Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralf Baechle | 1846 | 79.88% | 7 | 33.33% |
Mark Mason | 253 | 10.95% | 1 | 4.76% |
Andrew Morton | 141 | 6.10% | 1 | 4.76% |
Maciej W. Rozycki | 47 | 2.03% | 1 | 4.76% |
Arnd Bergmann | 5 | 0.22% | 1 | 4.76% |
Jonathan Corbet | 5 | 0.22% | 1 | 4.76% |
Markos Chandras | 3 | 0.13% | 1 | 4.76% |
Greg Kroah-Hartman | 3 | 0.13% | 2 | 9.52% |
Al Viro | 2 | 0.09% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.09% | 1 | 4.76% |
Linus Torvalds | 1 | 0.04% | 1 | 4.76% |
Thomas Weber | 1 | 0.04% | 1 | 4.76% |
Arjan van de Ven | 1 | 0.04% | 1 | 4.76% |
Joe Perches | 1 | 0.04% | 1 | 4.76% |
Total | 2311 | 21 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) 2001, 2002, 2003 Broadcom Corporation * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> * Copyright (C) 2007 MIPS Technologies, Inc. * written by Ralf Baechle <ralf@linux-mips.org> */ #undef DEBUG #include <linux/device.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/wait.h> #include <asm/io.h> #include <asm/sibyte/sb1250.h> #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/bcm1480_scd.h> #include <asm/sibyte/bcm1480_int.h> #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X) #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_scd.h> #include <asm/sibyte/sb1250_int.h> #else #error invalid SiByte UART configuration #endif #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) #undef K_INT_TRACE_FREEZE #define K_INT_TRACE_FREEZE K_BCM1480_INT_TRACE_FREEZE #undef K_INT_PERF_CNT #define K_INT_PERF_CNT K_BCM1480_INT_PERF_CNT #endif #include <linux/uaccess.h> #define SBPROF_TB_MAJOR 240 typedef u64 tb_sample_t[6*256]; enum open_status { SB_CLOSED, SB_OPENING, SB_OPEN }; struct sbprof_tb { wait_queue_head_t tb_sync; wait_queue_head_t tb_read; struct mutex lock; enum open_status open; tb_sample_t *sbprof_tbbuf; int next_tb_sample; volatile int tb_enable; volatile int tb_armed; }; static struct sbprof_tb sbp; #define MAX_SAMPLE_BYTES (24*1024*1024) #define MAX_TBSAMPLE_BYTES (12*1024*1024) #define MAX_SAMPLES (MAX_SAMPLE_BYTES/sizeof(u_int32_t)) #define TB_SAMPLE_SIZE (sizeof(tb_sample_t)) #define MAX_TB_SAMPLES (MAX_TBSAMPLE_BYTES/TB_SAMPLE_SIZE) /* ioctls */ #define SBPROF_ZBSTART _IOW('s', 0, int) #define SBPROF_ZBSTOP _IOW('s', 1, int) #define SBPROF_ZBWAITFULL _IOW('s', 2, int) /* * Routines for using 40-bit SCD cycle counter * * Client responsible for either handling interrupts or making sure * the cycles counter never saturates, e.g., by doing * zclk_timer_init(0) at least every 2^40 - 1 ZCLKs. */ /* * Configures SCD counter 0 to count ZCLKs starting from val; * Configures SCD counters1,2,3 to count nothing. * Must not be called while gathering ZBbus profiles. */ #define zclk_timer_init(val) \ __asm__ __volatile__ (".set push;" \ ".set mips64;" \ "la $8, 0xb00204c0;" /* SCD perf_cnt_cfg */ \ "sd %0, 0x10($8);" /* write val to counter0 */ \ "sd %1, 0($8);" /* config counter0 for zclks*/ \ ".set pop" \ : /* no outputs */ \ /* enable, counter0 */ \ : /* inputs */ "r"(val), "r" ((1ULL << 33) | 1ULL) \ : /* modifies */ "$8" ) /* Reads SCD counter 0 and puts result in value unsigned long long val; */ #define zclk_get(val) \ __asm__ __volatile__ (".set push;" \ ".set mips64;" \ "la $8, 0xb00204c0;" /* SCD perf_cnt_cfg */ \ "ld %0, 0x10($8);" /* write val to counter0 */ \ ".set pop" \ : /* outputs */ "=r"(val) \ : /* inputs */ \ : /* modifies */ "$8" ) #define DEVNAME "sb_tbprof" #define TB_FULL (sbp.next_tb_sample == MAX_TB_SAMPLES) /* * Support for ZBbus sampling using the trace buffer * * We use the SCD performance counter interrupt, caused by a Zclk counter * overflow, to trigger the start of tracing. * * We set the trace buffer to sample everything and freeze on * overflow. * * We map the interrupt for trace_buffer_freeze to handle it on CPU 0. * */ static u64 tb_period; static void arm_tb(void) { u64 scdperfcnt; u64 next = (1ULL << 40) - tb_period; u64 tb_options = M_SCD_TRACE_CFG_FREEZE_FULL; /* * Generate an SCD_PERFCNT interrupt in TB_PERIOD Zclks to * trigger start of trace. XXX vary sampling period */ __raw_writeq(0, IOADDR(A_SCD_PERF_CNT_1)); scdperfcnt = __raw_readq(IOADDR(A_SCD_PERF_CNT_CFG)); /* * Unfortunately, in Pass 2 we must clear all counters to knock down * a previous interrupt request. This means that bus profiling * requires ALL of the SCD perf counters. */ #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) __raw_writeq((scdperfcnt & ~M_SPC_CFG_SRC1) | /* keep counters 0,2,3,4,5,6,7 as is */ V_SPC_CFG_SRC1(1), /* counter 1 counts cycles */ IOADDR(A_BCM1480_SCD_PERF_CNT_CFG0)); __raw_writeq( M_SPC_CFG_ENABLE | /* enable counting */ M_SPC_CFG_CLEAR | /* clear all counters */ V_SPC_CFG_SRC1(1), /* counter 1 counts cycles */ IOADDR(A_BCM1480_SCD_PERF_CNT_CFG1)); #else __raw_writeq((scdperfcnt & ~M_SPC_CFG_SRC1) | /* keep counters 0,2,3 as is */ M_SPC_CFG_ENABLE | /* enable counting */ M_SPC_CFG_CLEAR | /* clear all counters */ V_SPC_CFG_SRC1(1), /* counter 1 counts cycles */ IOADDR(A_SCD_PERF_CNT_CFG)); #endif __raw_writeq(next, IOADDR(A_SCD_PERF_CNT_1)); /* Reset the trace buffer */ __raw_writeq(M_SCD_TRACE_CFG_RESET, IOADDR(A_SCD_TRACE_CFG)); #if 0 && defined(M_SCD_TRACE_CFG_FORCECNT) /* XXXKW may want to expose control to the data-collector */ tb_options |= M_SCD_TRACE_CFG_FORCECNT; #endif __raw_writeq(tb_options, IOADDR(A_SCD_TRACE_CFG)); sbp.tb_armed = 1; } static irqreturn_t sbprof_tb_intr(int irq, void *dev_id) { int i; pr_debug(DEVNAME ": tb_intr\n"); if (sbp.next_tb_sample < MAX_TB_SAMPLES) { /* XXX should use XKPHYS to make writes bypass L2 */ u64 *p = sbp.sbprof_tbbuf[sbp.next_tb_sample++]; /* Read out trace */ __raw_writeq(M_SCD_TRACE_CFG_START_READ, IOADDR(A_SCD_TRACE_CFG)); __asm__ __volatile__ ("sync" : : : "memory"); /* Loop runs backwards because bundles are read out in reverse order */ for (i = 256 * 6; i > 0; i -= 6) { /* Subscripts decrease to put bundle in the order */ /* t0 lo, t0 hi, t1 lo, t1 hi, t2 lo, t2 hi */ p[i - 1] = __raw_readq(IOADDR(A_SCD_TRACE_READ)); /* read t2 hi */ p[i - 2] = __raw_readq(IOADDR(A_SCD_TRACE_READ)); /* read