Contributors: 9
Author Tokens Token Proportion Commits Commit Proportion
David Daney 3069 58.38% 5 19.23%
Alan Stern 824 15.67% 1 3.85%
Aaro Koskinen 648 12.33% 9 34.62%
Steven J. Hill 402 7.65% 5 19.23%
Andreas Herrmann 233 4.43% 2 7.69%
Paul Martin 66 1.26% 1 3.85%
Nicholas Mc Guire 10 0.19% 1 3.85%
Rob Herring 3 0.06% 1 3.85%
Faidon Liambotis 2 0.04% 1 3.85%
Total 5257 26


/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2004-2017 Cavium, Inc.
 * Copyright (C) 2008 Wind River Systems
 */

#include <linux/etherdevice.h>
#include <linux/of_platform.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>

#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-helper-board.h>

#ifdef CONFIG_USB
#include <linux/usb/ehci_def.h>
#include <linux/usb/ehci_pdriver.h>
#include <linux/usb/ohci_pdriver.h>
#include <asm/octeon/cvmx-uctlx-defs.h>

#define CVMX_UAHCX_EHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000010ull))
#define CVMX_UAHCX_OHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000408ull))

static DEFINE_MUTEX(octeon2_usb_clocks_mutex);

static int octeon2_usb_clock_start_cnt;

static int __init octeon2_usb_reset(void)
{
	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
	u32 ucmd;

	if (!OCTEON_IS_OCTEON2())
		return 0;

	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
	if (clk_rst_ctl.s.hrst) {
		ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
		ucmd &= ~CMD_RUN;
		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
		mdelay(2);
		ucmd |= CMD_RESET;
		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
		ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
		ucmd |= CMD_RUN;
		cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
	}

	return 0;
}
arch_initcall(octeon2_usb_reset);

static void octeon2_usb_clocks_start(struct device *dev)
{
	u64 div;
	union cvmx_uctlx_if_ena if_ena;
	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
	int i;
	unsigned long io_clk_64_to_ns;
	u32 clock_rate = 12000000;
	bool is_crystal_clock = false;


	mutex_lock(&octeon2_usb_clocks_mutex);

	octeon2_usb_clock_start_cnt++;
	if (octeon2_usb_clock_start_cnt != 1)
		goto exit;

	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();

	if (dev->of_node) {
		struct device_node *uctl_node;
		const char *clock_type;

		uctl_node = of_get_parent(dev->of_node);
		if (!uctl_node) {
			dev_err(dev, "No UCTL device node\n");
			goto exit;
		}
		i = of_property_read_u32(uctl_node,
					 "refclk-frequency", &clock_rate);
		if (i) {
			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
			goto exit;
		}
		i = of_property_read_string(uctl_node,
					    "refclk-type", &clock_type);

		if (!i && strcmp("crystal", clock_type) == 0)
			is_crystal_clock = true;
	}

	/*
	 * Step 1: Wait for voltages stable.  That surely happened
	 * before starting the kernel.
	 *
	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
	 */
	if_ena.u64 = 0;
	if_ena.s.en = 1;
	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);

	for (i = 0; i <= 1; i++) {
		port_ctl_status.u64 =
			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
		port_ctl_status.s.txvreftune = 15;
		port_ctl_status.s.txrisetune = 1;
		port_ctl_status.s.txpreemphasistune = 1;
		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
			       port_ctl_status.u64);
	}

	/* Step 3: Configure the reference clock, PHY, and HCLK */
	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));

	/*
	 * If the UCTL looks like it has already been started, skip
	 * the initialization, otherwise bus errors are obtained.
	 */
	if (clk_rst_ctl.s.hrst)
		goto end_clock;
	/* 3a */
	clk_rst_ctl.s.p_por = 1;
	clk_rst_ctl.s.hrst = 0;
	clk_rst_ctl.s.p_prst = 0;
	clk_rst_ctl.s.h_clkdiv_rst = 0;
	clk_rst_ctl.s.o_clkdiv_rst = 0;
	clk_rst_ctl.s.h_clkdiv_en = 0;
	clk_rst_ctl.s.o_clkdiv_en = 0;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 3b */
	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
	switch (clock_rate) {
	default:
		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
			clock_rate);
		/* Fall through */
	case 12000000:
		clk_rst_ctl.s.p_refclk_div = 0;
		break;
	case 24000000:
		clk_rst_ctl.s.p_refclk_div = 1;
		break;
	case 48000000:
		clk_rst_ctl.s.p_refclk_div = 2;
		break;
	}
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 3c */
	div = octeon_get_io_clock_rate() / 130000000ull;

