Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralf Baechle | 1347 | 15.31% | 25 | 13.09% |
James Hogan | 1224 | 13.92% | 17 | 8.90% |
Maciej W. Rozycki | 1211 | 13.77% | 12 | 6.28% |
Kelvin Cheung | 1013 | 11.52% | 1 | 0.52% |
Paul Burton | 753 | 8.56% | 26 | 13.61% |
Markos Chandras | 518 | 5.89% | 11 | 5.76% |
Leonid Yegoshin | 426 | 4.84% | 9 | 4.71% |
Steven J. Hill | 315 | 3.58% | 9 | 4.71% |
Huacai Chen | 300 | 3.41% | 12 | 6.28% |
Jayachandran C | 280 | 3.18% | 6 | 3.14% |
David Daney | 259 | 2.94% | 16 | 8.38% |
Andrew Morton | 236 | 2.68% | 2 | 1.05% |
Kevin Cernekee | 181 | 2.06% | 5 | 2.62% |
Lars-Peter Clausen | 72 | 0.82% | 1 | 0.52% |
Florian Fainelli | 57 | 0.65% | 3 | 1.57% |
Manuel Lauss | 53 | 0.60% | 3 | 1.57% |
Aurelien Jarno | 53 | 0.60% | 1 | 0.52% |
Marc St-Jean | 51 | 0.58% | 1 | 0.52% |
Joshua Kinard | 50 | 0.57% | 2 | 1.05% |
Pete Popov | 48 | 0.55% | 2 | 1.05% |
Matt Redfearn | 46 | 0.52% | 1 | 0.52% |
Guenter Roeck | 40 | 0.45% | 1 | 0.52% |
Maxime Bizon | 39 | 0.44% | 1 | 0.52% |
Robert Millan | 34 | 0.39% | 2 | 1.05% |
Yoichi Yuasa | 25 | 0.28% | 1 | 0.52% |
Fuxin Zhang | 25 | 0.28% | 1 | 0.52% |
Marcin Nowakowski | 23 | 0.26% | 2 | 1.05% |
Paul Cercueil | 20 | 0.23% | 1 | 0.52% |
Chris Dearman | 16 | 0.18% | 3 | 1.57% |
John Crispin | 15 | 0.17% | 1 | 0.52% |
Zubair Lutfullah Kakakhel | 12 | 0.14% | 1 | 0.52% |
Franck Bui-Huu | 11 | 0.13% | 1 | 0.52% |
Andrew Isaacson | 10 | 0.11% | 1 | 0.52% |
Al Cooper | 9 | 0.10% | 1 | 0.52% |
Mathieu Malaterre | 7 | 0.08% | 1 | 0.52% |
Paul Gortmaker | 4 | 0.05% | 2 | 1.05% |
Daniel Laird | 3 | 0.03% | 1 | 0.52% |
Yonghong Song | 3 | 0.03% | 1 | 0.52% |
Wu Zhangjin | 2 | 0.02% | 1 | 0.52% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.52% |
Thiemo Seufer | 2 | 0.02% | 1 | 0.52% |
Linus Torvalds | 1 | 0.01% | 1 | 0.52% |
Total | 8796 | 191 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Processor capabilities determination functions. * * Copyright (C) xxxx the Anonymous * Copyright (C) 1994 - 2006 Ralf Baechle * Copyright (C) 2003, 2004 Maciej W. Rozycki * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/ptrace.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/export.h> #include <asm/bugs.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/cpu-type.h> #include <asm/fpu.h> #include <asm/mipsregs.h> #include <asm/mipsmtregs.h> #include <asm/msa.h> #include <asm/watch.h> #include <asm/elf.h> #include <asm/pgtable-bits.h> #include <asm/spram.h> #include <linux/uaccess.h> /* Hardware capabilities */ unsigned int elf_hwcap __read_mostly; EXPORT_SYMBOL_GPL(elf_hwcap); #ifdef CONFIG_MIPS_FP_SUPPORT /* * Get the FPU Implementation/Revision. */ static inline unsigned long cpu_get_fpu_id(void) { unsigned long tmp, fpu_id; tmp = read_c0_status(); __enable_fpu(FPU_AS_IS); fpu_id = read_32bit_cp1_register(CP1_REVISION); write_c0_status(tmp); return fpu_id; } /* * Check if the CPU has an external FPU. */ static inline int __cpu_has_fpu(void) { return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE; } /* * Determine the FCSR mask for FPU hardware. */ static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c) { unsigned long sr, mask, fcsr, fcsr0, fcsr1; fcsr = c->fpu_csr31; mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM; sr = read_c0_status(); __enable_fpu(FPU_AS_IS); fcsr0 = fcsr & mask; write_32bit_cp1_register(CP1_STATUS, fcsr0); fcsr0 = read_32bit_cp1_register(CP1_STATUS); fcsr1 = fcsr | ~mask; write_32bit_cp1_register(CP1_STATUS, fcsr1); fcsr1 = read_32bit_cp1_register(CP1_STATUS); write_32bit_cp1_register(CP1_STATUS, fcsr); write_c0_status(sr); c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask; } /* * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes * supported by FPU hardware. */ static void cpu_set_fpu_2008(struct cpuinfo_mips *c) { if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { unsigned long sr, fir, fcsr, fcsr0, fcsr1; sr = read_c0_status(); __enable_fpu(FPU_AS_IS); fir = read_32bit_cp1_register(CP1_REVISION); if (fir & MIPS_FPIR_HAS2008) { fcsr = read_32bit_cp1_register(CP1_STATUS); fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); write_32bit_cp1_register(CP1_STATUS, fcsr0); fcsr0 = read_32bit_cp1_register(CP1_STATUS); fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008; write_32bit_cp1_register(CP1_STATUS, fcsr1); fcsr1 = read_32bit_cp1_register(CP1_STATUS); write_32bit_cp1_register(CP1_STATUS, fcsr); if (!(fcsr0 & FPU_CSR_NAN2008)) c->options |= MIPS_CPU_NAN_LEGACY; if (fcsr1 & FPU_CSR_NAN2008) c->options |= MIPS_CPU_NAN_2008; if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008) c->fpu_msk31 &= ~FPU_CSR_ABS2008; else c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008; if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008) c->fpu_msk31 &= ~FPU_CSR_NAN2008; else c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008; } else { c->options |= MIPS_CPU_NAN_LEGACY; } write_c0_status(sr); } else { c->options |= MIPS_CPU_NAN_LEGACY; } } /* * IEEE 754 conformance mode to use. Affects the NaN encoding and the * ABS.fmt/NEG.fmt execution mode. */ static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT; /* * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes * to support by the FPU emulator according to the IEEE 754 conformance * mode selected. Note that "relaxed" straps the emulator so that it * allows 2008-NaN binaries even for legacy processors. */ static void cpu_set_nofpu_2008(struct cpuinfo_mips *c) { c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY); c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008); switch (ieee754) { case STRICT: if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY; } else { c->options |= MIPS_CPU_NAN_LEGACY; c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; } break; case LEGACY: c->options |= MIPS_CPU_NAN_LEGACY; c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; break; case STD2008: c->options |= MIPS_CPU_NAN_2008; c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008; break; case RELAXED: c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY; break; } } /* * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode * according to the "ieee754=" parameter. */ static void cpu_set_nan_2008(struct cpuinfo_mips *c) { switch (ieee754) { case STRICT: mips_use_nan_legacy = !!cpu_has_nan_legacy; mips_use_nan_2008 = !!cpu_has_nan_2008; break; case LEGACY: mips_use_nan_legacy = !!cpu_has_nan_legacy; mips_use_nan_2008 = !cpu_has_nan_legacy; break; case STD2008: mips_use_nan_legacy = !cpu_has_nan_2008; mips_use_nan_2008 = !!cpu_has_nan_2008; break; case RELAXED: mips_use_nan_legacy = true; mips_use_nan_2008 = true; break; } } /* * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override * settings: * * strict: accept binaries that request a NaN encoding supported by the FPU * legacy: only accept legacy-NaN binaries * 2008: only accept 2008-NaN binaries * relaxed: accept any binaries regardless of whether supported by the FPU */ static int __init ieee754_setup(char *s) { if (!s) return -1; else if (!strcmp(s, "strict")) ieee754 = STRICT; else if (!strcmp(s, "legacy")) ieee754 = LEGACY; else if (!strcmp(s, "2008")) ieee754 = STD2008; else if (!strcmp(s, "relaxed")) ieee754 = RELAXED; else return -1; if (!