t2 lo */ p[i - 3] = __raw_readq(IOADDR(A_SCD_TRACE_READ)); /* read t1 hi */ p[i - 4] = __raw_readq(IOADDR(A_SCD_TRACE_READ)); /* read t1 lo */ p[i - 5] = __raw_readq(IOADDR(A_SCD_TRACE_READ)); /* read t0 hi */ p[i - 6] = __raw_readq(IOADDR(A_SCD_TRACE_READ)); /* read t0 lo */ } if (!sbp.tb_enable) { pr_debug(DEVNAME ": tb_intr shutdown\n"); __raw_writeq(M_SCD_TRACE_CFG_RESET, IOADDR(A_SCD_TRACE_CFG)); sbp.tb_armed = 0; wake_up_interruptible(&sbp.tb_sync); } else { /* knock down current interrupt and get another one later */ arm_tb(); } } else { /* No more trace buffer samples */ pr_debug(DEVNAME ": tb_intr full\n"); __raw_writeq(M_SCD_TRACE_CFG_RESET, IOADDR(A_SCD_TRACE_CFG)); sbp.tb_armed = 0; if (!sbp.tb_enable) wake_up_interruptible(&sbp.tb_sync); wake_up_interruptible(&sbp.tb_read); } return IRQ_HANDLED; } static irqreturn_t sbprof_pc_intr(int irq, void *dev_id) { printk(DEVNAME ": unexpected pc_intr"); return IRQ_NONE; } /* * Requires: Already called zclk_timer_init with a value that won't * saturate 40 bits. No subsequent use of SCD performance counters * or trace buffer. */ static int sbprof_zbprof_start(struct file *filp) { u64 scdperfcnt; int err; if (xchg(&sbp.tb_enable, 1)) return -EBUSY; pr_debug(DEVNAME ": starting\n"); sbp.next_tb_sample = 0; filp->f_pos = 0; err = request_irq(K_INT_TRACE_FREEZE, sbprof_tb_intr, 0, DEVNAME " trace freeze", &sbp); if (err) return -EBUSY; /* Make sure there isn't a perf-cnt interrupt waiting */ scdperfcnt = __raw_readq(IOADDR(A_SCD_PERF_CNT_CFG)); /* Disable and clear counters, override SRC_1 */ __raw_writeq((scdperfcnt & ~(M_SPC_CFG_SRC1 | M_SPC_CFG_ENABLE)) | M_SPC_CFG_ENABLE | M_SPC_CFG_CLEAR | V_SPC_CFG_SRC1(1), IOADDR(A_SCD_PERF_CNT_CFG)); /* * We grab this interrupt to prevent others from trying to use * it, even though we don't want to service the interrupts * (they only feed into the trace-on-interrupt mechanism) */ if (request_irq(K_INT_PERF_CNT, sbprof_pc_intr, 0, DEVNAME " scd perfcnt", &sbp)) { free_irq(K_INT_TRACE_FREEZE, &sbp); return -EBUSY; } /* * I need the core to mask these, but the interrupt mapper to * pass them through. I am exploiting my knowledge that * cp0_status masks out IP[5]. krw */ #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) __raw_writeq(K_BCM1480_INT_MAP_I3, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + ((K_BCM1480_INT_PERF_CNT & 0x3f) << 3))); #else __raw_writeq(K_INT_MAP_I3, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) + (K_INT_PERF_CNT << 3))); #endif /* Initialize address traps */ __raw_writeq(0, IOADDR(A_ADDR_TRAP_UP_0)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_UP_1)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_UP_2)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_UP_3)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_DOWN_0)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_DOWN_1)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_DOWN_2)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_DOWN_3)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_CFG_0)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_CFG_1)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_CFG_2)); __raw_writeq(0, IOADDR(A_ADDR_TRAP_CFG_3)); /* Initialize