Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 2340 | 96.89% | 5 | 33.33% |
Aaro Koskinen | 32 | 1.33% | 3 | 20.00% |
Ralf Baechle | 26 | 1.08% | 2 | 13.33% |
Rob Herring | 6 | 0.25% | 1 | 6.67% |
Roel Kluin | 6 | 0.25% | 1 | 6.67% |
Jiang Liu | 2 | 0.08% | 1 | 6.67% |
Lucas De Marchi | 2 | 0.08% | 1 | 6.67% |
Masanari Iida | 1 | 0.04% | 1 | 6.67% |
Total | 2415 | 15 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005-2009 Cavium Networks */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/swiotlb.h> #include <asm/time.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-npi-defs.h> #include <asm/octeon/cvmx-pci-defs.h> #include <asm/octeon/pci-octeon.h> #define USE_OCTEON_INTERNAL_ARBITER /* * Octeon's PCI controller uses did=3, subdid=2 for PCI IO * addresses. Use PCI endian swapping 1 so no address swapping is * necessary. The Linux io routines will endian swap the data. */ #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) u64 octeon_bar1_pci_phys; /** * This is the bit decoding used for the Octeon PCI controller addresses */ union octeon_pci_address { uint64_t u64; struct { uint64_t upper:2; uint64_t reserved:13; uint64_t io:1; uint64_t did:5; uint64_t subdid:3; uint64_t reserved2:4; uint64_t endian_swap:2; uint64_t reserved3:10; uint64_t bus:8; uint64_t dev:5; uint64_t func:3; uint64_t reg:8; } s; }; int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin); enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; /** * Map a PCI device to the appropriate interrupt line * * @dev: The Linux PCI device structure for the device to map * @slot: The slot number for this device on __BUS 0__. Linux * enumerates through all the bridges and figures out the * slot on Bus 0 where this device eventually hooks to. * @pin: The PCI interrupt pin read from the device, then swizzled * as it goes through each bridge. * Returns Interrupt number for the device */ int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { if (octeon_pcibios_map_irq) return octeon_pcibios_map_irq(dev, slot, pin); else panic("octeon_pcibios_map_irq not set."); } /* * Called to perform platform specific PCI setup */ int pcibios_plat_dev_init(struct pci_dev *dev) { uint16_t config; uint32_t dconfig; int pos; /* * Force the Cache line setting to 64 bytes. The standard * Linux bus scan doesn't seem to set it. Octeon really has * 128 byte lines, but Intel bridges get really upset if you * try and set values above 64 bytes. Value is specified in * 32bit words. */ pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); /* Set latency timers for all devices */ pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); /* Enable reporting System errors and parity errors on all devices */ /* Enable parity checking and error reporting */ pci_read_config_word(dev, PCI_COMMAND, &config); config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; pci_write_config_word(dev, PCI_COMMAND, config); if (dev->subordinate) { /* Set latency timers on sub bridges */ pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); /* More bridge error detection */ pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); } /* Enable the PCIe normal error reporting */ config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); /* Find the Advanced Error Reporting capability */ pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); if (pos) { /* Clear Uncorrectable Error Status */ pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &dconfig); pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, dconfig); /* Enable reporting of all uncorrectable errors */ /* Uncorrectable Error Mask - turned on bits disable errors */ pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); /* * Leave severity at HW default. This only controls if * errors are reported as uncorrectable or * correctable, not if the error is reported. */ /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ /* Clear Correctable Error Status */ pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); /* Enable reporting of all correctable errors */ /* Correctable Error Mask - turned on bits disable errors */ pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); /* Advanced Error Capabilities */ pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); /* ECRC Generation Enable */ if (config & PCI_ERR_CAP_ECRC_GENC) config |= PCI_ERR_CAP_ECRC_GENE; /* ECRC Check Enable */ if (config & PCI_ERR_CAP_ECRC_CHKC) config |= PCI_ERR_CAP_ECRC_CHKE; pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ /* Report all errors to the root complex */ pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, PCI_ERR_ROOT_CMD_COR_EN | PCI_ERR_ROOT_CMD_NONFATAL_EN | PCI_ERR_ROOT_CMD_FATAL_EN); /* Clear the Root status register */ pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); } return 0; } /** * Return the mapping of PCI device number to IRQ line. Each * character in the return string represents the interrupt * line for the device at that