	switch (div) {
	case 0:
		div = 1;
		break;
	case 1:
	case 2:
	case 3:
	case 4:
		break;
	case 5:
		div = 4;
		break;
	case 6:
	case 7:
		div = 6;
		break;
	case 8:
	case 9:
	case 10:
	case 11:
		div = 8;
		break;
	default:
		div = 12;
		break;
	}
	clk_rst_ctl.s.h_div = div;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
	/* Read it back, */
	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
	clk_rst_ctl.s.h_clkdiv_en = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
	/* 3d */
	clk_rst_ctl.s.h_clkdiv_rst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 3e: delay 64 io clocks */
	ndelay(io_clk_64_to_ns);

	/*
	 * Step 4: Program the power-on reset field in the UCTL
	 * clock-reset-control register.
	 */
	clk_rst_ctl.s.p_por = 0;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* Step 5:    Wait 3 ms for the PHY clock to start. */
	mdelay(3);

	/* Steps 6..9 for ATE only, are skipped. */

	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
	/* 10a */
	clk_rst_ctl.s.o_clkdiv_rst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 10b */
	clk_rst_ctl.s.o_clkdiv_en = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* 10c */
	ndelay(io_clk_64_to_ns);

	/*
	 * Step 11: Program the PHY reset field:
	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
	 */
	clk_rst_ctl.s.p_prst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* Step 11b */
	udelay(1);

	/* Step 11c */
	clk_rst_ctl.s.p_prst = 0;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* Step 11d */
	mdelay(1);

	/* Step 11e */
	clk_rst_ctl.s.p_prst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

	/* Step 12: Wait 1 uS. */
	udelay(1);

	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
	clk_rst_ctl.s.hrst = 1;
	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);

end_clock:
	/* Set uSOF cycle period to 60,000 bits. */
	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);

exit:
	mutex_unlock(&octeon2_usb_clocks_mutex);
}

static void octeon2_usb_clocks_stop(void)
{
	mutex_lock(&octeon2_usb_clocks_mutex);
	octeon2_usb_clock_start_cnt--;
	mutex_unlock(&octeon2_usb_clocks_mutex);
}

static int octeon_ehci_power_on(struct platform_device *pdev)
{
	octeon2_usb_clocks_start(&pdev->dev);
	return 0;
}

static void octeon_ehci_power_off(struct platform_device *pdev)
{
	octeon2_usb_clocks_stop();
}

static struct usb_ehci_pdata octeon_ehci_pdata = {
	/* Octeon EHCI matches CPU endianness. */
#ifdef __BIG_ENDIAN
	.big_endian_mmio	= 1,
#endif
	/*
	 * We can DMA from anywhere. But the descriptors must be in
	 * the lower 4GB.
	 */
	.dma_mask_64	= 0,
	.power_on	= octeon_ehci_power_on,
	.power_off	= octeon_ehci_power_off,
};

static void __init octeon_ehci_hw_start(struct device *dev)
{
	union cvmx_uctlx_ehci_ctl ehci_ctl;

	octeon2_usb_clocks_start(dev);

	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
	/* Use 64-bit addressing. */
	ehci_ctl.s.ehci_64b_addr_en = 1;
	ehci_ctl.s.l2c_addr_msb = 0;
#ifdef __BIG_ENDIAN
	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
#else
	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
	ehci_ctl.s.inv_reg_a2 = 1;
#endif
	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);

	octeon2_usb_clocks_stop();
}

static int __init octeon_ehci_device_init(void)
{
	struct platform_device *pd;
	struct device_node *ehci_node;
	int ret = 0;

	ehci_node = of_find_node_by_name(NULL, "ehci");
	if (!ehci_node)
		return 0;