Trace Event 0-7 */ /* when interrupt */ __raw_writeq(M_SCD_TREVT_INTERRUPT, IOADDR(A_SCD_TRACE_EVENT_0)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_1)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_2)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_3)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_4)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_5)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_6)); __raw_writeq(0, IOADDR(A_SCD_TRACE_EVENT_7)); /* Initialize Trace Sequence 0-7 */ /* Start on event 0 (interrupt) */ __raw_writeq(V_SCD_TRSEQ_FUNC_START | 0x0fff, IOADDR(A_SCD_TRACE_SEQUENCE_0)); /* dsamp when d used | asamp when a used */ __raw_writeq(M_SCD_TRSEQ_ASAMPLE | M_SCD_TRSEQ_DSAMPLE | K_SCD_TRSEQ_TRIGGER_ALL, IOADDR(A_SCD_TRACE_SEQUENCE_1)); __raw_writeq(0, IOADDR(A_SCD_TRACE_SEQUENCE_2)); __raw_writeq(0, IOADDR(A_SCD_TRACE_SEQUENCE_3)); __raw_writeq(0, IOADDR(A_SCD_TRACE_SEQUENCE_4)); __raw_writeq(0, IOADDR(A_SCD_TRACE_SEQUENCE_5)); __raw_writeq(0, IOADDR(A_SCD_TRACE_SEQUENCE_6)); __raw_writeq(0, IOADDR(A_SCD_TRACE_SEQUENCE_7)); /* Now indicate the PERF_CNT interrupt as a trace-relevant interrupt */ #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) __raw_writeq(1ULL << (K_BCM1480_INT_PERF_CNT & 0x3f), IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_INTERRUPT_TRACE_L))); #else __raw_writeq(1ULL << K_INT_PERF_CNT, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_TRACE))); #endif arm_tb(); pr_debug(DEVNAME ": done starting\n"); return 0; } static int sbprof_zbprof_stop(void) { int err = 0; pr_debug(DEVNAME ": stopping\n"); if (sbp.tb_enable) { /* * XXXKW there is a window here where the intr handler may run, * see the disable, and do the wake_up before this sleep * happens. */ pr_debug(DEVNAME ": wait for disarm\n"); err = wait_event_interruptible(sbp.tb_sync, !sbp.tb_armed); pr_debug(DEVNAME ": disarm complete, stat %d\n", err); if (err) return err; sbp.tb_enable = 0; free_irq(K_INT_TRACE_FREEZE, &sbp); free_irq(K_INT_PERF_CNT, &sbp); } pr_debug(DEVNAME ": done stopping\n"); return err; } static int sbprof_tb_open(struct inode *inode, struct file *filp) { int minor; minor = iminor(inode); if (minor != 0) return -ENODEV; if (xchg(&sbp.open, SB_OPENING) != SB_CLOSED) return -EBUSY; memset(&sbp, 0, sizeof(struct sbprof_tb)); sbp.sbprof_tbbuf = vzalloc(MAX_TBSAMPLE_BYTES); if (!sbp.sbprof_tbbuf) { sbp.open = SB_CLOSED; wmb(); return -ENOMEM; } init_waitqueue_head(&sbp.tb_sync); init_waitqueue_head(&sbp.tb_read); mutex_init(&sbp.lock); sbp.open = SB_OPEN; wmb(); return 0; } static int sbprof_tb_release(struct inode *inode, struct file *filp) { int minor; minor = iminor(inode); if (minor != 0 || sbp.open != SB_CLOSED) return -ENODEV; mutex_lock(&sbp.lock); if (sbp.tb_armed || sbp.tb_enable) sbprof_zbprof_stop(); vfree(sbp.sbprof_tbbuf); sbp.open = SB_CLOSED; wmb(); mutex_unlock(&sbp.lock); return 