Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steven J. Hill | 1634 | 64.84% | 2 | 8.33% |
David Daney | 379 | 15.04% | 1 | 4.17% |
Markos Chandras | 284 | 11.27% | 13 | 54.17% |
James Hogan | 157 | 6.23% | 4 | 16.67% |
Paul Burton | 38 | 1.51% | 2 | 8.33% |
Jiong Wang | 27 | 1.07% | 1 | 4.17% |
Gustavo A. R. Silva | 1 | 0.04% | 1 | 4.17% |
Total | 2520 | 24 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * A small micro-assembler. It is intentionally kept simple, does only * support a subset of instructions, and does not try to hide pipeline * effects like branch delay slots. * * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer * Copyright (C) 2005, 2007 Maciej W. Rozycki * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. */ #include <linux/kernel.h> #include <linux/types.h> #include <asm/inst.h> #include <asm/elf.h> #include <asm/bugs.h> #include <asm/uasm.h> #define RS_MASK 0x1f #define RS_SH 16 #define RT_MASK 0x1f #define RT_SH 21 #define SCIMM_MASK 0x3ff #define SCIMM_SH 16 /* This macro sets the non-variable bits of an instruction. */ #define M(a, b, c, d, e, f) \ ((a) << OP_SH \ | (b) << RT_SH \ | (c) << RS_SH \ | (d) << RD_SH \ | (e) << RE_SH \ | (f) << FUNC_SH) #include "uasm.c" static const struct insn insn_table_MM[insn_invalid] = { [insn_addu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD}, [insn_addiu] = {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM}, [insn_and] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD}, [insn_andi] = {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM}, [insn_beq] = {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, [insn_beql] = {0, 0}, [insn_bgez] = {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM}, [insn_bgezl] = {0, 0}, [insn_bltz] = {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM}, [insn_bltzl] = {0, 0}, [insn_bne] = {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM}, [insn_cache] = {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM}, [insn_cfc1] = {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS}, [insn_cfcmsa] = {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE}, [insn_ctc1] = {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS}, [insn_ctcmsa] = {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE}, [insn_daddu] = {0, 0}, [insn_daddiu] = {0, 0}, [insn_di] = {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS}, [insn_divu] = {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS}, [insn_dmfc0] = {0, 0}, [insn_dmtc0] = {0, 0}, [insn_dsll] = {0, 0}, [insn_dsll32] = {0, 0}, [insn_dsra] = {0, 0}, [insn_dsrl] = {0, 0}, [insn_dsrl32] = {0, 0}, [insn_drotr] = {0, 0}, [insn_drotr32] = {0, 0}, [insn_dsubu] = {0, 0}, [insn_eret] = {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0}, [insn_ins] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE}, [insn_ext] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE}, [insn_j] = {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM}, [insn_jal] = {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM}, [insn_jalr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS}, [insn_jr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS}, [insn_lb] = {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM}, [insn_ld] = {0, 0}, [insn_lh] = {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM}, [insn_ll] = {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM}, [insn_lld] = {0, 0}, [insn_lui] = {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM}, [insn_lw] = {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM}, [insn_mfc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD}, [insn_mfhi] = {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS}, [insn_mflo] = {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS}, [insn_mtc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD}, [insn_mthi] = {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS}, [insn_mtlo] = {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS}, [insn_mul] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD}, [insn_or] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD}, [insn_ori] = {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM}, [insn_pref] = {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM}, [insn_rfe] = {0, 0}, [insn_sc] = {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM}, [insn_scd] = {0, 0}, [insn_sd] = {0, 0}, [insn_sll] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD}, [insn_sllv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD}, [insn_slt] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD}, [insn_sltiu] = {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM}, [insn_sltu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD}, [insn_sra] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD}, [insn_srav] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD}, [insn_srl] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD}, [insn_srlv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD}, [insn_rotr] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD}, [insn_subu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD}, [insn_sw] = {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM}, [insn_sync] = {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS}, [insn_tlbp] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0}, [insn_tlbr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0}, [insn_tlbwi] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0}, [insn_tlbwr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0}, [insn_wait] = {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM}, [insn_wsbh] = {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS}, [insn_xor] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD}, [insn_xori] = {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM}, [insn_dins] = {0, 0}, [insn_dinsm] = {0, 0}, [insn_syscall] = {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM}, [insn_bbit0] = {0, 0}, [insn_bbit1] = {0, 0}, [insn_lwx] = {0, 0}, [insn_ldx] = {0, 0}, }; #undef M static inline u32 build_bimm(s32 arg) { WARN(arg > 0xffff || arg < -0x10000, KERN_WARNING "Micro-assembler field overflow\n"); WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff); } static inline u32 build_jimm(u32 arg) { WARN(arg & ~((JIMM_MASK << 2) | 1), KERN_WARNING "Micro-assembler field overflow\n"); return (arg >> 1) & JIMM_MASK; } /* * The order of opcode arguments is implicitly left to right, * starting with RS and ending with FUNC or IMM. */ static void build_insn(u32 **buf, enum opcode opc, ...) { const struct insn *ip; va_list ap; u32 op; if (opc < 0 || opc >= insn_invalid || (opc == insn_daddiu && r4k_daddiu_bug()) || (insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0)) panic("Unsupported Micro-assembler instruction %d", opc); ip = &insn_table_MM[opc]; op = ip->match; va_start(ap, opc); if (ip->fields & RS) { if (opc == insn_mfc0 || opc == insn_mtc0 || opc == insn_cfc1 || opc == insn_ctc1) op |= build_rt(va_arg(ap, u32)); else op |= build_rs(va_arg(ap, u32)); } if (ip->fields & RT) { if (opc == insn_mfc0 || opc == insn_mtc0 || opc == insn_cfc1 || opc == insn_ctc1) op |= build_rs(va_arg(ap, u32)); else op |= build_rt(va_arg(ap, u32)); } if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); if (ip->fields & SCIMM) op |= build_scimm(va_arg(ap, u32)); va_end(ap); #ifdef CONFIG_CPU_LITTLE_ENDIAN **buf = ((op & 0xffff) << 16) | (op >> 16); #else **buf = op; #endif (*buf)++; } static inline void __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) { long laddr = (long)lab->addr; long raddr = (long)rel->addr; switch (rel->type) { case R_MIPS_PC16: #ifdef CONFIG_CPU_LITTLE_ENDIAN *rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16); #else *rel->addr |= build_bimm(laddr - (raddr + 4)); #endif break; default: panic("Unsupported Micro-assembler relocation %d", rel->type); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1