_SOURCE_BUS: base_clock = bus_clock; break; case BOOT_PLL_SOURCE_REF: base_clock = AR7_REF_CLOCK; break; case BOOT_PLL_SOURCE_XTAL: base_clock = AR7_XTAL_CLOCK; break; case BOOT_PLL_SOURCE_CPU: base_clock = cpu_clk.rate; break; } if (*bootcr & BOOT_PLL_BYPASS) return base_clock / divisor; if ((pll & PLL_MODE_MASK) == 0) return (base_clock >> (mul / 16 + 1)) / divisor; if ((pll & (PLL_NDIV | PLL_DIV)) == (PLL_NDIV | PLL_DIV)) { product = (mul & 1) ? (base_clock * mul) >> 1 : (base_clock * (mul - 1)) >> 2; return product / divisor; } if (mul == 16) return base_clock / divisor; return base_clock * mul / divisor; } static void tnetd7300_set_clock(u32 shift, struct tnetd7300_clock *clock, u32 *bootcr, u32 frequency) { int prediv, postdiv, mul; int base_clock = bus_clk.rate; switch ((*bootcr & (BOOT_PLL_SOURCE_MASK << shift)) >> shift) { case BOOT_PLL_SOURCE_BUS: base_clock = bus_clk.rate; break; case BOOT_PLL_SOURCE_REF: base_clock = AR7_REF_CLOCK; break; case BOOT_PLL_SOURCE_XTAL: base_clock = AR7_XTAL_CLOCK; break; case BOOT_PLL_SOURCE_CPU: base_clock = cpu_clk.rate; break; } calculate(base_clock, frequency, &prediv, &postdiv, &mul); writel(((prediv - 1) << PREDIV_SHIFT) | (postdiv - 1), &clock->ctrl); mdelay(1); writel(4, &clock->pll); while (readl(&clock->pll) & PLL_STATUS) ; writel(((mul - 1) << MUL_SHIFT) | (0xff << 3) | 0x0e, &clock->pll); mdelay(75); } static void __init tnetd7300_init_clocks(void) { u32 *bootcr = (u32 *)ioremap_nocache(AR7_REGS_DCL, 4); struct tnetd7300_clocks *clocks = ioremap_nocache(UR8_REGS_CLOCKS, sizeof(struct tnetd7300_clocks)); bus_clk.rate = tnetd7300_get_clock(BUS_PLL_SOURCE_SHIFT, &clocks->bus, bootcr, AR7_AFE_CLOCK); if (*bootcr & BOOT_PLL_ASYNC_MODE) cpu_clk.rate = tnetd7300_get_clock(CPU_PLL_SOURCE_SHIFT, &clocks->cpu, bootcr, AR7_AFE_CLOCK); else cpu_clk.rate = bus_clk.rate; if (dsp_clk.rate == 250000000) tnetd7300_set_clock(DSP_PLL_SOURCE_SHIFT, &clocks->dsp, bootcr, dsp_clk.rate); iounmap(clocks); iounmap(bootcr); } static void tnetd7200_set_clock(int base, struct tnetd7200_clock *clock, int prediv, int postdiv, int postdiv2, int mul, u32 frequency) { printk(KERN_INFO "Clocks: base = %d, frequency = %u, prediv = %d, " "postdiv = %d, postdiv2 = %d, mul = %d\n", base, frequency, prediv, postdiv, postdiv2, mul); writel(0, &clock->ctrl); writel(DIVISOR_ENABLE_MASK | ((prediv - 1) & 0x1F), &clock->prediv); writel((mul - 1) & 0xF, &clock->mul); while (readl(&clock->status) & 0x1) ; /* nop */ writel(DIVISOR_ENABLE_MASK | ((postdiv - 1) & 0x1F), &clock->postdiv); writel(readl(&clock->cmden) | 1, &clock->cmden); writel(readl(&clock->cmd) | 1, &clock->cmd); while (readl(&clock->status) & 0x1) ; /* nop */ writel(DIVISOR_ENABLE_MASK | ((postdiv2 - 1) & 0x1F), &clock->postdiv2); writel(readl(&clock->cmden) | 1, &clock->cmden); writel(readl(&clock->cmd) | 1, &clock->cmd); while (readl(&clock->status) & 0x1) ; /* nop */ writel(readl(&clock->ctrl) | 1, &clock->ctrl); } static int tnetd7200_get_clock_base(int clock_id, u32 *bootcr) { if (*bootcr & BOOT_PLL_ASYNC_MODE) /* Async */ switch (clock_id) { case TNETD7200_CLOCK_ID_DSP: return AR7_REF_CLOCK; default: return AR7_AFE_CLOCK; } else /* Sync */ if (*bootcr & BOOT_PLL_2TO1_MODE) /* 2:1 */ switch (clock_id) { case TNETD7200_CLOCK_ID_DSP: return AR7_REF_CLOCK; default: return AR7_AFE_CLOCK; } else /* 1:1 */ return AR7_REF_CLOCK; } static void __init tnetd7200_init_clocks(void) { u32 *bootcr = (u32 *)ioremap_nocache(AR7_REGS_DCL, 4); struct tnetd7200_clocks *clocks = ioremap_nocache(AR7_REGS_CLOCKS, sizeof(struct tnetd7200_clocks)); int cpu_base, cpu_mul, cpu_prediv, cpu_postdiv; int dsp_base, dsp_mul, dsp_prediv, dsp_postdiv; int usb_base, usb_mul, usb_prediv, usb_postdiv; cpu_base = tnetd7200_get_clock_base(TNETD7200_CLOCK_ID_CPU, bootcr); dsp_base = tnetd7200_get_clock_base(TNETD7200_CLOCK_ID_DSP, bootcr); if (*bootcr & BOOT_PLL_ASYNC_MODE) { printk(KERN_INFO "Clocks: Async mode\n"); printk(KERN_INFO "Clocks: Setting DSP clock\n"); calculate(dsp_base, TNETD7200_DEF_DSP_CLK, &dsp_prediv, &dsp_postdiv, &dsp_mul); bus_clk.rate = ((dsp_base / dsp_prediv) * dsp_mul) / dsp_postdiv; tnetd7200_set_clock(dsp_base, &clocks->dsp, dsp_prediv, dsp_postdiv * 2, dsp_postdiv, dsp_mul * 2, bus_clk.rate); printk(KERN_INFO "Clocks: Setting CPU clock\n"); calculate(cpu_base, TNETD7200_DEF_CPU_CLK, &cpu_prediv, &cpu_postdiv, &cpu_mul); cpu_clk.rate = ((cpu_base / cpu_prediv) * cpu_mul) / cpu_postdiv; tnetd7200_set_clock(cpu_base, &clocks->cpu, cpu_prediv, cpu_postdiv, -1, cpu_mul, cpu_clk.rate); } else if (*bootcr & BOOT_PLL_2TO1_MODE) { printk(KERN_INFO "Clocks: Sync 2:1 mode\n"); printk(KERN_INFO "Clocks: Setting CPU clock\n"); calculate(cpu_base, TNETD7200_DEF_CPU_CLK, &cpu_prediv, &cpu_postdiv, &cpu_mul); cpu_clk.rate = ((cpu_base / cpu_prediv) * cpu_mul) / cpu_postdiv; tnetd7200_set_clock(cpu_base, &clocks->cpu, cpu_prediv, cpu_postdiv, -1, cpu_mul, cpu_clk.rate); printk(KERN_INFO "Clocks: Setting DSP clock\n"); calculate(dsp_base, TNETD7200_DEF_DSP_CLK, &dsp_prediv, &dsp_postdiv, &dsp_mul); bus_clk.rate = cpu_clk.rate / 2; tnetd7200_set_clock(dsp_base, &clocks->dsp, dsp_prediv, dsp_postdiv * 2, dsp_postdiv, dsp_mul * 2, bus_clk.rate); } else { printk(KERN_INFO "Clocks: Sync 1:1 mode\n"); printk(KERN_INFO "Clocks: Setting DSP clock\n"); calculate(dsp_base, TNETD7200_DEF_DSP_CLK, &dsp_prediv, &dsp_postdiv, &dsp_mul); bus_clk.rate = ((dsp_base / dsp_prediv) * dsp_mul) / dsp_postdiv; tnetd7200_set_clock(dsp_base, &clocks->dsp, dsp_prediv, dsp_postdiv * 2, dsp_postdiv, dsp_mul * 2, bus_clk.rate); cpu_clk.rate = bus_clk.rate; } printk(KERN_INFO "Clocks: Setting USB clock\n"); usb_base = bus_clk.rate; calculate(usb_base, TNETD7200_DEF_USB_CLK, &usb_prediv, &usb_postdiv, &usb_mul); tnetd7200_set_clock(usb_base, &clocks->usb, usb_prediv, usb_postdiv, -1, usb_mul, TNETD7200_DEF_USB_CLK); dsp_clk.rate = cpu_clk.rate; iounmap(clocks); iounmap(bootcr); } /* * Linux clock API */ int clk_enable(struct clk *clk) { return 0; } EXPORT_SYMBOL(clk_enable); void clk_disable(struct clk *clk) { } EXPORT_SYMBOL(clk_disable); unsigned long clk_get_rate(struct clk *clk) { if (!clk) return 0; return clk->rate; } EXPORT_SYMBOL(clk_get_rate); struct clk *clk_get(struct device *dev, const char *id) { if (!strcmp(id, "bus")) return &bus_clk; /* cpmac and vbus share the same rate */ if (!strcmp(id, "cpmac")) return &vbus_clk; if (!strcmp(id, "cpu")) return &cpu_clk; if (!strcmp(id, "dsp")) return &dsp_clk; if (!strcmp(id, "vbus")) return &vbus_clk; return ERR_PTR(-ENOENT); } EXPORT_SYMBOL(clk_get); void clk_put(struct clk *clk) { } EXPORT_SYMBOL(clk_put); void __init ar7_init_clocks(void) { switch (ar7_chip_id()) { case AR7_CHIP_7100: case AR7_CHIP_7200: tnetd7200_init_clocks(); break; case AR7_CHIP_7300: dsp_clk.rate = tnetd7300_dsp_clock(); tnetd7300_init_clocks(); break; default: break; } /* adjust vbus clock rate */ vbus_clk.rate = bus_clk.rate / 2; } /* dummy functions, should not be called */ long clk_round_rate(struct clk *clk, unsigned long rate) { WARN_ON(clk); return 0; } EXPORT_SYMBOL(clk_round_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { WARN_ON(clk); return 0; } EXPORT_SYMBOL(clk_set_rate); int clk_set_parent(struct clk *clk, struct clk *parent) { WARN_ON(clk); return 0; } EXPORT_SYMBOL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { WARN_ON(clk); return NULL; } EXPORT_SYMBOL(clk_get_parent);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1