(boot_cpu_data.options & MIPS_CPU_FPU)) cpu_set_nofpu_2008(&boot_cpu_data); cpu_set_nan_2008(&boot_cpu_data); return 0; } early_param("ieee754", ieee754_setup); /* * Set the FIR feature flags for the FPU emulator. */ static void cpu_set_nofpu_id(struct cpuinfo_mips *c) { u32 value; value = 0; if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) value |= MIPS_FPIR_D | MIPS_FPIR_S; if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W; if (c->options & MIPS_CPU_NAN_2008) value |= MIPS_FPIR_HAS2008; c->fpu_id = value; } /* Determined FPU emulator mask to use for the boot CPU with "nofpu". */ static unsigned int mips_nofpu_msk31; /* * Set options for FPU hardware. */ static void cpu_set_fpu_opts(struct cpuinfo_mips *c) { c->fpu_id = cpu_get_fpu_id(); mips_nofpu_msk31 = c->fpu_msk31; if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { if (c->fpu_id & MIPS_FPIR_3D) c->ases |= MIPS_ASE_MIPS3D; if (c->fpu_id & MIPS_FPIR_UFRP) c->options |= MIPS_CPU_UFR; if (c->fpu_id & MIPS_FPIR_FREP) c->options |= MIPS_CPU_FRE; } cpu_set_fpu_fcsr_mask(c); cpu_set_fpu_2008(c); cpu_set_nan_2008(c); } /* * Set options for the FPU emulator. */ static void cpu_set_nofpu_opts(struct cpuinfo_mips *c) { c->options &= ~MIPS_CPU_FPU; c->fpu_msk31 = mips_nofpu_msk31; cpu_set_nofpu_2008(c); cpu_set_nan_2008(c); cpu_set_nofpu_id(c); } static int mips_fpu_disabled; static int __init fpu_disable(char *s) { cpu_set_nofpu_opts(&boot_cpu_data); mips_fpu_disabled = 1; return 1; } __setup("nofpu", fpu_disable); #else /* !CONFIG_MIPS_FP_SUPPORT */ #define mips_fpu_disabled 1 static inline unsigned long cpu_get_fpu_id(void) { return FPIR_IMP_NONE; } static inline int __cpu_has_fpu(void) { return 0; } static void cpu_set_fpu_opts(struct cpuinfo_mips *c) { /* no-op */ } static void cpu_set_nofpu_opts(struct cpuinfo_mips *c) { /* no-op */ } #endif /* CONFIG_MIPS_FP_SUPPORT */ static inline unsigned long cpu_get_msa_id(void) { unsigned long status, msa_id; status = read_c0_status(); __enable_fpu(FPU_64BIT); enable_msa(); msa_id = read_msa_ir(); disable_msa(); write_c0_status(status); return msa_id; } static int mips_dsp_disabled; static int __init dsp_disable(char *s) { cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P); mips_dsp_disabled = 1; return 1; } __setup("nodsp", dsp_disable); static int mips_htw_disabled; static int __init htw_disable(char *s) { mips_htw_disabled = 1; cpu_data[0].options &= ~MIPS_CPU_HTW; write_c0_pwctl(read_c0_pwctl() & ~(1 << MIPS_PWCTL_PWEN_SHIFT)); return 1; } __setup("nohtw", htw_disable); static int mips_ftlb_disabled; static int mips_has_ftlb_configured; enum ftlb_flags { FTLB_EN = 1 << 0, FTLB_SET_PROB = 1 << 1, }; static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags); static int __init ftlb_disable(char *s) { unsigned int config4, mmuextdef; /* * If the core hasn't done any FTLB configuration, there is nothing * for us to do here. */ if (!mips_has_ftlb_configured) return 1; /* Disable it in the boot cpu */ if (set_ftlb_enable(&cpu_data[0], 0)) { pr_warn("Can't turn FTLB off\n"); return 1; } config4 = read_c0_config4(); /* Check that FTLB has been disabled */ mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF; /* MMUSIZEEXT == VTLB ON, FTLB OFF */ if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) { /* This should never happen */ pr_warn("FTLB could not be disabled!\n"); return 1; } mips_ftlb_disabled = 1; mips_has_ftlb_configured = 0; /* * noftlb is mainly used for debug purposes so print * an informative message instead of using pr_debug() */ pr_info("FTLB has been disabled\n"); /* * Some of these bits are duplicated in the decode_config4. * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case * once FTLB has been disabled so undo what decode_config4 did. */ cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways * cpu_data[0].tlbsizeftlbsets; cpu_data[0].tlbsizeftlbsets = 0; cpu_data[0].tlbsizeftlbways = 0; return 1; } __setup("noftlb", ftlb_disable); /* * Check if the CPU has per tc perf counters */ static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c) { if (read_c0_config7() & MTI_CONF7_PTC) c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS; } static inline void check_errata(void) { struct cpuinfo_mips *c = ¤t_cpu_data; switch (current_cpu_type()) { case CPU_34K: /* * Erratum "RPS May Cause Incorrect Instruction Execution" * This code only handles VPE0, any SMP/RTOS code * making use of VPE1 will be responsable for that VPE. */ if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2) write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS); break; default: break; } } void __init check_bugs32(void) { check_errata(); } /* * Probe whether cpu has config register by trying to play with * alternate cache bit and see whether it matters. * It's used by cpu_probe to distinguish between R3000A and R3081. */ static inline int cpu_has_confreg(void) { #ifdef CONFIG_CPU_R3000 extern unsigned long r3k_cache_size(unsigned long); unsigned long size1, size2; unsigned long cfg = read_c0_conf(); size1 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg ^ R30XX_CONF_AC); size2 = r3k_cache_size(ST0_ISC); write_c0_conf(cfg); return size1 != size2; #else return 0; #endif } static inline void set_elf_platform(int cpu, const char *plat) { if (cpu == 0) __elf_platform = plat; } static inline void cpu_probe_vmbits(struct cpuinfo_mips *c) { #ifdef __NEED_VMBITS_PROBE write_c0_entryhi(0x3fffffffffffe000ULL); back_to_back_c0_hazard(); c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL); #endif } static void set_isa(struct cpuinfo_mips *c, unsigned int isa) { switch (isa) { case MIPS_CPU_ISA_M64R2: c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2; /* fall through */ case MIPS_CPU_ISA_M64R1: c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1; /* fall