	pd = of_find_device_by_node(ehci_node);
	of_node_put(ehci_node);
	if (!pd)
		return 0;

	pd->dev.platform_data = &octeon_ehci_pdata;
	octeon_ehci_hw_start(&pd->dev);

	return ret;
}
device_initcall(octeon_ehci_device_init);

static int octeon_ohci_power_on(struct platform_device *pdev)
{
	octeon2_usb_clocks_start(&pdev->dev);
	return 0;
}

static void octeon_ohci_power_off(struct platform_device *pdev)
{
	octeon2_usb_clocks_stop();
}

static struct usb_ohci_pdata octeon_ohci_pdata = {
	/* Octeon OHCI matches CPU endianness. */
#ifdef __BIG_ENDIAN
	.big_endian_mmio	= 1,
#endif
	.power_on	= octeon_ohci_power_on,
	.power_off	= octeon_ohci_power_off,
};

static void __init octeon_ohci_hw_start(struct device *dev)
{
	union cvmx_uctlx_ohci_ctl ohci_ctl;

	octeon2_usb_clocks_start(dev);

	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
	ohci_ctl.s.l2c_addr_msb = 0;
#ifdef __BIG_ENDIAN
	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
#else
	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
	ohci_ctl.s.inv_reg_a2 = 1;
#endif
	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);

	octeon2_usb_clocks_stop();
}

static int __init octeon_ohci_device_init(void)
{
	struct platform_device *pd;
	struct device_node *ohci_node;
	int ret = 0;

	ohci_node = of_find_node_by_name(NULL, "ohci");
	if (!ohci_node)
		return 0;

	pd = of_find_device_by_node(ohci_node);
	of_node_put(ohci_node);
	if (!pd)
		return 0;

	pd->dev.platform_data = &octeon_ohci_pdata;
	octeon_ohci_hw_start(&pd->dev);

	return ret;
}
device_initcall(octeon_ohci_device_init);

#endif /* CONFIG_USB */

/* Octeon Random Number Generator.  */
static int __init octeon_rng_device_init(void)
{
	struct platform_device *pd;
	int ret = 0;

	struct resource rng_resources[] = {
		{
			.flags	= IORESOURCE_MEM,
			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
		}, {
			.flags	= IORESOURCE_MEM,
			.start	= cvmx_build_io_address(8, 0),
			.end	= cvmx_build_io_address(8, 0) + 0x7
		}
	};

	pd = platform_device_alloc("octeon_rng", -1);
	if (!pd) {
		ret = -ENOMEM;
		goto out;
	}

	ret = platform_device_add_resources(pd, rng_resources,
					    ARRAY_SIZE(rng_resources));
	if (ret)
		goto fail;

	ret = platform_device_add(pd);
	if (ret)
		goto fail;

	return ret;
fail:
	platform_device_put(pd);

out:
	return ret;
}
device_initcall(octeon_rng_device_init);

static const struct of_device_id octeon_ids[] __initconst = {
	{ .compatible = "simple-bus", },
	{ .compatible = "cavium,octeon-6335-uctl", },
	{ .compatible = "cavium,octeon-5750-usbn", },
	{ .compatible = "cavium,octeon-3860-bootbus", },
	{ .compatible = "cavium,mdio-mux", },
	{ .compatible = "gpio-leds", },
	{ .compatible = "cavium,octeon-7130-usb-uctl", },
	{},
};

static bool __init octeon_has_88e1145(void)
{
	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
}

static bool __init octeon_has_fixed_link(int ipd_port)
{
	switch (cvmx_sysinfo_get()->board_type) {
	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
	case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
	case CVMX_BOARD_TYPE_CUST_NB5:
	case CVMX_BOARD_TYPE_EBH3100:
		/* Port 1 on these boards is always gigabit. */
		return ipd_port == 1;
	case CVMX_BOARD_TYPE_BBGW_REF:
		/* Ports 0 and 1 connect to the switch. */
		return ipd_port == 0 || ipd_port == 1;
	}
	return false;
}

static void __init octeon_fdt_set_phy(int eth, int phy_addr)
{
	const __be32 *phy_handle;
	const __be32 *alt_phy_handle;
	const __be32 *reg;
	u32 phandle;
	int phy;
	int alt_phy;
	const char *p;
	int current_len;
	char new_name[20];