position. Device 1 maps to the * first character, etc. The characters A-D are used for PCI * interrupts. * * Returns PCI interrupt mapping */ const char *octeon_get_pci_interrupts(void) { /* * Returning an empty string causes the interrupts to be * routed based on the PCI specification. From the PCI spec: * * INTA# of Device Number 0 is connected to IRQW on the system * board. (Device Number has no significance regarding being * located on the system board or in a connector.) INTA# of * Device Number 1 is connected to IRQX on the system * board. INTA# of Device Number 2 is connected to IRQY on the * system board. INTA# of Device Number 3 is connected to IRQZ * on the system board. The table below describes how each * agent's INTx# lines are connected to the system board * interrupt lines. The following equation can be used to * determine to which INTx# signal on the system board a given * device's INTx# line(s) is connected. * * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and * INTD# = 3) */ if (of_machine_is_compatible("dlink,dsr-500n")) return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; switch (octeon_bootinfo->board_type) { case CVMX_BOARD_TYPE_NAO38: /* This is really the NAC38 */ return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; case CVMX_BOARD_TYPE_EBH3100: case CVMX_BOARD_TYPE_CN3010_EVB_HS5: case CVMX_BOARD_TYPE_CN3005_EVB_HS5: return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; case CVMX_BOARD_TYPE_BBGW_REF: return "AABCD"; case CVMX_BOARD_TYPE_CUST_DSR1000N: return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; case CVMX_BOARD_TYPE_THUNDER: case CVMX_BOARD_TYPE_EBH3000: default: return ""; } } /** * Map a PCI device to the appropriate interrupt line * * @dev: The Linux PCI device structure for the device to map * @slot: The slot number for this device on __BUS 0__. Linux * enumerates through all the bridges and figures out the * slot on Bus 0 where this device eventually hooks to. * @pin: The PCI interrupt pin read from the device, then swizzled * as it goes through each bridge. * Returns Interrupt number for the device */ int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { int irq_num; const char *interrupts; int dev_num; /* Get the board specific interrupt mapping */ interrupts = octeon_get_pci_interrupts(); dev_num = dev->devfn >> 3; if (dev_num < strlen(interrupts)) irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + OCTEON_IRQ_PCI_INT0; else irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; return irq_num; } /* * Read a value from configuration space */ static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 *val) { union octeon_pci_address pci_addr; pci_addr.u64 = 0; pci_addr.s.upper = 2; pci_addr.s.io = 1; pci_addr.s.did = 3; pci_addr.s.subdid = 1; pci_addr.s.endian_swap = 1; pci_addr.s.bus = bus->number; pci_addr.s.dev = devfn >> 3; pci_addr.s.func = devfn & 0x7; pci_addr.s.reg = reg; switch (size) { case 4: *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); return PCIBIOS_SUCCESSFUL; case 2: *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); return PCIBIOS_SUCCESSFUL; case 1: *val = cvmx_read64_uint8(pci_addr.u64); return PCIBIOS_SUCCESSFUL; } return PCIBIOS_FUNC_NOT_SUPPORTED; } /* * Write a value to PCI configuration space */ static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, int reg, int size, u32 val) { union octeon_pci_address pci_addr; pci_addr.u64 = 0; pci_addr.s.upper = 2; pci_addr.s.io = 1; pci_addr.s.did = 3; pci_addr.s.subdid = 1; pci_addr.s.endian_swap = 1; pci_addr.s.bus = bus->number; pci_addr.s.dev = devfn >> 3; pci_addr.s.func = devfn & 0x7; pci_addr.s.reg = reg; switch (size) { case 4: cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); return PCIBIOS_SUCCESSFUL; case 2: cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); return PCIBIOS_SUCCESSFUL; case 1: cvmx_write64_uint8(pci_addr.u64, val); return PCIBIOS_SUCCESSFUL; } return PCIBIOS_FUNC_NOT_SUPPORTED; } static struct pci_ops octeon_pci_ops = { .read = octeon_read_config, .write = octeon_write_config, }; static struct resource octeon_pci_mem_resource = { .start = 0, .end = 0, .name = "Octeon PCI MEM", .flags = IORESOURCE_MEM, }; /* * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI * bridge */ static struct resource octeon_pci_io_resource = { .start = 0x4000, .end = OCTEON_PCI_IOSPACE_SIZE - 1, .name = "Octeon PCI IO", .flags = IORESOURCE_IO, }; static struct pci_controller octeon_pci_controller = { .pci_ops = &octeon_pci_ops, .mem_resource = &octeon_pci_mem_resource, .