through */ case MIPS_CPU_ISA_V: c->isa_level |= MIPS_CPU_ISA_V; /* fall through */ case MIPS_CPU_ISA_IV: c->isa_level |= MIPS_CPU_ISA_IV; /* fall through */ case MIPS_CPU_ISA_III: c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III; break; /* R6 incompatible with everything else */ case MIPS_CPU_ISA_M64R6: c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6; /* fall through */ case MIPS_CPU_ISA_M32R6: c->isa_level |= MIPS_CPU_ISA_M32R6; /* Break here so we don't add incompatible ISAs */ break; case MIPS_CPU_ISA_M32R2: c->isa_level |= MIPS_CPU_ISA_M32R2; /* fall through */ case MIPS_CPU_ISA_M32R1: c->isa_level |= MIPS_CPU_ISA_M32R1; /* fall through */ case MIPS_CPU_ISA_II: c->isa_level |= MIPS_CPU_ISA_II; break; } } static char unknown_isa[] = KERN_ERR \ "Unsupported ISA type, c0.config0: %d."; static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c) { unsigned int probability = c->tlbsize / c->tlbsizevtlb; /* * 0 = All TLBWR instructions go to FTLB * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the * FTLB and 1 goes to the VTLB. * 2 = 7:1: As above with 7:1 ratio. * 3 = 3:1: As above with 3:1 ratio. * * Use the linear midpoint as the probability threshold. */ if (probability >= 12) return 1; else if (probability >= 6) return 2; else /* * So FTLB is less than 4 times bigger than VTLB. * A 3:1 ratio can still be useful though. */ return 3; } static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags) { unsigned int config; /* It's implementation dependent how the FTLB can be enabled */ switch (c->cputype) { case CPU_PROAPTIV: case CPU_P5600: case CPU_P6600: /* proAptiv & related cores use Config6 to enable the FTLB */ config = read_c0_config6(); if (flags & FTLB_EN) config |= MIPS_CONF6_FTLBEN; else config &= ~MIPS_CONF6_FTLBEN; if (flags & FTLB_SET_PROB) { config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT); config |= calculate_ftlb_probability(c) << MIPS_CONF6_FTLBP_SHIFT; } write_c0_config6(config); back_to_back_c0_hazard(); break; case CPU_I6400: case CPU_I6500: /* There's no way to disable the FTLB */ if (!(flags & FTLB_EN)) return 1; return 0; case CPU_LOONGSON3: /* Flush ITLB, DTLB, VTLB and FTLB */ write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB | LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB); /* Loongson-3 cores use Config6 to enable the FTLB */ config = read_c0_config6(); if (flags & FTLB_EN) /* Enable FTLB */ write_c0_config6(config & ~MIPS_CONF6_FTLBDIS); else /* Disable FTLB */ write_c0_config6(config | MIPS_CONF6_FTLBDIS); break; default: return 1; } return 0; } static inline unsigned int decode_config0(struct cpuinfo_mips *c) { unsigned int config0; int isa, mt; config0 = read_c0_config(); /* * Look for Standard TLB or Dual VTLB and FTLB */ mt = config0 & MIPS_CONF_MT; if (mt == MIPS_CONF_MT_TLB) c->options |= MIPS_CPU_TLB; else if (mt == MIPS_CONF_MT_FTLB) c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB; isa = (config0 & MIPS_CONF_AT) >> 13; switch (isa) { case 0: switch ((config0 & MIPS_CONF_AR) >> 10) { case 0: set_isa(c, MIPS_CPU_ISA_M32R1); break; case 1: set_isa(c, MIPS_CPU_ISA_M32R2); break; case 2: set_isa(c, MIPS_CPU_ISA_M32R6); break; default: goto unknown; } break; case 2: switch ((config0 & MIPS_CONF_AR) >> 10) { case 0: set_isa(c, MIPS_CPU_ISA_M64R1); break; case 1: set_isa(c, MIPS_CPU_ISA_M64R2); break; case 2: set_isa(c, MIPS_CPU_ISA_M64R6); break; default: goto unknown; } break; default: goto unknown; } return config0 & MIPS_CONF_M; unknown: panic(unknown_isa, config0); } static inline unsigned int decode_config1(struct cpuinfo_mips *c) { unsigned int config1; config1 = read_c0_config1(); if (config1 & MIPS_CONF1_MD) c->ases |= MIPS_ASE_MDMX; if (config1 & MIPS_CONF1_PC) c->options |= MIPS_CPU_PERF; if (config1 & MIPS_CONF1_WR) c->options |= MIPS_CPU_WATCH; if (config1 & MIPS_CONF1_CA) c->ases |= MIPS_ASE_MIPS16; if (config1 & MIPS_CONF1_EP) c->options |= MIPS_CPU_EJTAG; if (config1 & MIPS_CONF1_FP) { c->options |= MIPS_CPU_FPU; c->options |= MIPS_CPU_32FPR; } if (cpu_has_tlb) { c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1; c->tlbsizevtlb = c->tlbsize; c->tlbsizeftlbsets = 0; } return config1 & MIPS_CONF_M; } static inline unsigned int decode_config2(struct cpuinfo_mips *c) { unsigned int config2; config2 = read_c0_config2(); if (config2 & MIPS_CONF2_SL) c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT; return config2 & MIPS_CONF_M; } static inline unsigned int decode_config3(struct cpuinfo_mips *c) { unsigned int config3; config3 = read_c0_config3(); if (config3 & MIPS_CONF3_SM) { c->ases |= MIPS_ASE_SMARTMIPS; c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC; } if (config3 & MIPS_CONF3_RXI) c->options |= MIPS_CPU_RIXI; if (config3 & MIPS_CONF3_CTXTC) c->options |= MIPS_CPU_CTXTC; if (config3 & MIPS_CONF3_DSP) c->ases |= MIPS_ASE_DSP; if (config3 & MIPS_CONF3_DSP2P) { c->ases |= MIPS_ASE_DSP2P; if (cpu_has_mips_r6) c->ases |= MIPS_ASE_DSP3; } if (config3 & MIPS_CONF3_VINT) c->options |= MIPS_CPU_VINT; if (config3 & MIPS_CONF3_VEIC) c->options |= MIPS_CPU_VEIC; if (config3 & MIPS_CONF3_LPA) c->options |= MIPS_CPU_LPA; if (config3 & MIPS_CONF3_MT) c->ases |= MIPS_ASE_MIPSMT; if (config3 & MIPS_CONF3_ULRI) c->options |= MIPS_CPU_ULRI; if (config3 & MIPS_CONF3_ISA) c->options |= MIPS_CPU_MICROMIPS; if (config3 & MIPS_CONF3_VZ) c->ases |= MIPS_ASE_VZ; if (config3 & MIPS_CONF3_SC) c->options |= MIPS_CPU_SEGMENTS; if (config3 & MIPS_CONF3_BI) c->options |= MIPS_CPU_BADINSTR; if (config3 & MIPS_CONF3_BP) c->options |= MIPS_CPU_BADINSTRP; if (config3 & MIPS_CONF3_MSA) c->ases |= MIPS_ASE_MSA; if (config3 & MIPS_CONF3_PW) { c->htw_seq = 0; c->options |= MIPS_CPU_HTW; } if (config3 & MIPS_CONF3_CDMM) c->options |= MIPS_CPU_CDMM; if (config3 & MIPS_CONF3_SP) c->options |= MIPS_CPU_SP; return config3 & MIPS_CONF_M; } static inline unsigned int decode_config4(struct cpuinfo_mips *c) { unsigned int config4; unsigned int newcf4; unsigned int mmuextdef; unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE; unsigned long asid_mask; config4 = read_c0_config4(); if (cpu_has_tlb) { if (((config4 & MIPS_CONF4_IE) >> 29) == 2) c->options |= MIPS_CPU_TLBINV; /* * R6 has dropped the MMUExtDef field from config4. * On R6 the fields always describe the FTLB, and only if it is * present according to Config.MT. */ if (!cpu_has_mips_r6) mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF; else if (cpu_has_ftlb) mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT; else