	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
	if (!phy_handle)
		return;

	phandle = be32_to_cpup(phy_handle);
	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);

	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
	if (alt_phy_handle) {
		u32 alt_phandle = be32_to_cpup(alt_phy_handle);

		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
	} else {
		alt_phy = -1;
	}

	if (phy_addr < 0 || phy < 0) {
		/* Delete the PHY things */
		fdt_nop_property(initial_boot_params, eth, "phy-handle");
		/* This one may fail */
		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
		if (phy >= 0)
			fdt_nop_node(initial_boot_params, phy);
		if (alt_phy >= 0)
			fdt_nop_node(initial_boot_params, alt_phy);
		return;
	}

	if (phy_addr >= 256 && alt_phy > 0) {
		const struct fdt_property *phy_prop;
		struct fdt_property *alt_prop;
		fdt32_t phy_handle_name;

		/* Use the alt phy node instead.*/
		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
		phy_handle_name = phy_prop->nameoff;
		fdt_nop_node(initial_boot_params, phy);
		fdt_nop_property(initial_boot_params, eth, "phy-handle");
		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
		alt_prop->nameoff = phy_handle_name;
		phy = alt_phy;
	}

	phy_addr &= 0xff;

	if (octeon_has_88e1145()) {
		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
		memset(new_name, 0, sizeof(new_name));
		strcpy(new_name, "marvell,88e1145");
		p = fdt_getprop(initial_boot_params, phy, "compatible",
				&current_len);
		if (p && current_len >= strlen(new_name))
			fdt_setprop_inplace(initial_boot_params, phy,
					"compatible", new_name, current_len);
	}

	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
	if (phy_addr == be32_to_cpup(reg))
		return;

	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);

	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);

	p = fdt_get_name(initial_boot_params, phy, &current_len);
	if (p && current_len == strlen(new_name))
		fdt_set_name(initial_boot_params, phy, new_name);
	else
		pr_err("Error: could not rename ethernet phy: <%s>", p);
}

static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
{
	const u8 *old_mac;
	int old_len;
	u8 new_mac[6];
	u64 mac = *pmac;
	int r;

	old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
			      &old_len);
	if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
		return;

	new_mac[0] = (mac >> 40) & 0xff;
	new_mac[1] = (mac >> 32) & 0xff;
	new_mac[2] = (mac >> 24) & 0xff;
	new_mac[3] = (mac >> 16) & 0xff;
	new_mac[4] = (mac >> 8) & 0xff;
	new_mac[5] = mac & 0xff;

	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
				new_mac, sizeof(new_mac));

	if (r) {
		pr_err("Setting \"local-mac-address\" failed %d", r);
		return;
	}
	*pmac = mac + 1;
}

static void __init octeon_fdt_rm_ethernet(int node)
{
	const __be32 *phy_handle;

	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
	if (phy_handle) {
		u32 ph = be32_to_cpup(phy_handle);
		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);

		if (p >= 0)
			fdt_nop_node(initial_boot_params, p);
	}
	fdt_nop_node(initial_boot_params, node);
}

static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
{
	fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
				 rx_delay);
	fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
				 tx_delay);
}

static void __init octeon_rx_tx_delay(int eth, int iface, int port)
{
	switch (cvmx_sysinfo_get()->board_type) {
	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
		if (iface == 0) {
			if (port == 0) {
				/*
				 * Boards with gigabit WAN ports need a
				 * different setting that is compatible with
				 * 100 Mbit settings
				 */
				_octeon_rx_tx_delay(eth, 0xc, 0x0c);
				return;
			} else if (port == 1) {
				/* Different config for switch port. */
				_octeon_rx_tx_delay(eth, 0x0, 0x0);
				return;
			}
		}
		break;
	case CVMX_BOARD_TYPE_UBNT_E100:
		if (iface == 0 && port <= 2) {
			_octeon_rx_tx_delay(eth, 0x0, 0x10);
			return;
		}
		break;
	}
	fdt_nop_property(initial_boot_params, eth, "rx-delay");
	fdt_nop_property(initial_boot_params, eth, "tx-delay");
}

static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
{
	char name_buffer[20];
	int eth;
	int phy_addr;
	int ipd_port;
	int fixed_link;

