Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steven J. Hill | 1959 | 48.66% | 2 | 6.25% |
David Daney | 1107 | 27.50% | 3 | 9.38% |
Markos Chandras | 266 | 6.61% | 13 | 40.62% |
Hassan Naveed | 216 | 5.37% | 1 | 3.12% |
Leonid Yegoshin | 203 | 5.04% | 1 | 3.12% |
James Hogan | 167 | 4.15% | 5 | 15.62% |
Paul Burton | 79 | 1.96% | 4 | 12.50% |
Jiong Wang | 27 | 0.67% | 1 | 3.12% |
Huacai Chen | 1 | 0.02% | 1 | 3.12% |
Matt Redfearn | 1 | 0.02% | 1 | 3.12% |
Total | 4026 | 32 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * A small micro-assembler. It is intentionally kept simple, does only * support a subset of instructions, and does not try to hide pipeline * effects like branch delay slots. * * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer * Copyright (C) 2005, 2007 Maciej W. Rozycki * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved. */ #include <linux/kernel.h> #include <linux/types.h> #include <asm/inst.h> #include <asm/elf.h> #include <asm/bugs.h> #include <asm/uasm.h> #define RS_MASK 0x1f #define RS_SH 21 #define RT_MASK 0x1f #define RT_SH 16 #define SCIMM_MASK 0xfffff #define SCIMM_SH 6 /* This macro sets the non-variable bits of an instruction. */ #define M(a, b, c, d, e, f) \ ((a) << OP_SH \ | (b) << RS_SH \ | (c) << RT_SH \ | (d) << RD_SH \ | (e) << RE_SH \ | (f) << FUNC_SH) /* This macro sets the non-variable bits of an R6 instruction. */ #define M6(a, b, c, d, e) \ ((a) << OP_SH \ | (b) << RS_SH \ | (c) << RT_SH \ | (d) << SIMM9_SH \ | (e) << FUNC_SH) #include "uasm.c" static const struct insn insn_table[insn_invalid] = { [insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD}, [insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD}, [insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM}, [insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, [insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, [insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, [insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, [insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM}, [insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM}, [insn_bgtz] = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM}, [insn_blez] = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM}, [insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM}, [insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM}, [insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM}, [insn_break] = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM}, #ifndef CONFIG_CPU_MIPSR6 [insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, #else [insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9}, #endif [insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD}, [insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE}, [insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD}, [insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE}, [insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD}, [insn_ddivu] = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT}, [insn_ddivu_r6] = {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op), RS | RT | RD}, [insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT}, [insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE}, [insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE}, [insn_dinsu] = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE}, [insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT}, [insn_divu_r6] = {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op), RS | RT | RD}, [insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET}, [insn_dmodu] = {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op), RS | RT | RD}, [insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET}, [insn_dmultu] = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT}, [insn_dmulu] = {M(spec_op, 0, 0, 0, dmult_dmul_op, dmultu_op), RS | RT | RD}, [insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE}, [insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE}, [insn_dsbh] = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD}, [insn_dshd] = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD}, [insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE}, [insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE}, [insn_dsllv] = {M(spec_op, 0, 0, 0, 0, dsllv_op), RS | RT | RD}, [insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE}, [insn_dsra32] = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE}, [insn_dsrav] = {M(spec_op, 0, 0, 0, 0, dsrav_op), RS | RT | RD}, [insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE}, [insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE}, [insn_dsrlv] = {M(spec_op, 0, 0, 0, 0, dsrlv_op), RS | RT | RD}, [insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD}, [insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0}, [insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE}, [insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE}, [insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM}, [insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM}, [insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD}, #ifndef CONFIG_CPU_MIPSR6 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS}, #else [insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS}, #endif [insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_lbu] = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD}, [insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD}, [insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD}, [insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, #ifndef CONFIG_CPU_MIPSR6 [insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, #else [insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9}, [insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9}, #endif [insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM}, [insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_lwu] = {M(lwu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD}, [insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET}, [insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET}, [insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD}, [insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD}, [insn_modu] = {M(spec_op, 0, 0, 0, divu_modu_op, divu_op), RS | RT | RD}, [insn_movn] = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD}, [insn_movz] = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD}, [insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET}, [insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET}, [insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS}, [insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS}, [insn_mulu] = {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op), RS | RT | RD}, #ifndef CONFIG_CPU_MIPSR6 [insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD}, #else [insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD}, #endif [insn_multu] = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT}, [insn_nor] = {M(spec_op, 0, 0, 0, 0, nor_op), RS | RT | RD}, [insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD}, [insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM}, #ifndef CONFIG_CPU_MIPSR6 [insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, #else [insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9}, #endif [insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0}, [insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE}, [insn_sb] = {M(sb_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, #ifndef CONFIG_CPU_MIPSR6 [insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, #else [insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9}, [insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9}, #endif [insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_seleqz] = {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD}, [insn_selnez] = {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD}, [insn_sh] = {M(sh_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE}, [insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD}, [insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD}, [insn_slti] = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD}, [insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE}, [insn_srav] = {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD}, [insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE}, [insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD}, [insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD}, [insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM}, [insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE}, [insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM}, [insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0}, [insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0}, [insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0}, [insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0}, [insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM}, [insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD}, [insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD}, [insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM}, [insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD}, }; #undef M static inline u32 build_bimm(s32 arg) { WARN(arg > 0x1ffff || arg < -0x20000, KERN_WARNING "Micro-assembler field overflow\n"); WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n"); return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); } static inline u32 build_jimm(u32 arg) { WARN(arg & ~(JIMM_MASK << 2), KERN_WARNING "Micro-assembler field overflow\n"); return (arg >> 2) & JIMM_MASK; } /* * The order of opcode arguments is implicitly left to right, * starting with RS and ending with FUNC or IMM. */ static void build_insn(u32 **buf, enum opcode opc, ...) { const struct insn *ip; va_list ap; u32 op; if (opc < 0 || opc >= insn_invalid || (opc == insn_daddiu && r4k_daddiu_bug()) || (insn_table[opc].match == 0 && insn_table[opc].fields == 0)) panic("Unsupported Micro-assembler instruction %d", opc); ip = &insn_table[opc]; op = ip->match; va_start(ap, opc); if (ip->fields & RS) op |= build_rs(va_arg(ap, u32)); if (ip->fields & RT) op |= build_rt(va_arg(ap, u32)); if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); if (ip->fields & SET) op |= build_set(va_arg(ap, u32)); if (ip->fields & SCIMM) op |= build_scimm(va_arg(ap, u32)); if (ip->fields & SIMM9) op |= build_scimm9(va_arg(ap, u32)); va_end(ap); **buf = op; (*buf)++; } static inline void __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab) { long laddr = (long)lab->addr; long raddr = (long)rel->addr; switch (rel->type) { case R_MIPS_PC16: *rel->addr |= build_bimm(laddr - (raddr + 4)); break; default: panic("Unsupported Micro-assembler relocation %d", rel->type); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1