Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 2520 | 99.21% | 2 | 40.00% |
Ralf Baechle | 10 | 0.39% | 1 | 20.00% |
Aaro Koskinen | 5 | 0.20% | 1 | 20.00% |
Steven J. Hill | 5 | 0.20% | 1 | 20.00% |
Total | 2540 | 5 |
/***********************license start*************** * Author: Cavium Networks * * Contact: support@caviumnetworks.com * This file is part of the OCTEON SDK * * Copyright (c) 2003-2008 Cavium Networks * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * or visit http://www.gnu.org/licenses/. * * This file may also be available under a different license from Cavium. * Contact Cavium Networks for more information ***********************license end**************************************/ /* * * Support library for the SPI */ #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-config.h> #include <asm/octeon/cvmx-pko.h> #include <asm/octeon/cvmx-spi.h> #include <asm/octeon/cvmx-spxx-defs.h> #include <asm/octeon/cvmx-stxx-defs.h> #include <asm/octeon/cvmx-srxx-defs.h> #define INVOKE_CB(function_p, args...) \ do { \ if (function_p) { \ res = function_p(args); \ if (res) \ return res; \ } \ } while (0) #if CVMX_ENABLE_DEBUG_PRINTS static const char *modes[] = { "UNKNOWN", "TX Halfplex", "Rx Halfplex", "Duplex" }; #endif /* Default callbacks, can be overridden * using cvmx_spi_get_callbacks/cvmx_spi_set_callbacks */ static cvmx_spi_callbacks_t cvmx_spi_callbacks = { .reset_cb = cvmx_spi_reset_cb, .calendar_setup_cb = cvmx_spi_calendar_setup_cb, .clock_detect_cb = cvmx_spi_clock_detect_cb, .training_cb = cvmx_spi_training_cb, .calendar_sync_cb = cvmx_spi_calendar_sync_cb, .interface_up_cb = cvmx_spi_interface_up_cb }; /** * Get current SPI4 initialization callbacks * * @callbacks: Pointer to the callbacks structure.to fill * * Returns Pointer to cvmx_spi_callbacks_t structure. */ void cvmx_spi_get_callbacks(cvmx_spi_callbacks_t *callbacks) { memcpy(callbacks, &cvmx_spi_callbacks, sizeof(cvmx_spi_callbacks)); } /** * Set new SPI4 initialization callbacks * * @new_callbacks: Pointer to an updated callbacks structure. */ void cvmx_spi_set_callbacks(cvmx_spi_callbacks_t *new_callbacks) { memcpy(&cvmx_spi_callbacks, new_callbacks, sizeof(cvmx_spi_callbacks)); } /** * Initialize and start the SPI interface. * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @timeout: Timeout to wait for clock synchronization in seconds * @num_ports: Number of SPI ports to configure * * Returns Zero on success, negative of failure. */ int cvmx_spi_start_interface(int interface, cvmx_spi_mode_t mode, int timeout, int num_ports) { int res = -1; if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) return res; /* Callback to perform SPI4 reset */ INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode); /* Callback to perform calendar setup */ INVOKE_CB(cvmx_spi_callbacks.calendar_setup_cb, interface, mode, num_ports); /* Callback to perform clock detection */ INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout); /* Callback to perform SPI4 link training */ INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout); /* Callback to perform calendar sync */ INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, timeout); /* Callback to handle interface coming up */ INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode); return res; } /** * This routine restarts the SPI interface after it has lost synchronization * with its correspondent system. * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @timeout: Timeout to wait for clock synchronization in seconds * * Returns Zero on success, negative of failure. */ int cvmx_spi_restart_interface(int interface, cvmx_spi_mode_t mode, int