	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
	if (eth < 0)
		return;
	if (p > max) {
		pr_debug("Deleting port %x:%x\n", i, p);
		octeon_fdt_rm_ethernet(eth);
		return;
	}
	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
	else
		ipd_port = 16 * i + p;

	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
	octeon_fdt_set_phy(eth, phy_addr);

	fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
	if (fixed_link < 0)
		WARN_ON(octeon_has_fixed_link(ipd_port));
	else if (!octeon_has_fixed_link(ipd_port))
		fdt_nop_node(initial_boot_params, fixed_link);
	octeon_rx_tx_delay(eth, i, p);
}

static void __init octeon_fdt_pip_iface(int pip, int idx)
{
	char name_buffer[20];
	int iface;
	int p;
	int count = 0;

	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
	if (iface < 0)
		return;

	if (cvmx_helper_interface_enumerate(idx) == 0)
		count = cvmx_helper_ports_on_interface(idx);

	for (p = 0; p < 16; p++)
		octeon_fdt_pip_port(iface, idx, p, count - 1);
}

void __init octeon_fill_mac_addresses(void)
{
	const char *alias_prop;
	char name_buffer[20];
	u64 mac_addr_base;
	int aliases;
	int pip;
	int i;

	aliases = fdt_path_offset(initial_boot_params, "/aliases");
	if (aliases < 0)
		return;

	mac_addr_base =
		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
		 (octeon_bootinfo->mac_addr_base[5] & 0xffull);

	for (i = 0; i < 2; i++) {
		int mgmt;

		snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					 name_buffer, NULL);
		if (!alias_prop)
			continue;
		mgmt = fdt_path_offset(initial_boot_params, alias_prop);
		if (mgmt < 0)
			continue;
		octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
	}

	alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
	if (!alias_prop)
		return;

	pip = fdt_path_offset(initial_boot_params, alias_prop);
	if (pip < 0)
		return;

	for (i = 0; i <= 4; i++) {
		int iface;
		int p;

		snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
		iface = fdt_subnode_offset(initial_boot_params, pip,
					   name_buffer);
		if (iface < 0)
			continue;
		for (p = 0; p < 16; p++) {
			int eth;

			snprintf(name_buffer, sizeof(name_buffer),
				 "ethernet@%x", p);
			eth = fdt_subnode_offset(initial_boot_params, iface,
						 name_buffer);
			if (eth < 0)
				continue;
			octeon_fdt_set_mac_addr(eth, &mac_addr_base);
		}
	}
}

int __init octeon_prune_device_tree(void)
{
	int i, max_port, uart_mask;
	const char *pip_path;
	const char *alias_prop;
	char name_buffer[20];
	int aliases;

	if (fdt_check_header(initial_boot_params))
		panic("Corrupt Device Tree.");

	WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
	     "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
	     cvmx_board_type_to_string(octeon_bootinfo->board_type));

	aliases = fdt_path_offset(initial_boot_params, "/aliases");
	if (aliases < 0) {
		pr_err("Error: No /aliases node in device tree.");
		return -EINVAL;
	}

	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
		max_port = 2;
	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
		max_port = 1;
	else
		max_port = 0;

	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
		max_port = 0;

	for (i = 0; i < 2; i++) {
		int mgmt;

		snprintf(name_buffer, sizeof(name_buffer),
			 "mix%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);
		if (alias_prop) {
			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
			if (mgmt < 0)
				continue;
			if (i >= max_port) {
				pr_debug("Deleting mix%d\n", i);
				octeon_fdt_rm_ethernet(mgmt);
				fdt_nop_property(initial_boot_params, aliases,
						 name_buffer);
			} else {
				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);

				octeon_fdt_set_phy(mgmt, phy_addr);
			}
		}
	}

	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
	if (pip_path) {
		int pip = fdt_path_offset(initial_boot_params, pip_path);

		if (pip	 >= 0)
			for (i = 0; i <= 4; i++)
				octeon_fdt_pip_iface(pip, i);
	}

	/* I2C */
	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
	    OCTEON_IS_MODEL(OCTEON_CN56XX))
		max_port = 2;
	else
		max_port = 1;