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, .io_resource = &octeon_pci_io_resource, .io_offset = 0, .io_map_base = OCTEON_PCI_IOSPACE_BASE, }; /* * Low level initialize the Octeon PCI controller */ static void octeon_pci_initialize(void) { union cvmx_pci_cfg01 cfg01; union cvmx_npi_ctl_status ctl_status; union cvmx_pci_ctl_status_2 ctl_status_2; union cvmx_pci_cfg19 cfg19; union cvmx_pci_cfg16 cfg16; union cvmx_pci_cfg22 cfg22; union cvmx_pci_cfg56 cfg56; /* Reset the PCI Bus */ cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); cvmx_read_csr(CVMX_CIU_SOFT_PRST); udelay(2000); /* Hold PCI reset for 2 ms */ ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ ctl_status.s.max_word = 1; ctl_status.s.timer = 1; cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); /* Deassert PCI reset and advertize PCX Host Mode Device Capability (64b) */ cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); cvmx_read_csr(CVMX_CIU_SOFT_PRST); udelay(2000); /* Wait 2 ms after deasserting PCI reset */ ctl_status_2.u32 = 0; ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set before any PCI reads. */ ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ ctl_status_2.s.bar2_enb = 1; ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ ctl_status_2.s.bar2_esx = 1; ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { /* BAR1 hole */ ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ ctl_status_2.s.bb1 = 1; /* BAR1 is big */ ctl_status_2.s.bb0 = 1; /* BAR0 is big */ } octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); udelay(2000); /* Wait 2 ms before doing PCI reads */ ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); pr_notice("PCI Status: %s %s-bit\n", ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", ctl_status_2.s.ap_64ad ? "64" : "32"); if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { union cvmx_pci_cnt_reg cnt_reg_start; union cvmx_pci_cnt_reg cnt_reg_end; unsigned long cycles, pci_clock; cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); cycles = read_c0_cvmcount(); udelay(1000); cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); cycles = read_c0_cvmcount() - cycles; pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / (cycles / (mips_hpt_frequency / 1000000)); pr_notice("PCI Clock: %lu MHz\n", pci_clock); } /* * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 * in PCI-X mode to allow four outstanding splits. Otherwise, * should not change from its reset value. Don't write PCI_CFG19 * in PCI mode (0x82000001 reset value), write it to 0x82000004 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. * MRBCM -> must be one. */ if (ctl_status_2.s.ap_pcix) { cfg19.u32 = 0; /* * Target Delayed/Split request outstanding maximum * count. [1..31] and 0=32. NOTE: If the user * programs these bits beyond the Designed Maximum * outstanding count, then the designed maximum table * depth will be used instead. No additional * Deferred/Split transactions will be accepted if * this outstanding maximum count is * reached. Furthermore, no additional deferred/split * transactions will be accepted if the I/O delay/ I/O * Split Request outstanding maximum is reached. */ cfg19.s.tdomc = 4; /* * Master Deferred Read Request Outstanding Max Count * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 * 5 2 110 6 3 111 7 3 For example, if these bits are * programmed to 100, the core can support 2 DAC * cycles, 4 SAC cycles or a combination of 1 DAC and * 2 SAC cycles. NOTE: For the PCI-X maximum * outstanding split transactions, refer to * CRE0[22:20]. */ cfg19.s.mdrrmc = 2; /* * Master Request (Memory Read) Byte Count/Byte Enable * select. 0 = Byte Enables valid. In PCI mode, a * burst transaction cannot be performed using Memory * Read command=4?h6. 1 = DWORD Byte Count valid * (default). In PCI Mode, the memory read byte * enables are automatically generated by the * core. Note: N3 Master Request transaction sizes are * always determined through the * am_attr[<35:32>|<7:0>] field. */ cfg19.s.mrbcm = 1; octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); } cfg01.u32 = 0; cfg01.s.msae = 1; /* Memory Space Access Enable */ cfg01.s.me = 1; /* Master Enable */ cfg01.s.pee = 1; /* PERR# Enable */ cfg01.s.see = 1; /* System Error Enable */ cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); #ifdef USE_OCTEON_INTERNAL_ARBITER /* * When OCTEON is a PCI host, most systems will use OCTEON's * internal arbiter, so must enable it before any PCI/PCI-X * traffic can occur. */ { union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; pci_int_arb_cfg.u64 = 0; pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); } #endif /* USE_OCTEON_INTERNAL_ARBITER */ /* * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to * 1..7. */ cfg16.u32 = 0; cfg16.s.mltd = 1; /* Master Latency Timer Disable */ octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); /* * Should be written to 0x4ff00. MTTV -> must be zero. * FLUSH -> must be 1. MRV -> should be 0xFF. */ cfg22.u32 = 0; /* Master Retry Value [1..255] and 0=infinite */ cfg22.s.mrv = 0xff; /* * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper * N3K operation. */ cfg22.s.flush = 1; octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); /* * MOST Indicates the maximum number of outstanding splits (in -1 * notation) when OCTEON is in PCI-X mode. PCI-X performance is * affected by the MOST selection. Should generally be written * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, * depending on the desired MOST of 3, 2, 1, or 0, respectively. */ cfg56.u32 = 0; cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ cfg56.s.roe = 1; /* Relaxed Ordering Enable */ cfg56.s.mmbc = 1; /* Maximum Memory Byte Count [0=512B,1=1024B,2=2048B,3=4096B] */ cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 .. 