0; } static ssize_t sbprof_tb_read(struct file *filp, char *buf, size_t size, loff_t *offp) { int cur_sample, sample_off, cur_count, sample_left; char *src; int count = 0; char *dest = buf; long cur_off = *offp; if (!access_ok(buf, size)) return -EFAULT; mutex_lock(&sbp.lock); count = 0; cur_sample = cur_off / TB_SAMPLE_SIZE; sample_off = cur_off % TB_SAMPLE_SIZE; sample_left = TB_SAMPLE_SIZE - sample_off; while (size && (cur_sample < sbp.next_tb_sample)) { int err; cur_count = size < sample_left ? size : sample_left; src = (char *)(((long)sbp.sbprof_tbbuf[cur_sample])+sample_off); err = __copy_to_user(dest, src, cur_count); if (err) { *offp = cur_off + cur_count - err; mutex_unlock(&sbp.lock); return err; } pr_debug(DEVNAME ": read from sample %d, %d bytes\n", cur_sample, cur_count); size -= cur_count; sample_left -= cur_count; if (!sample_left) { cur_sample++; sample_off = 0; sample_left = TB_SAMPLE_SIZE; } else { sample_off += cur_count; } cur_off += cur_count; dest += cur_count; count += cur_count; } *offp = cur_off; mutex_unlock(&sbp.lock); return count; } static long sbprof_tb_ioctl(struct file *filp, unsigned int command, unsigned long arg) { int err = 0; switch (command) { case SBPROF_ZBSTART: mutex_lock(&sbp.lock); err = sbprof_zbprof_start(filp); mutex_unlock(&sbp.lock); break; case SBPROF_ZBSTOP: mutex_lock(&sbp.lock); err = sbprof_zbprof_stop(); mutex_unlock(&sbp.lock); break; case SBPROF_ZBWAITFULL: { err = wait_event_interruptible(sbp.tb_read, TB_FULL); if (err) break; err = put_user(TB_FULL, (int *) arg); break; } default: err = -EINVAL; break; } return err; } static const struct file_operations sbprof_tb_fops = { .owner = THIS_MODULE, .open = sbprof_tb_open, .release = sbprof_tb_release, .read = sbprof_tb_read, .unlocked_ioctl = sbprof_tb_ioctl, .compat_ioctl = sbprof_tb_ioctl, .mmap = NULL, .llseek = default_llseek, }; static struct class *tb_class; static struct device *tb_dev; static int __init sbprof_tb_init(void) { struct device *dev; struct class *tbc; int err; if (register_chrdev(SBPROF_TB_MAJOR, DEVNAME, &sbprof_tb_fops)) { printk(KERN_WARNING DEVNAME ": initialization failed (dev %d)\n", SBPROF_TB_MAJOR); return -EIO; } tbc = class_create(THIS_MODULE, "sb_tracebuffer"); if (IS_ERR(tbc)) { err = PTR_ERR(tbc); goto out_chrdev; } tb_class = tbc; dev = device_create(tbc, NULL, MKDEV(SBPROF_TB_MAJOR, 0), NULL, "tb"); if (IS_ERR(dev)) { err = PTR_ERR(dev); goto out_class; } tb_dev = dev; sbp.open = SB_CLOSED; wmb(); tb_period = zbbus_mhz * 10000LL; pr_info(DEVNAME ": initialized - tb_period = %lld\n", (long long) tb_period); return 0; out_class: class_destroy(tb_class); out_chrdev: unregister_chrdev(SBPROF_TB_MAJOR, DEVNAME); return err; } static void __exit sbprof_tb_cleanup(void) { device_destroy(tb_class, MKDEV(SBPROF_TB_MAJOR, 0)); unregister_chrdev(SBPROF_TB_MAJOR, DEVNAME); class_destroy(tb_class); } module_init(sbprof_tb_init); module_exit(sbprof_tb_cleanup); MODULE_ALIAS_CHARDEV_MAJOR(SBPROF_TB_MAJOR); MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1