	for (i = 0; i < 2; i++) {
		int i2c;

		snprintf(name_buffer, sizeof(name_buffer),
			 "twsi%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);

		if (alias_prop) {
			i2c = fdt_path_offset(initial_boot_params, alias_prop);
			if (i2c < 0)
				continue;
			if (i >= max_port) {
				pr_debug("Deleting twsi%d\n", i);
				fdt_nop_node(initial_boot_params, i2c);
				fdt_nop_property(initial_boot_params, aliases,
						 name_buffer);
			}
		}
	}

	/* SMI/MDIO */
	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
		max_port = 4;
	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
		 OCTEON_IS_MODEL(OCTEON_CN56XX))
		max_port = 2;
	else
		max_port = 1;

	for (i = 0; i < 2; i++) {
		int i2c;

		snprintf(name_buffer, sizeof(name_buffer),
			 "smi%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);
		if (alias_prop) {
			i2c = fdt_path_offset(initial_boot_params, alias_prop);
			if (i2c < 0)
				continue;
			if (i >= max_port) {
				pr_debug("Deleting smi%d\n", i);
				fdt_nop_node(initial_boot_params, i2c);
				fdt_nop_property(initial_boot_params, aliases,
						 name_buffer);
			}
		}
	}

	/* Serial */
	uart_mask = 3;

	/* Right now CN52XX is the only chip with a third uart */
	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
		uart_mask |= 4; /* uart2 */

	for (i = 0; i < 3; i++) {
		int uart;

		snprintf(name_buffer, sizeof(name_buffer),
			 "uart%d", i);
		alias_prop = fdt_getprop(initial_boot_params, aliases,
					name_buffer, NULL);

		if (alias_prop) {
			uart = fdt_path_offset(initial_boot_params, alias_prop);
			if (uart_mask & (1 << i)) {
				__be32 f;

				f = cpu_to_be32(octeon_get_io_clock_rate());
				fdt_setprop_inplace(initial_boot_params,
						    uart, "clock-frequency",
						    &f, sizeof(f));
				continue;
			}
			pr_debug("Deleting uart%d\n", i);
			fdt_nop_node(initial_boot_params, uart);
			fdt_nop_property(initial_boot_params, aliases,
					 name_buffer);
		}
	}

	/* Compact Flash */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "cf0", NULL);
	if (alias_prop) {
		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
		unsigned long base_ptr, region_base, region_size;
		unsigned long region1_base = 0;
		unsigned long region1_size = 0;
		int cs, bootbus;
		bool is_16bit = false;
		bool is_true_ide = false;
		__be32 new_reg[6];
		__be32 *ranges;
		int len;

		int cf = fdt_path_offset(initial_boot_params, alias_prop);

		base_ptr = 0;
		if (octeon_bootinfo->major_version == 1
			&& octeon_bootinfo->minor_version >= 1) {
			if (octeon_bootinfo->compact_flash_common_base_addr)
				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
		} else {
			base_ptr = 0x1d000800;
		}

		if (!base_ptr)
			goto no_cf;

		/* Find CS0 region. */
		for (cs = 0; cs < 8; cs++) {
			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
			region_base = mio_boot_reg_cfg.s.base << 16;
			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
				&& base_ptr < region_base + region_size) {
				is_16bit = mio_boot_reg_cfg.s.width;
				break;
			}
		}
		if (cs >= 7) {
			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
			goto no_cf;
		}

		if (!(base_ptr & 0xfffful)) {
			/*
			 * Boot loader signals availability of DMA (true_ide
			 * mode) by setting low order bits of base_ptr to
			 * zero.
			 */

			/* Asume that CS1 immediately follows. */
			mio_boot_reg_cfg.u64 =
				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
			region1_base = mio_boot_reg_cfg.s.base << 16;
			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
			if (!mio_boot_reg_cfg.s.en)
				goto no_cf;
			is_true_ide = true;