7=32] */ octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); /* * Affects PCI performance when OCTEON services reads to its * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, * these values need to be changed so they won't possibly prefetch off * of the end of memory if PCI is DMAing a buffer at the end of * memory. Note that these values differ from their reset values. */ octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); } /* * Initialize the Octeon PCI controller */ static int __init octeon_pci_setup(void) { union cvmx_npi_mem_access_subidx mem_access; int index; /* Only these chips have PCI */ if (octeon_has_feature(OCTEON_FEATURE_PCIE)) return 0; if (!octeon_is_pci_host()) { pr_notice("Not in host mode, PCI Controller not initialized\n"); return 0; } /* Point pcibios_map_irq() to the PCI version of it */ octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; /* Only use the big bars on chips that support it */ if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; else octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; /* PCI I/O and PCI MEM values */ set_io_port_base(OCTEON_PCI_IOSPACE_BASE); ioport_resource.start = 0; ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; pr_notice("%s Octeon big bar support\n", (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); octeon_pci_initialize(); mem_access.u64 = 0; mem_access.s.esr = 1; /* Endian-Swap on read. */ mem_access.s.esw = 1; /* Endian-Swap on write. */ mem_access.s.nsr = 0; /* No-Snoop on read. */ mem_access.s.nsw = 0; /* No-Snoop on write. */ mem_access.s.ror = 0; /* Relax Read on read. */ mem_access.s.row = 0; /* Relax Order on write. */ mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); /* * Remap the Octeon BAR 2 above all 32 bit devices * (0x8000000000ul). This is done here so it is remapped * before the readl()'s below. We don't want BAR2 overlapping * with BAR0/BAR1 during these reads. */ octeon_npi_write32(CVMX_NPI_PCI_CFG08, (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); octeon_npi_write32(CVMX_NPI_PCI_CFG09, (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { /* Remap the Octeon BAR 0 to 0-2GB */ octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); /* * Remap the Octeon BAR 1 to map 2GB-4GB (minus the * BAR 1 hole). */ octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); /* BAR1 movable mappings set for identity mapping */ octeon_bar1_pci_phys = 0x80000000ull; for (index = 0; index < 32; index++) { union cvmx_pci_bar1_indexx bar1_index; bar1_index.u32 = 0; /* Address bits[35:22] sent to L2C */ bar1_index.s.addr_idx = (octeon_bar1_pci_phys >> 22) + index; /* Don't put PCI accesses in L2. */ bar1_index.s.ca = 1; /* Endian Swap Mode */ bar1_index.s.end_swp = 1; /* Set '1' when the selected address range is valid. */ bar1_index.s.addr_v = 1; octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), bar1_index.u32); } /* Devices go after BAR1 */ octeon_pci_mem_resource.start = OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20); octeon_pci_mem_resource.end = octeon_pci_mem_resource.start + (1ul << 30); } else { /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); /* Remap the Octeon BAR 1 to map 0-128MB */ octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); /* BAR1 movable regions contiguous to cover the swiotlb */ octeon_bar1_pci_phys = virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); for (index = 0; index < 32; index++) { union cvmx_pci_bar1_indexx bar1_index; bar1_index.u32 = 0; /* Address bits[35:22] sent to L2C */ bar1_index.s.addr_idx = (octeon_bar1_pci_phys >> 22) + index; /* Don't put PCI accesses in L2. */ bar1_index.s.ca = 1; /* Endian Swap Mode */ bar1_index.s.end_swp = 1; /* Set '1' when the selected address range is valid. */ bar1_index.s.addr_v = 1; octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), bar1_index.u32); } /* Devices go after BAR0 */ octeon_pci_mem_resource.start = OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + (4ul << 10); octeon_pci_mem_resource.end = octeon_pci_mem_resource.start + (1ul << 30); } register_pci_controller(&octeon_pci_controller); /* * Clear any errors that might be pending from before the bus * was setup properly. */ cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); if (IS_ERR(platform_device_register_simple("octeon_pci_edac", -1, NULL, 0))) pr_err("Registration of co_pci_edac failed!\n"); octeon_pci_dma_init(); return 0; } arch_initcall(octeon_pci_setup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1