timeout) { int res = -1; if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))) return res; cvmx_dprintf("SPI%d: Restart %s\n", interface, modes[mode]); /* Callback to perform SPI4 reset */ INVOKE_CB(cvmx_spi_callbacks.reset_cb, interface, mode); /* NOTE: Calendar setup is not performed during restart */ /* Refer to cvmx_spi_start_interface() for the full sequence */ /* Callback to perform clock detection */ INVOKE_CB(cvmx_spi_callbacks.clock_detect_cb, interface, mode, timeout); /* Callback to perform SPI4 link training */ INVOKE_CB(cvmx_spi_callbacks.training_cb, interface, mode, timeout); /* Callback to perform calendar sync */ INVOKE_CB(cvmx_spi_callbacks.calendar_sync_cb, interface, mode, timeout); /* Callback to handle interface coming up */ INVOKE_CB(cvmx_spi_callbacks.interface_up_cb, interface, mode); return res; } EXPORT_SYMBOL_GPL(cvmx_spi_restart_interface); /** * Callback to perform SPI4 reset * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * * Returns Zero on success, non-zero error code on failure (will cause * SPI initialization to abort) */ int cvmx_spi_reset_cb(int interface, cvmx_spi_mode_t mode) { union cvmx_spxx_dbg_deskew_ctl spxx_dbg_deskew_ctl; union cvmx_spxx_clk_ctl spxx_clk_ctl; union cvmx_spxx_bist_stat spxx_bist_stat; union cvmx_spxx_int_msk spxx_int_msk; union cvmx_stxx_int_msk stxx_int_msk; union cvmx_spxx_trn4_ctl spxx_trn4_ctl; int index; uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; /* Disable SPI error events while we run BIST */ spxx_int_msk.u64 = cvmx_read_csr(CVMX_SPXX_INT_MSK(interface)); cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), 0); stxx_int_msk.u64 = cvmx_read_csr(CVMX_STXX_INT_MSK(interface)); cvmx_write_csr(CVMX_STXX_INT_MSK(interface), 0); /* Run BIST in the SPI interface */ cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), 0); cvmx_write_csr(CVMX_STXX_COM_CTL(interface), 0); spxx_clk_ctl.u64 = 0; spxx_clk_ctl.s.runbist = 1; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); __delay(10 * MS); spxx_bist_stat.u64 = cvmx_read_csr(CVMX_SPXX_BIST_STAT(interface)); if (spxx_bist_stat.s.stat0) cvmx_dprintf ("ERROR SPI%d: BIST failed on receive datapath FIFO\n", interface); if (spxx_bist_stat.s.stat1) cvmx_dprintf("ERROR SPI%d: BIST failed on RX calendar table\n", interface); if (spxx_bist_stat.s.stat2) cvmx_dprintf("ERROR SPI%d: BIST failed on TX calendar table\n", interface); /* Clear the calendar table after BIST to fix parity errors */ for (index = 0; index < 32; index++) { union cvmx_srxx_spi4_calx srxx_spi4_calx; union cvmx_stxx_spi4_calx stxx_spi4_calx; srxx_spi4_calx.u64 = 0; srxx_spi4_calx.s.oddpar = 1; cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), srxx_spi4_calx.u64); stxx_spi4_calx.u64 = 0; stxx_spi4_calx.s.oddpar = 1; cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), stxx_spi4_calx.u64); } /* Re enable reporting of error interrupts */ cvmx_write_csr(CVMX_SPXX_INT_REG(interface), cvmx_read_csr(CVMX_SPXX_INT_REG(interface))); cvmx_write_csr(CVMX_SPXX_INT_MSK(interface), spxx_int_msk.u64); cvmx_write_csr(CVMX_STXX_INT_REG(interface), cvmx_read_csr(CVMX_STXX_INT_REG(interface))); cvmx_write_csr(CVMX_STXX_INT_MSK(interface), stxx_int_msk.u64); /* Setup the CLKDLY right in the middle */ spxx_clk_ctl.u64 = 0; spxx_clk_ctl.s.seetrn = 0; spxx_clk_ctl.s.clkdly = 0x10; spxx_clk_ctl.s.runbist = 0; spxx_clk_ctl.s.statdrv = 0; /* This should always be on the opposite edge as statdrv */ spxx_clk_ctl.s.statrcv = 1; spxx_clk_ctl.s.sndtrn = 0; spxx_clk_ctl.s.drptrn = 0; spxx_clk_ctl.s.rcvtrn = 0; spxx_clk_ctl.s.srxdlck = 0; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); __delay(100 * MS); /* Reset SRX0 DLL */ spxx_clk_ctl.s.srxdlck = 1; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); /* Waiting for Inf0 Spi4 RX DLL to lock */ __delay(100 * MS); /* Enable dynamic alignment */ spxx_trn4_ctl.s.trntest = 0; spxx_trn4_ctl.s.jitter = 1; spxx_trn4_ctl.s.clr_boot = 1; spxx_trn4_ctl.s.set_boot = 0; if (OCTEON_IS_MODEL(OCTEON_CN58XX)) spxx_trn4_ctl.s.maxdist = 3; else spxx_trn4_ctl.s.maxdist = 8; spxx_trn4_ctl.s.macro_en = 1; spxx_trn4_ctl.s.mux_en = 1; cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64); spxx_dbg_deskew_ctl.u64 = 0; cvmx_write_csr(CVMX_SPXX_DBG_DESKEW_CTL(interface), spxx_dbg_deskew_ctl.u64); return 0; } /** * Callback to setup calendar and miscellaneous settings before clock detection * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @num_ports: Number of ports to configure on SPI * * Returns Zero on success, non-zero error code on failure (will cause * SPI initialization to abort) */ int cvmx_spi_calendar_setup_cb(int interface, cvmx_spi_mode_t mode, int num_ports) { int port; int index; if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { union cvmx_srxx_com_ctl srxx_com_ctl; union cvmx_srxx_spi4_stat srxx_spi4_stat; /* SRX0 number of Ports */ srxx_com_ctl.u64 = 0; srxx_com_ctl.s.prts = num_ports - 1; srxx_com_ctl.s.st_en = 0; srxx_com_ctl.s.inf_en = 0; cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); /* SRX0 Calendar Table. This round robbins through all ports */ port = 0; index = 0; while (port < num_ports) { union cvmx_srxx_spi4_calx srxx_spi4_calx; srxx_spi4_calx.u64 = 0; srxx_spi4_calx.s.prt0 = port++; srxx_spi4_calx.s.prt1 = port++; srxx_spi4_calx.s.prt2 = port++; srxx_spi4_calx.s.prt3 = port++; srxx_spi4_calx.s.oddpar = ~(cvmx_dpop(srxx_spi4_calx.u64) & 1); cvmx_write_csr(CVMX_SRXX_SPI4_CALX(index, interface), srxx_spi4_calx.u64); index++; } srxx_spi4_stat.u64 = 0; srxx_spi4_stat.s.len = num_ports; srxx_spi4_stat.s.m = 1; cvmx_write_csr(CVMX_SRXX_SPI4_STAT(interface), srxx_spi4_stat.u64); } if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { union cvmx_stxx_arb_ctl stxx_arb_ctl; union cvmx_gmxx_tx_spi_max gmxx_tx_spi_max; union cvmx_gmxx_tx_spi_thresh gmxx_tx_spi_thresh; union cvmx_gmxx_tx_spi_ctl gmxx_tx_spi_ctl; union cvmx_stxx_spi4_stat stxx_spi4_stat; union cvmx_stxx_spi4_dat stxx_spi4_dat; /* STX0 Config */ stxx_arb_ctl.u64 = 0; stxx_arb_ctl.s.igntpa = 0; stxx_arb_ctl.s.mintrn = 0; cvmx_write_csr(CVMX_STXX_ARB_CTL(interface), stxx_arb_ctl.u64); gmxx_tx_spi_max.u64 = 0; gmxx_tx_spi_max.s.max1 = 8; gmxx_tx_spi_max.s.max2 = 4; gmxx_tx_spi_max.s.slice = 0; cvmx_write_csr(CVMX_GMXX_TX_SPI_MAX(interface), gmxx_tx_spi_max.u64); gmxx_tx_spi_thresh.u64 = 0; gmxx_tx_spi_thresh.s.thresh = 4; cvmx_write_csr(CVMX_GMXX_TX_SPI_THRESH(interface), gmxx_tx_spi_thresh.u64); gmxx_tx_spi_ctl.u64 = 0; gmxx_tx_spi_ctl.s.tpa_clr = 0; gmxx_tx_spi_ctl.s.cont_pkt = 0; cvmx_write_csr(CVMX_GMXX_TX_SPI_CTL(interface), gmxx_tx_spi_ctl.u64); /* STX0 Training Control */ stxx_spi4_dat.u64 = 0; /*Minimum needed by dynamic alignment */ stxx_spi4_dat.s.alpha = 32; stxx_spi4_dat.s.max_t = 0xFFFF; /*Minimum interval is 0x20 */ cvmx_write_csr(CVMX_STXX_SPI4_DAT(interface), stxx_spi4_dat.u64); /* STX0 Calendar Table. This round robbins through all ports */ port = 0; index = 0; while (port < num_ports) { union cvmx_stxx_spi4_calx stxx_spi4_calx; stxx_spi4_calx.u64 = 0; stxx_spi4_calx.s.prt0 = port++; stxx_spi4_calx.s.prt1 = port++; stxx_spi4_calx.s.prt2 = port++; stxx_spi4_calx.s.prt3 = port++; stxx_spi4_calx.s.oddpar = ~(cvmx_dpop(stxx_spi4_calx.u64) & 1); cvmx_write_csr(CVMX_STXX_SPI4_CALX(index, interface), stxx_spi4_calx.u64); index++; } stxx_spi4_stat.u64 = 0; stxx_spi4_stat.s.len = num_ports; stxx_spi4_stat.s.m = 1; cvmx_write_csr(CVMX_STXX_SPI4_STAT(interface), stxx_spi4_stat.u64); } return 0; } /** * Callback to perform clock detection * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @timeout: Timeout to wait for clock synchronization in seconds * * Returns Zero on success, non-zero error code on failure (will cause * SPI initialization to abort) */ int cvmx_spi_clock_detect_cb(int interface, cvmx_spi_mode_t mode, int timeout) { int clock_transitions; union cvmx_spxx_clk_stat stat; uint64_t timeout_time; uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; /* * Regardless of operating mode, both Tx and Rx clocks must be * present for the SPI interface to operate. */ cvmx_dprintf("SPI%d: Waiting to see TsClk...\n", interface); timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; /* * Require 100 clock transitions in order to avoid any noise * in the beginning. */ clock_transitions = 100; do { stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); if (stat.s.s4clk0 && stat.s.s4clk1 && clock_transitions) { /* * We've seen a clock transition, so decrement * the number we still need. */ clock_transitions--; cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); stat.s.s4clk0 = 0; stat.s.s4clk1 = 0; } if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.s4clk0 == 0 || stat.s.s4clk1 == 0); cvmx_dprintf("SPI%d: Waiting to see RsClk...\n", interface); timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; /* * Require 100 clock transitions in order to avoid any noise in the * beginning. */ clock_transitions = 100; do { stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); if (stat.s.d4clk0 && stat.s.d4clk1 && clock_transitions) { /* * We've seen a clock transition, so decrement * the number we still need */ clock_transitions--; cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); stat.s.d4clk0 = 0; stat.s.d4clk1 = 0; } if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.d4clk0 == 0 || stat.s.d4clk1 == 0); return 0; } /** * Callback to perform link training * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @timeout: Timeout to wait for link to be trained (in seconds) * * Returns Zero on success, non-zero error code on failure (will cause * SPI initialization to abort) */ int cvmx_spi_training_cb(int interface, cvmx_spi_mode_t mode, int timeout) { union cvmx_spxx_trn4_ctl spxx_trn4_ctl; union cvmx_spxx_clk_stat stat; uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; uint64_t timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; int rx_training_needed; /* SRX0 & STX0 Inf0 Links are configured - begin training */ union cvmx_spxx_clk_ctl spxx_clk_ctl; spxx_clk_ctl.u64 = 0; spxx_clk_ctl.s.seetrn = 0; spxx_clk_ctl.s.clkdly = 0x10; spxx_clk_ctl.s.runbist = 0; spxx_clk_ctl.s.statdrv = 0; /* This should always be on the opposite edge as statdrv */ spxx_clk_ctl.s.statrcv = 1; spxx_clk_ctl.s.sndtrn = 1; spxx_clk_ctl.s.drptrn = 1; spxx_clk_ctl.s.rcvtrn = 1; spxx_clk_ctl.s.srxdlck = 1; cvmx_write_csr(CVMX_SPXX_CLK_CTL(interface), spxx_clk_ctl.u64); __delay(1000 * MS); /* SRX0 clear the boot bit */ spxx_trn4_ctl.u64 = cvmx_read_csr(CVMX_SPXX_TRN4_CTL(interface)); spxx_trn4_ctl.s.clr_boot = 1; cvmx_write_csr(CVMX_SPXX_TRN4_CTL(interface), spxx_trn4_ctl.u64); /* Wait for the training sequence to complete */ cvmx_dprintf("SPI%d: Waiting for training\n", interface); __delay(1000 * MS); /* Wait a really long time here */ timeout_time = cvmx_get_cycle() + 1000ull * MS * 600; /* * The HRM says we must wait for 34 + 16 * MAXDIST training sequences. * We'll be pessimistic and wait for a lot more. */ rx_training_needed = 