		} else {
			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
			if (!is_16bit) {
				__be32 width = cpu_to_be32(8);

				fdt_setprop_inplace(initial_boot_params, cf,
						"cavium,bus-width", &width, sizeof(width));
			}
		}
		new_reg[0] = cpu_to_be32(cs);
		new_reg[1] = cpu_to_be32(0);
		new_reg[2] = cpu_to_be32(0x10000);
		new_reg[3] = cpu_to_be32(cs + 1);
		new_reg[4] = cpu_to_be32(0);
		new_reg[5] = cpu_to_be32(0x10000);
		fdt_setprop_inplace(initial_boot_params, cf,
				    "reg",  new_reg, sizeof(new_reg));

		bootbus = fdt_parent_offset(initial_boot_params, cf);
		if (bootbus < 0)
			goto no_cf;
		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
		if (!ranges || len < (5 * 8 * sizeof(__be32)))
			goto no_cf;

		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
		if (is_true_ide) {
			cs++;
			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
		}
		goto end_cf;
no_cf:
		fdt_nop_node(initial_boot_params, cf);

end_cf:
		;
	}

	/* 8 char LED */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "led0", NULL);
	if (alias_prop) {
		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
		unsigned long base_ptr, region_base, region_size;
		int cs, bootbus;
		__be32 new_reg[6];
		__be32 *ranges;
		int len;
		int led = fdt_path_offset(initial_boot_params, alias_prop);

		base_ptr = octeon_bootinfo->led_display_base_addr;
		if (base_ptr == 0)
			goto no_led;
		/* Find CS0 region. */
		for (cs = 0; cs < 8; cs++) {
			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
			region_base = mio_boot_reg_cfg.s.base << 16;
			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
				&& base_ptr < region_base + region_size)
				break;
		}

		if (cs > 7)
			goto no_led;

		new_reg[0] = cpu_to_be32(cs);
		new_reg[1] = cpu_to_be32(0x20);
		new_reg[2] = cpu_to_be32(0x20);
		new_reg[3] = cpu_to_be32(cs);
		new_reg[4] = cpu_to_be32(0);
		new_reg[5] = cpu_to_be32(0x20);
		fdt_setprop_inplace(initial_boot_params, led,
				    "reg",  new_reg, sizeof(new_reg));

		bootbus = fdt_parent_offset(initial_boot_params, led);
		if (bootbus < 0)
			goto no_led;
		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
		if (!ranges || len < (5 * 8 * sizeof(__be32)))
			goto no_led;

		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
		goto end_led;

no_led:
		fdt_nop_node(initial_boot_params, led);
end_led:
		;
	}

#ifdef CONFIG_USB
	/* OHCI/UHCI USB */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "uctl", NULL);
	if (alias_prop) {
		int uctl = fdt_path_offset(initial_boot_params, alias_prop);

		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
			pr_debug("Deleting uctl\n");
			fdt_nop_node(initial_boot_params, uctl);
			fdt_nop_property(initial_boot_params, aliases, "uctl");
		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
			/* Missing "refclk-type" defaults to crystal. */
			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
		}
	}

	/* DWC2 USB */
	alias_prop = fdt_getprop(initial_boot_params, aliases,
				 "usbn", NULL);
	if (alias_prop) {
		int usbn = fdt_path_offset(initial_boot_params, alias_prop);

		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
			pr_debug("Deleting usbn\n");
			fdt_nop_node(initial_boot_params, usbn);
			fdt_nop_property(initial_boot_params, aliases, "usbn");
		} else  {
			__be32 new_f[1];
			enum cvmx_helper_board_usb_clock_types c;

			c = __cvmx_helper_board_usb_get_clock_type();
			switch (c) {
			case USB_CLOCK_TYPE_REF_48:
				new_f[0] = cpu_to_be32(48000000);
				fdt_setprop_inplace(initial_boot_params, usbn,
						    "refclk-frequency",  new_f, sizeof(new_f));
				/* Fall through ...*/
			case USB_CLOCK_TYPE_REF_12:
				/* Missing "refclk-type" defaults to external. */
				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
				break;
			default:
				break;
			}
		}
	}
#endif

	return 0;
}

static int __init octeon_publish_devices(void)
{
	return of_platform_populate(NULL, octeon_ids, NULL, NULL);
}
arch_initcall(octeon_publish_devices);