mmuextdef = 0; switch (mmuextdef) { case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT: c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40; c->tlbsizevtlb = c->tlbsize; break; case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT: c->tlbsizevtlb += ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40; c->tlbsize = c->tlbsizevtlb; ftlb_page = MIPS_CONF4_VFTLBPAGESIZE; /* fall through */ case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT: if (mips_ftlb_disabled) break; newcf4 = (config4 & ~ftlb_page) | (page_size_ftlb(mmuextdef) << MIPS_CONF4_FTLBPAGESIZE_SHIFT); write_c0_config4(newcf4); back_to_back_c0_hazard(); config4 = read_c0_config4(); if (config4 != newcf4) { pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n", PAGE_SIZE, config4); /* Switch FTLB off */ set_ftlb_enable(c, 0); mips_ftlb_disabled = 1; break; } c->tlbsizeftlbsets = 1 << ((config4 & MIPS_CONF4_FTLBSETS) >> MIPS_CONF4_FTLBSETS_SHIFT); c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >> MIPS_CONF4_FTLBWAYS_SHIFT) + 2; c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets; mips_has_ftlb_configured = 1; break; } } c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST) >> MIPS_CONF4_KSCREXIST_SHIFT; asid_mask = MIPS_ENTRYHI_ASID; if (config4 & MIPS_CONF4_AE) asid_mask |= MIPS_ENTRYHI_ASIDX; set_cpu_asid_mask(c, asid_mask); /* * Warn if the computed ASID mask doesn't match the mask the kernel * is built for. This may indicate either a serious problem or an * easy optimisation opportunity, but either way should be addressed. */ WARN_ON(asid_mask != cpu_asid_mask(c)); return config4 & MIPS_CONF_M; } static inline unsigned int decode_config5(struct cpuinfo_mips *c) { unsigned int config5, max_mmid_width; unsigned long asid_mask; config5 = read_c0_config5(); config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE); if (cpu_has_mips_r6) { if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid) config5 |= MIPS_CONF5_MI; else config5 &= ~MIPS_CONF5_MI; } write_c0_config5(config5); if (config5 & MIPS_CONF5_EVA) c->options |= MIPS_CPU_EVA; if (config5 & MIPS_CONF5_MRP) c->options |= MIPS_CPU_MAAR; if (config5 & MIPS_CONF5_LLB) c->options |= MIPS_CPU_RW_LLB; if (config5 & MIPS_CONF5_MVH) c->options |= MIPS_CPU_MVH; if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP)) c->options |= MIPS_CPU_VP; if (config5 & MIPS_CONF5_CA2) c->ases |= MIPS_ASE_MIPS16E2; if (config5 & MIPS_CONF5_CRCP) elf_hwcap |= HWCAP_MIPS_CRC32; if (cpu_has_mips_r6) { /* Ensure the write to config5 above takes effect */ back_to_back_c0_hazard(); /* Check whether we successfully enabled MMID support */ config5 = read_c0_config5(); if (config5 & MIPS_CONF5_MI) c->options |= MIPS_CPU_MMID; /* * Warn if we've hardcoded cpu_has_mmid to a value unsuitable * for the CPU we're running on, or if CPUs in an SMP system * have inconsistent MMID support. */ WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI)); if (cpu_has_mmid) { write_c0_memorymapid(~0ul); back_to_back_c0_hazard(); asid_mask = read_c0_memorymapid(); /* * We maintain a bitmap to track MMID allocation, and * need a sensible upper bound on the size of that * bitmap. The initial CPU with MMID support (I6500) * supports 16 bit MMIDs, which gives us an 8KiB * bitmap. The architecture recommends that hardware * support 32 bit MMIDs, which would give us a 512MiB * bitmap - that's too big in most cases. * * Cap MMID width at 16 bits for now & we can revisit * this if & when hardware supports anything wider. */ max_mmid_width = 16; if (asid_mask > GENMASK(max_mmid_width - 1, 0)) { pr_info("Capping MMID width at %d bits", max_mmid_width); asid_mask = GENMASK(max_mmid_width - 1, 0); } set_cpu_asid_mask(c, asid_mask); } } return config5 & MIPS_CONF_M; } static void decode_configs(struct cpuinfo_mips *c) { int ok; /* MIPS32 or MIPS64 compliant CPU. */ c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER | MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK; c->scache.flags = MIPS_CACHE_NOT_PRESENT; /* Enable FTLB if present and not disabled */ set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN); ok = decode_config0(c); /* Read Config registers. */ BUG_ON(!ok); /* Arch spec violation! */ if (ok) ok = decode_config1(c); if (ok) ok = decode_config2(c); if (ok) ok = decode_config3(c); if (ok) ok = decode_config4(c); if (ok) ok = decode_config5(c); /* Probe the EBase.WG bit */ if (cpu_has_mips_r2_r6) { u64 ebase; unsigned int status; /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */ ebase = cpu_has_mips64r6 ? read_c0_ebase_64() : (s32)read_c0_ebase(); if (ebase & MIPS_EBASE_WG) { /* WG bit already set, we can avoid the clumsy probe */ c->options |= MIPS_CPU_EBASE_WG; } else { /* Its UNDEFINED to change EBase while BEV=0 */ status = read_c0_status(); write_c0_status(status | ST0_BEV); irq_enable_hazard(); /* * On pre-r6 cores, this may well clobber the upper bits * of EBase. This is hard to avoid without potentially * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit. */ if (cpu_has_mips64r6) write_c0_ebase_64(ebase | MIPS_EBASE_WG); else write_c0_ebase(ebase | MIPS_EBASE_WG); back_to_back_c0_hazard(); /* Restore BEV */ write_c0_status(status); if (read_c0_ebase() & MIPS_EBASE_WG) { c->options |= MIPS_CPU_EBASE_WG; write_c0_ebase(ebase); } } } /* configure the FTLB write probability */ set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB); mips_probe_watch_registers(c); #ifndef CONFIG_MIPS_CPS if (cpu_has_mips_r2_r6) { unsigned int core; core = get_ebase_cpunum(); if (cpu_has_mipsmt) core >>= fls(core_nvpes()) - 1; cpu_set_core(c, core); } #endif } /* * Probe for certain guest capabilities by writing config bits and reading back. * Finally write back the original value. */ #define probe_gc0_config(name, maxconf, bits) \ do { \ unsigned int tmp; \ tmp = read_gc0_##name(); \ write_gc0_##name(tmp | (bits)); \ back_to_back_c0_hazard(); \ maxconf = read_gc0_##name(); \ write_gc0_##name(tmp); \ } while (0) /* * Probe for dynamic guest capabilities by changing certain config bits and * reading back to see if they change. Finally write back the original value. */ #define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \ do { \ maxconf = read_gc0_##name(); \ write_gc0_##name(maxconf ^ (bits)); \ back_to_back_c0_hazard(); \ dynconf = maxconf ^ read_gc0_##name(); \ write_gc0_##name(maxconf); \ maxconf |= dynconf; \ } while (0) static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c) { unsigned int config0; probe_gc0_config(config, config0, MIPS_CONF_M); if (config0 & MIPS_CONF_M) c->guest.conf |= BIT(1); return config0 & MIPS_CONF_M; } static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c) { unsigned int config1, config1_dyn; probe_gc0_config_dyn(config1, config1, config1_dyn, MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR | MIPS_CONF1_FP); if (config1 & MIPS_CONF1_FP) c->guest.options |= MIPS_CPU_FPU; if (config1_dyn & MIPS_CONF1_FP) c->guest.options_dyn |= MIPS_CPU_FPU; if (config1 & MIPS_CONF1_WR) c->guest.options |= MIPS_CPU_WATCH; if (config1_dyn & MIPS_CONF1_WR) c->guest.options_dyn |= MIPS_CPU_WATCH; if (config1 & MIPS_CONF1_PC) c->guest.options |= MIPS_CPU_PERF; if (config1_dyn & MIPS_CONF1_PC) c->guest.options_dyn |= MIPS_CPU_PERF; if (config1 & MIPS_CONF_M) c->guest.conf |= BIT(2); return config1 & MIPS_CONF_M; } static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c) { unsigned int config2; probe_gc0_config(config2, config2, MIPS_CONF_M); if (config2 & MIPS_CONF_M) c->guest.conf |= BIT(3); return config2 & MIPS_CONF_M; } static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c) { unsigned int config3, config3_dyn; probe_gc0_config_dyn(config3, config3, config3_dyn, MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC); if (config3 & MIPS_CONF3_CTXTC) c->guest.options |= MIPS_CPU_CTXTC; if (config3_dyn & MIPS_CONF3_CTXTC) c->guest.options_dyn |= MIPS_CPU_CTXTC; if (config3 & MIPS_CONF3_PW) c->guest.options |= MIPS_CPU_HTW; if (config3 & MIPS_CONF3_ULRI) c->guest.options |= MIPS_CPU_ULRI; if (config3 & MIPS_CONF3_SC) c->guest.options |= MIPS_CPU_SEGMENTS; if (config3 & MIPS_CONF3_BI) c->guest.options |= MIPS_CPU_BADINSTR; if (config3 & MIPS_CONF3_BP) c->guest.options |= MIPS_CPU_BADINSTRP; if (config3 & MIPS_CONF3_MSA) c->guest.ases |= MIPS_ASE_MSA; if (config3_dyn & MIPS_CONF3_MSA) c->guest.ases_dyn |= MIPS_ASE_MSA; if (config3 & MIPS_CONF_M) c->guest.conf |= BIT(4); return config3 & MIPS_CONF_M; } static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c) { unsigned int config4; probe_gc0_config(config4, config4, MIPS_CONF_M | MIPS_CONF4_KSCREXIST); c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST) >> MIPS_CONF4_KSCREXIST_SHIFT; if (config4 & MIPS_CONF_M) c->guest.conf |= BIT(5); return config4 & MIPS_CONF_M; } static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c) { unsigned int config5, config5_dyn; probe_gc0_config_dyn(config5, config5, config5_dyn, MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP); if (config5 & MIPS_CONF5_MRP) c->guest.options |= MIPS_CPU_MAAR; if (config5_dyn & MIPS_CONF5_MRP) c->guest.options_dyn |= MIPS_CPU_MAAR; if (config5 & MIPS_CONF5_LLB) c->guest.options |= MIPS_CPU_RW_LLB; if (config5 & MIPS_CONF5_MVH) c->guest.options |= MIPS_CPU_MVH; if (config5 & MIPS_CONF_M) c->guest.conf |= BIT(6); return config5 & MIPS_CONF_M; } static inline void decode_guest_configs(struct cpuinfo_mips *c) { unsigned int ok; ok = decode_guest_config0(c); if (ok) ok = decode_guest_config1(c); if (ok) ok = decode_guest_config2(c); if (ok) ok = decode_guest_config3(c); if (ok) ok = decode_guest_config4(c); if (ok) decode_guest_config5(c); } static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c) { unsigned int guestctl0, temp; guestctl0 = read_c0_guestctl0(); if (guestctl0 & MIPS_GCTL0_G0E) c->options |= MIPS_CPU_GUESTCTL0EXT; if (guestctl0 & MIPS_GCTL0_G1) c->options |= MIPS_CPU_GUESTCTL1; if (guestctl0 & MIPS_GCTL0_G2) c->options |= MIPS_CPU_GUESTCTL2; if (!(guestctl0 & MIPS_GCTL0_RAD)) { c->options |= MIPS_CPU_GUESTID; /* * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0 * first, otherwise all data accesses will be fully virtualised * as if they were performed by guest mode. */ write_c0_guestctl1(0); tlbw_use_hazard(); write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG); back_to_back_c0_hazard(); temp = read_c0_guestctl0(); if (temp & MIPS_GCTL0_DRG) { write_c0_guestctl0(guestctl0); c->options |= MIPS_CPU_DRG; } } } static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c) { if (cpu_has_guestid) { /* determine the number of bits of GuestID available */ write_c0_guestctl1(MIPS_GCTL1_ID); back_to_back_c0_hazard(); c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID) >> MIPS_GCTL1_ID_SHIFT; write_c0_guestctl1(0); } } static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c) { /* determine the number of bits of GTOffset available */ write_c0_gtoffset(0xffffffff); back_to_back_c0_hazard(); c->gtoffset_mask = read_c0_gtoffset(); write_c0_gtoffset(0); } static inline void cpu_probe_vz(struct cpuinfo_mips *c) { cpu_probe_guestctl0(c); if (cpu_has_guestctl1) cpu_probe_guestctl1(c); cpu_probe_gtoffset(c); decode_guest_configs(c); } #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \ | MIPS_CPU_COUNTER) static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu) { switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_R2000: c->cputype = CPU_R2000; __cpu_name[cpu] = "R2000"; c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_IMP_R3000: if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) { if (cpu_has_confreg()) { c->cputype = CPU_R3081E; __cpu_name[cpu] = "R3081"; } else { c->cputype = CPU_R3000A; __cpu_name[cpu] = "R3000A"; } } else { c->cputype = CPU_R3000; __cpu_name[cpu] = "R3000"; } c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE | MIPS_CPU_NOFPUEX; if (__cpu_has_fpu()) c->options |= MIPS_CPU_FPU; c->tlbsize = 64; break; case PRID_IMP_R4000: if (read_c0_config() & CONF_SC) { if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_R4400) { c->cputype = CPU_R4400PC; __cpu_name[cpu] = "R4400PC"; } else { c->cputype = CPU_R4000PC; __cpu_name[cpu] = "R4000PC"; } } else { int cca = read_c0_config() & CONF_CM_CMASK; int mc; /* * SC and MC versions can't be reliably told apart, * but only the latter support coherent caching * modes so assume the firmware has set the KSEG0 * coherency attribute reasonably (if uncached, we * assume SC). */ switch (cca) { case CONF_CM_CACHABLE_CE: case CONF_CM_CACHABLE_COW: case CONF_CM_CACHABLE_CUW: mc = 1; break; default: mc = 0; break; } if ((c->processor_id & PRID_REV_MASK) >= PRID_REV_R4400) { c->cputype = mc ? CPU_R4400MC : CPU_R4400SC; __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC"; } else { c->cputype = mc ? CPU_R4000MC : CPU_R4000SC; __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC"; } } set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_VCE | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_VR41XX: set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS; c->tlbsize = 32; switch (c->processor_id & 0xf0) { case PRID_REV_VR4111: c->cputype = CPU_VR4111; __cpu_name[cpu] = "NEC VR4111"; break; case PRID_REV_VR4121: c->cputype = CPU_VR4121; __cpu_name[cpu] = "NEC VR4121"; break; case PRID_REV_VR4122: if ((c->processor_id & 0xf) < 0x3) { c->cputype = CPU_VR4122; __cpu_name[cpu] = "NEC VR4122"; } else { c->cputype = CPU_VR4181A; __cpu_name[cpu] = "NEC VR4181A"; } break; case PRID_REV_VR4130: if ((c->processor_id & 0xf) < 0x4) { c->cputype = CPU_VR4131; __cpu_name[cpu] = "NEC VR4131"; } else { c->cputype = CPU_VR4133; c->options |= MIPS_CPU_LLSC; __cpu_name[cpu] = "NEC VR4133"; } break; default: printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n"); c->cputype = CPU_VR41XX; __cpu_name[cpu] = "NEC Vr41xx"; break; } break; case PRID_IMP_R4300: c->cputype = CPU_R4300; __cpu_name[cpu] = "R4300"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 32; break; case PRID_IMP_R4600: c->cputype = CPU_R4600; __cpu_name[cpu] = "R4600"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; #if 0 case PRID_IMP_R4650: /* * This processor doesn't have an MMU, so it's not * "real easy" to run Linux on it. It is left purely * for documentation. Commented out because it shares * it's c0_prid id number with the TX3900. */ c->cputype = CPU_R4650; __cpu_name[cpu] = "R4650"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC; c->tlbsize = 48; break; #endif case PRID_IMP_TX39: c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS; c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE; if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) { c->cputype = CPU_TX3927; __cpu_name[cpu] = "TX3927"; c->tlbsize = 64; } else { switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_TX3912: c->cputype = CPU_TX3912; __cpu_name[cpu] = "TX3912"; c->tlbsize = 32; break; case PRID_REV_TX3922: c->cputype = CPU_TX3922; __cpu_name[cpu] = "TX3922"; c->tlbsize = 64; break; } } break; case PRID_IMP_R4700: c->cputype = CPU_R4700; __cpu_name[cpu] = "R4700"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_TX49: c->cputype = CPU_TX49XX; __cpu_name[cpu] = "R49XX"; set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; c->options = R4K_OPTS | MIPS_CPU_LLSC; if (!(c->processor_id & 0x08)) c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR; c->tlbsize = 48; break; case PRID_IMP_R5000: c->cputype = CPU_R5000; __cpu_name[cpu] = "R5000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R5432: c->cputype = CPU_R5432; __cpu_name[cpu] = "R5432"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_R5500: c->cputype = CPU_R5500; __cpu_name[cpu] = "R5500"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_NEVADA: c->cputype = CPU_NEVADA; __cpu_name[cpu] = "Nevada"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_DIVEC | MIPS_CPU_LLSC; c->tlbsize = 48; break; case PRID_IMP_RM7000: c->cputype = CPU_RM7000; __cpu_name[cpu] = "RM7000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; /* * Undocumented RM7000: Bit 29 in the info register of * the RM7000 v2.0 indicates if the TLB has 48 or 64 * entries. * * 29 1 => 64 entry JTLB * 0 => 48 entry JTLB */ c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48; break; case PRID_IMP_R8000: c->cputype = CPU_R8000; __cpu_name[cpu] = "RM8000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_LLSC; c->tlbsize = 384; /* has weird TLB: 3-way x 128 */ break; case PRID_IMP_R10000: c->cputype = CPU_R10000; __cpu_name[cpu] = "R10000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC; c->tlbsize = 64; break; case PRID_IMP_R12000: c->cputype = CPU_R12000; __cpu_name[cpu] = "R12000"; set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST; c->tlbsize = 64; break; case PRID_IMP_R14000: if (((c->processor_id >> 4) & 0x0f) > 2) { c->cputype = CPU_R16000; __cpu_name[cpu] = "R16000"; } else { c->cputype = CPU_R14000; __cpu_name[cpu] = "R14000"; } set_isa(c, MIPS_CPU_ISA_IV); c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX | MIPS_CPU_FPU | MIPS_CPU_32FPR | MIPS_CPU_COUNTER | MIPS_CPU_WATCH | MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST; c->tlbsize = 64; break; case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */ switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON2E: c->cputype = CPU_LOONGSON2; __cpu_name[cpu] = "ICT Loongson-2"; set_elf_platform(cpu, "loongson2e"); set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; break; case PRID_REV_LOONGSON2F: c->cputype = CPU_LOONGSON2; __cpu_name[cpu] = "ICT Loongson-2"; set_elf_platform(cpu, "loongson2f"); set_isa(c, MIPS_CPU_ISA_III); c->fpu_msk31 |= FPU_CSR_CONDX; break; case PRID_REV_LOONGSON3A_R1: c->cputype = CPU_LOONGSON3; __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R1); break; case PRID_REV_LOONGSON3B_R1: case PRID_REV_LOONGSON3B_R2: c->cputype = CPU_LOONGSON3; __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3b"); set_isa(c, MIPS_CPU_ISA_M64R1); break; } c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC | MIPS_CPU_32FPR; c->tlbsize = 64; c->writecombine = _CACHE_UNCACHED_ACCELERATED; break; case PRID_IMP_LOONGSON_32: /* Loongson-1 */ decode_configs(c); c->cputype = CPU_LOONGSON1; switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON1B: __cpu_name[cpu] = "Loongson 1B"; break; } break; } } static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu) { c->writecombine = _CACHE_UNCACHED_ACCELERATED; switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_QEMU_GENERIC: c->writecombine = _CACHE_UNCACHED; c->cputype = CPU_QEMU_GENERIC; __cpu_name[cpu] = "MIPS GENERIC QEMU"; break; case PRID_IMP_4KC: c->cputype = CPU_4KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 4Kc"; break; case PRID_IMP_4KEC: case PRID_IMP_4KECR2: c->cputype = CPU_4KEC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 4KEc"; break; case PRID_IMP_4KSC: case PRID_IMP_4KSD: c->cputype = CPU_4KSC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 4KSc"; break; case PRID_IMP_5KC: c->cputype = CPU_5KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 5Kc"; break; case PRID_IMP_5KE: c->cputype = CPU_5KE; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 5KE"; break; case PRID_IMP_20KC: c->cputype = CPU_20KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 20Kc"; break; case PRID_IMP_24K: c->cputype = CPU_24K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 24Kc"; break; case PRID_IMP_24KE: c->cputype = CPU_24K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 24KEc"; break; case PRID_IMP_25KF: c->cputype = CPU_25KF; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 25Kc"; break; case PRID_IMP_34K: c->cputype = CPU_34K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 34Kc"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_74K: c->cputype = CPU_74K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 74Kc"; break; case PRID_IMP_M14KC: c->cputype = CPU_M14KC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS M14Kc"; break; case PRID_IMP_M14KEC: c->cputype = CPU_M14KEC; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS M14KEc"; break; case PRID_IMP_1004K: c->cputype = CPU_1004K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 1004Kc"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_1074K: c->cputype = CPU_1074K; c->writecombine = _CACHE_UNCACHED; __cpu_name[cpu] = "MIPS 1074Kc"; break; case PRID_IMP_INTERAPTIV_UP: c->cputype = CPU_INTERAPTIV; __cpu_name[cpu] = "MIPS interAptiv"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_INTERAPTIV_MP: c->cputype = CPU_INTERAPTIV; __cpu_name[cpu] = "MIPS interAptiv (multi)"; cpu_set_mt_per_tc_perf(c); break; case PRID_IMP_PROAPTIV_UP: c->cputype = CPU_PROAPTIV; __cpu_name[cpu] = "MIPS proAptiv"; break; case PRID_IMP_PROAPTIV_MP: c->cputype = CPU_PROAPTIV; __cpu_name[cpu] = "MIPS proAptiv (multi)"; break; case PRID_IMP_P5600: c->cputype = CPU_P5600; __cpu_name[cpu] = "MIPS P5600"; break; case PRID_IMP_P6600: c->cputype = CPU_P6600; __cpu_name[cpu] = "MIPS P6600"; break; case PRID_IMP_I6400: c->cputype = CPU_I6400; __cpu_name[cpu] = "MIPS I6400"; break; case PRID_IMP_I6500: c->cputype = CPU_I6500; __cpu_name[cpu] = "MIPS I6500"; break; case PRID_IMP_M5150: c->cputype = CPU_M5150; __cpu_name[cpu] = "MIPS M5150"; break; case PRID_IMP_M6250: c->cputype = CPU_M6250; __cpu_name[cpu] = "MIPS M6250"; break; } decode_configs(c); spram_config(); switch (__get_cpu_type(c->cputype)) { case CPU_I6500: c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES; /* fall-through */ case CPU_I6400: c->options |= MIPS_CPU_SHARED_FTLB_RAM; /* fall-through */ default: break; } } static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_AU1_REV1: case PRID_IMP_AU1_REV2: c->cputype = CPU_ALCHEMY; switch ((c->processor_id >> 24) & 0xff) { case 0: __cpu_name[cpu] = "Au1000"; break; case 1: __cpu_name[cpu] = "Au1500"; break; case 2: __cpu_name[cpu] = "Au1100"; break; case 3: __cpu_name[cpu] = "Au1550"; break; case 4: __cpu_name[cpu] = "Au1200"; if ((c->processor_id & PRID_REV_MASK) == 2) __cpu_name[cpu] = "Au1250"; break; case 5: __cpu_name[cpu] = "Au1210"; break; default: __cpu_name[cpu] = "Au1xxx"; break; } break; } } static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); c->writecombine = _CACHE_UNCACHED_ACCELERATED; switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_SB1: c->cputype = CPU_SB1; __cpu_name[cpu] = "SiByte SB1"; /* FPU in pass1 is known to have issues. */ if ((c->processor_id & PRID_REV_MASK) < 0x02) c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR); break; case PRID_IMP_SB1A: c->cputype = CPU_SB1A; __cpu_name[cpu] = "SiByte SB1A"; break; } } static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_SR71000: c->cputype = CPU_SR71000; __cpu_name[cpu] = "Sandcraft SR71000"; c->scache.ways = 8; c->tlbsize = 64; break; } } static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_PR4450: c->cputype = CPU_PR4450; __cpu_name[cpu] = "Philips PR4450"; set_isa(c, MIPS_CPU_ISA_M32R1); break; } } static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_BMIPS32_REV4: case PRID_IMP_BMIPS32_REV8: c->cputype = CPU_BMIPS32; __cpu_name[cpu] = "Broadcom BMIPS32"; set_elf_platform(cpu, "bmips32"); break; case PRID_IMP_BMIPS3300: case PRID_IMP_BMIPS3300_ALT: case PRID_IMP_BMIPS3300_BUG: c->cputype = CPU_BMIPS3300; __cpu_name[cpu] = "Broadcom BMIPS3300"; set_elf_platform(cpu, "bmips3300"); break; case PRID_IMP_BMIPS43XX: { int rev = c->processor_id & PRID_REV_MASK; if (rev >= PRID_REV_BMIPS4380_LO && rev <= PRID_REV_BMIPS4380_HI) { c->cputype = CPU_BMIPS4380; __cpu_name[cpu] = "Broadcom BMIPS4380"; set_elf_platform(cpu, "bmips4380"); c->options |= MIPS_CPU_RIXI; } else { c->cputype = CPU_BMIPS4350; __cpu_name[cpu] = "Broadcom BMIPS4350"; set_elf_platform(cpu, "bmips4350"); } break; } case PRID_IMP_BMIPS5000: case PRID_IMP_BMIPS5200: c->cputype = CPU_BMIPS5000; if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200) __cpu_name[cpu] = "Broadcom BMIPS5200"; else __cpu_name[cpu] = "Broadcom BMIPS5000"; set_elf_platform(cpu, "bmips5000"); c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI; break; } } static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_CAVIUM_CN38XX: case PRID_IMP_CAVIUM_CN31XX: case PRID_IMP_CAVIUM_CN30XX: c->cputype = CPU_CAVIUM_OCTEON; __cpu_name[cpu] = "Cavium Octeon"; goto platform; case PRID_IMP_CAVIUM_CN58XX: case PRID_IMP_CAVIUM_CN56XX: case PRID_IMP_CAVIUM_CN50XX: case PRID_IMP_CAVIUM_CN52XX: c->cputype = CPU_CAVIUM_OCTEON_PLUS; __cpu_name[cpu] = "Cavium Octeon+"; platform: set_elf_platform(cpu, "octeon"); break; case PRID_IMP_CAVIUM_CN61XX: case PRID_IMP_CAVIUM_CN63XX: case PRID_IMP_CAVIUM_CN66XX: case PRID_IMP_CAVIUM_CN68XX: case PRID_IMP_CAVIUM_CNF71XX: c->cputype = CPU_CAVIUM_OCTEON2; __cpu_name[cpu] = "Cavium Octeon II"; set_elf_platform(cpu, "octeon2"); break; case PRID_IMP_CAVIUM_CN70XX: case PRID_IMP_CAVIUM_CN73XX: case PRID_IMP_CAVIUM_CNF75XX: case PRID_IMP_CAVIUM_CN78XX: c->cputype = CPU_CAVIUM_OCTEON3; __cpu_name[cpu] = "Cavium Octeon III"; set_elf_platform(cpu, "octeon3"); break; default: printk(KERN_INFO "Unknown Octeon chip!\n"); c->cputype = CPU_UNKNOWN; break; } } static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */ switch (c->processor_id & PRID_REV_MASK) { case PRID_REV_LOONGSON3A_R2_0: case PRID_REV_LOONGSON3A_R2_1: c->cputype = CPU_LOONGSON3; __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R2); break; case PRID_REV_LOONGSON3A_R3_0: case PRID_REV_LOONGSON3A_R3_1: c->cputype = CPU_LOONGSON3; __cpu_name[cpu] = "ICT Loongson-3"; set_elf_platform(cpu, "loongson3a"); set_isa(c, MIPS_CPU_ISA_M64R2); break; } decode_configs(c); c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE; c->writecombine = _CACHE_UNCACHED_ACCELERATED; break; default: panic("Unknown Loongson Processor ID!"); break; } } static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu) { decode_configs(c); /* JZRISC does not implement the CP0 counter. */ c->options &= ~MIPS_CPU_COUNTER; BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_JZRISC: c->cputype = CPU_JZRISC; c->writecombine = _CACHE_UNCACHED_ACCELERATED; __cpu_name[cpu] = "Ingenic JZRISC"; break; default: panic("Unknown Ingenic Processor ID!"); break; } /* * The config0 register in the Xburst CPUs with a processor ID of * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible, * but they don't actually support this ISA. */ if ((c->processor_id & PRID_COMP_MASK) == PRID_COMP_INGENIC_D0) c->isa_level &= ~MIPS_CPU_ISA_M32R2; } static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu) { decode_configs(c); if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) { c->cputype = CPU_ALCHEMY; __cpu_name[cpu] = "Au1300"; /* following stuff is not for Alchemy */ return; } c->options = (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_COUNTER | MIPS_CPU_DIVEC | MIPS_CPU_WATCH | MIPS_CPU_EJTAG | MIPS_CPU_LLSC); switch (c->processor_id & PRID_IMP_MASK) { case PRID_IMP_NETLOGIC_XLP2XX: case PRID_IMP_NETLOGIC_XLP9XX: case PRID_IMP_NETLOGIC_XLP5XX: c->cputype = CPU_XLP; __cpu_name[cpu] = "Broadcom XLPII"; break; case PRID_IMP_NETLOGIC_XLP8XX: case PRID_IMP_NETLOGIC_XLP3XX: c->cputype = CPU_XLP; __cpu_name[cpu] = "Netlogic XLP"; break; case PRID_IMP_NETLOGIC_XLR732: case PRID_IMP_NETLOGIC_XLR716: case PRID_IMP_NETLOGIC_XLR532: case PRID_IMP_NETLOGIC_XLR308: case PRID_IMP_NETLOGIC_XLR532C: case PRID_IMP_NETLOGIC_XLR516C: case PRID_IMP_NETLOGIC_XLR508C: case PRID_IMP_NETLOGIC_XLR308C: c->cputype = CPU_XLR; __cpu_name[cpu] = "Netlogic XLR"; break; case PRID_IMP_NETLOGIC_XLS608: case PRID_IMP_NETLOGIC_XLS408: case PRID_IMP_NETLOGIC_XLS404: case PRID_IMP_NETLOGIC_XLS208: case PRID_IMP_NETLOGIC_XLS204: case PRID_IMP_NETLOGIC_XLS108: case PRID_IMP_NETLOGIC_XLS104: case PRID_IMP_NETLOGIC_XLS616B: case PRID_IMP_NETLOGIC_XLS608B: case PRID_IMP_NETLOGIC_XLS416B: case PRID_IMP_NETLOGIC_XLS412B: case PRID_IMP_NETLOGIC_XLS408B: case PRID_IMP_NETLOGIC_XLS404B: c->cputype = CPU_XLR; __cpu_name[cpu] = "Netlogic XLS"; break; default: pr_info("Unknown Netlogic chip id [%02x]!\n", c->processor_id); c->cputype = CPU_XLR; break; } if (c->cputype == CPU_XLP) { set_isa(c, MIPS_CPU_ISA_M64R2); c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK); /* This will be updated again after all threads are woken up */ c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1; } else { set_isa(c, MIPS_CPU_ISA_M64R1); c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1; } c->kscratch_mask = 0xf; } #ifdef CONFIG_64BIT /* For use by uaccess.h */ u64 __ua_limit; EXPORT_SYMBOL(__ua_limit); #endif const char *__cpu_name[NR_CPUS]; const char *__elf_platform; void cpu_probe(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int cpu = smp_processor_id(); /* * Set a default elf platform, cpu probe may later * overwrite it with a more precise value */ set_elf_platform(cpu, "mips"); c->processor_id = PRID_IMP_UNKNOWN; c->fpu_id = FPIR_IMP_NONE; c->cputype = CPU_UNKNOWN; c->writecombine = _CACHE_UNCACHED; c->fpu_csr31 = FPU_CSR_RN; c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008; c->processor_id = read_c0_prid(); switch (c->processor_id & PRID_COMP_MASK) { case PRID_COMP_LEGACY: cpu_probe_legacy(c, cpu); break; case PRID_COMP_MIPS: cpu_probe_mips(c, cpu); break; case PRID_COMP_ALCHEMY: cpu_probe_alchemy(c, cpu); break; case PRID_COMP_SIBYTE: cpu_probe_sibyte(c, cpu); break; case PRID_COMP_BROADCOM: cpu_probe_broadcom(c, cpu); break; case PRID_COMP_SANDCRAFT: cpu_probe_sandcraft(c, cpu); break; case PRID_COMP_NXP: cpu_probe_nxp(c, cpu); break; case PRID_COMP_CAVIUM: cpu_probe_cavium(c, cpu); break; case PRID_COMP_LOONGSON: cpu_probe_loongson(c, cpu); break; case PRID_COMP_INGENIC_D0: case PRID_COMP_INGENIC_D1: case PRID_COMP_INGENIC_E1: cpu_probe_ingenic(c, cpu); break; case PRID_COMP_NETLOGIC: cpu_probe_netlogic(c, cpu); break; } BUG_ON(!__cpu_name[cpu]); BUG_ON(c->cputype == CPU_UNKNOWN); /* * Platform code can force the cpu type to optimize code * generation. In that case be sure the cpu type is correctly * manually setup otherwise it could trigger some nasty bugs. */ BUG_ON(current_cpu_type() != c->cputype); if (cpu_has_rixi) { /* Enable the RIXI exceptions */ set_c0_pagegrain(PG_IEC); back_to_back_c0_hazard(); /* Verify the IEC bit is set */ if (read_c0_pagegrain() & PG_IEC) c->options |= MIPS_CPU_RIXIEX; } if (mips_fpu_disabled) c->options &= ~MIPS_CPU_FPU; if (mips_dsp_disabled) c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P); if (mips_htw_disabled) { c->options &= ~MIPS_CPU_HTW; write_c0_pwctl(read_c0_pwctl() & ~(1 << MIPS_PWCTL_PWEN_SHIFT)); } if (c->options & MIPS_CPU_FPU) cpu_set_fpu_opts(c); else cpu_set_nofpu_opts(c); if (cpu_has_bp_ghist) write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST); if (cpu_has_mips_r2_r6) { c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1; /* R2 has Performance Counter Interrupt indicator */ c->options |= MIPS_CPU_PCI; } else c->srsets = 1; if (cpu_has_mips_r6) elf_hwcap |= HWCAP_MIPS_R6; if (cpu_has_msa) { c->msa_id = cpu_get_msa_id(); WARN(c->msa_id & MSA_IR_WRPF, "Vector register partitioning unimplemented!"); elf_hwcap |= HWCAP_MIPS_MSA; } if (cpu_has_vz) cpu_probe_vz(c); cpu_probe_vmbits(c); #ifdef CONFIG_64BIT if (cpu == 0) __ua_limit = ~((1ull << cpu_vmbits) - 1); #endif } void cpu_report(void) { struct cpuinfo_mips *c = ¤t_cpu_data; pr_info("CPU%d revision is: %08x (%s)\n", smp_processor_id(), c->processor_id, cpu_name_string()); if (c->options & MIPS_CPU_FPU) printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id); if (cpu_has_msa) pr_info("MSA revision is: %08x\n", c->msa_id); } void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster) { /* Ensure the core number fits in the field */ WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >> MIPS_GLOBALNUMBER_CLUSTER_SHF)); cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER; cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF; } void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core) { /* Ensure the core number fits in the field */ WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF)); cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE; cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF; } void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe) { /* Ensure the VP(E) ID fits in the field */ WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF)); /* Ensure we're not using VP(E)s without support */ WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) && !IS_ENABLED(CONFIG_CPU_MIPSR6)); cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP; cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1