500; do { stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); if (stat.s.srxtrn && rx_training_needed) { rx_training_needed--; cvmx_write_csr(CVMX_SPXX_CLK_STAT(interface), stat.u64); stat.s.srxtrn = 0; } if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.srxtrn == 0); return 0; } /** * Callback to perform calendar data synchronization * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * @timeout: Timeout to wait for calendar data in seconds * * Returns Zero on success, non-zero error code on failure (will cause * SPI initialization to abort) */ int cvmx_spi_calendar_sync_cb(int interface, cvmx_spi_mode_t mode, int timeout) { uint64_t MS = cvmx_sysinfo_get()->cpu_clock_hz / 1000; if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { /* SRX0 interface should be good, send calendar data */ union cvmx_srxx_com_ctl srxx_com_ctl; cvmx_dprintf ("SPI%d: Rx is synchronized, start sending calendar data\n", interface); srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface)); srxx_com_ctl.s.inf_en = 1; srxx_com_ctl.s.st_en = 1; cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); } if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { /* STX0 has achieved sync */ /* The corespondant board should be sending calendar data */ /* Enable the STX0 STAT receiver. */ union cvmx_spxx_clk_stat stat; uint64_t timeout_time; union cvmx_stxx_com_ctl stxx_com_ctl; stxx_com_ctl.u64 = 0; stxx_com_ctl.s.st_en = 1; cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64); /* Waiting for calendar sync on STX0 STAT */ cvmx_dprintf("SPI%d: Waiting to sync on STX[%d] STAT\n", interface, interface); timeout_time = cvmx_get_cycle() + 1000ull * MS * timeout; /* SPX0_CLK_STAT - SPX0_CLK_STAT[STXCAL] should be 1 (bit10) */ do { stat.u64 = cvmx_read_csr(CVMX_SPXX_CLK_STAT(interface)); if (cvmx_get_cycle() > timeout_time) { cvmx_dprintf("SPI%d: Timeout\n", interface); return -1; } } while (stat.s.stxcal == 0); } return 0; } /** * Callback to handle interface up * * @interface: The identifier of the packet interface to configure and * use as a SPI interface. * @mode: The operating mode for the SPI interface. The interface * can operate as a full duplex (both Tx and Rx data paths * active) or as a halfplex (either the Tx data path is * active or the Rx data path is active, but not both). * * Returns Zero on success, non-zero error code on failure (will cause * SPI initialization to abort) */ int cvmx_spi_interface_up_cb(int interface, cvmx_spi_mode_t mode) { union cvmx_gmxx_rxx_frm_min gmxx_rxx_frm_min; union cvmx_gmxx_rxx_frm_max gmxx_rxx_frm_max; union cvmx_gmxx_rxx_jabber gmxx_rxx_jabber; if (mode & CVMX_SPI_MODE_RX_HALFPLEX) { union cvmx_srxx_com_ctl srxx_com_ctl; srxx_com_ctl.u64 = cvmx_read_csr(CVMX_SRXX_COM_CTL(interface)); srxx_com_ctl.s.inf_en = 1; cvmx_write_csr(CVMX_SRXX_COM_CTL(interface), srxx_com_ctl.u64); cvmx_dprintf("SPI%d: Rx is now up\n", interface); } if (mode & CVMX_SPI_MODE_TX_HALFPLEX) { union cvmx_stxx_com_ctl stxx_com_ctl; stxx_com_ctl.u64 = cvmx_read_csr(CVMX_STXX_COM_CTL(interface)); stxx_com_ctl.s.inf_en = 1; cvmx_write_csr(CVMX_STXX_COM_CTL(interface), stxx_com_ctl.u64); cvmx_dprintf("SPI%d: Tx is now up\n", interface); } gmxx_rxx_frm_min.u64 = 0; gmxx_rxx_frm_min.s.len = 64; cvmx_write_csr(CVMX_GMXX_RXX_FRM_MIN(0, interface), gmxx_rxx_frm_min.u64); gmxx_rxx_frm_max.u64 = 0; gmxx_rxx_frm_max.s.len = 64 * 1024 - 4; cvmx_write_csr(CVMX_GMXX_RXX_FRM_MAX(0, interface), gmxx_rxx_frm_max.u64); gmxx_rxx_jabber.u64 = 0; gmxx_rxx_jabber.s.cnt = 64 * 1024 - 4; cvmx_write_csr(CVMX_GMXX_RXX_JABBER(0, interface), gmxx_rxx_jabber.u64); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1