Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nicholas Piggin | 291 | 22.68% | 20 | 24.69% |
Paul Mackerras | 236 | 18.39% | 7 | 8.64% |
Michael Neuling | 185 | 14.42% | 4 | 4.94% |
Stephen Rothwell | 154 | 12.00% | 2 | 2.47% |
Michael Ellerman | 117 | 9.12% | 21 | 25.93% |
Benjamin Herrenschmidt | 103 | 8.03% | 8 | 9.88% |
Madhavan Srinivasan | 85 | 6.63% | 3 | 3.70% |
Mahesh Salgaonkar | 41 | 3.20% | 3 | 3.70% |
Haren Myneni | 32 | 2.49% | 3 | 3.70% |
Aneesh Kumar K.V | 16 | 1.25% | 1 | 1.23% |
Ian Munsie | 8 | 0.62% | 2 | 2.47% |
Christophe Leroy | 5 | 0.39% | 2 | 2.47% |
Balbir Singh | 5 | 0.39% | 1 | 1.23% |
Thomas Gleixner | 2 | 0.16% | 1 | 1.23% |
Anton Blanchard | 1 | 0.08% | 1 | 1.23% |
Tiejun Chen | 1 | 0.08% | 1 | 1.23% |
Hugh Dickins | 1 | 0.08% | 1 | 1.23% |
Total | 1283 | 81 |
/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_POWERPC_EXCEPTION_H #define _ASM_POWERPC_EXCEPTION_H /* * Extracted from head_64.S * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP * Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu> * Adapted for Power Macintosh by Paul Mackerras. * Low-level exception handlers and MMU support * rewritten by Paul Mackerras. * Copyright (C) 1996 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen, Peter Bergner, and * Mike Corrigan {engebret|bergner|mikejc}@us.ibm.com * * This file contains the low-level support and setup for the * PowerPC-64 platform, including trap and interrupt dispatch. */ /* * The following macros define the code that appears as * the prologue to each of the exception handlers. They * are split into two parts to allow a single kernel binary * to be used for pSeries and iSeries. * * We make as much of the exception code common between native * exception handlers (including pSeries LPAR) and iSeries LPAR * implementations as possible. */ #include <asm/head-64.h> #include <asm/feature-fixups.h> /* PACA save area offsets (exgen, exmc, etc) */ #define EX_R9 0 #define EX_R10 8 #define EX_R11 16 #define EX_R12 24 #define EX_R13 32 #define EX_DAR 40 #define EX_DSISR 48 #define EX_CCR 52 #define EX_CFAR 56 #define EX_PPR 64 #if defined(CONFIG_RELOCATABLE) #define EX_CTR 72 #define EX_SIZE 10 /* size in u64 units */ #else #define EX_SIZE 9 /* size in u64 units */ #endif /* * maximum recursive depth of MCE exceptions */ #define MAX_MCE_DEPTH 4 /* * EX_R3 is only used by the bad_stack handler. bad_stack reloads and * saves DAR from SPRN_DAR, and EX_DAR is not used. So EX_R3 can overlap * with EX_DAR. */ #define EX_R3 EX_DAR #define STF_ENTRY_BARRIER_SLOT \ STF_ENTRY_BARRIER_FIXUP_SECTION; \ nop; \ nop; \ nop #define STF_EXIT_BARRIER_SLOT \ STF_EXIT_BARRIER_FIXUP_SECTION; \ nop; \ nop; \ nop; \ nop; \ nop; \ nop /* * r10 must be free to use, r13 must be paca */ #define INTERRUPT_TO_KERNEL \ STF_ENTRY_BARRIER_SLOT /* * Macros for annotating the expected destination of (h)rfid * * The nop instructions allow us to insert one or more instructions to flush the * L1-D cache when returning to userspace or a guest. */ #define RFI_FLUSH_SLOT \ RFI_FLUSH_FIXUP_SECTION; \ nop; \ nop; \ nop #define RFI_TO_KERNEL \ rfid #define RFI_TO_USER \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ rfid; \ b rfi_flush_fallback #define RFI_TO_USER_OR_KERNEL \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ rfid; \ b rfi_flush_fallback #define RFI_TO_GUEST \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ rfid; \ b rfi_flush_fallback #define HRFI_TO_KERNEL \ hrfid #define HRFI_TO_USER \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ hrfid; \ b hrfi_flush_fallback #define HRFI_TO_USER_OR_KERNEL \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ hrfid; \ b hrfi_flush_fallback #define HRFI_TO_GUEST \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ hrfid; \ b hrfi_flush_fallback #define HRFI_TO_UNKNOWN \ STF_EXIT_BARRIER_SLOT; \ RFI_FLUSH_SLOT; \ hrfid; \ b hrfi_flush_fallback #ifdef CONFIG_RELOCATABLE #define __EXCEPTION_PROLOG_2_RELON(label, h) \ mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \ LOAD_HANDLER(r12,label); \ mtctr r12; \ mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \ li r10,MSR_RI; \ mtmsrd r10,1; /* Set RI (EE=0) */ \ bctr; #else /* If not relocatable, we can jump directly -- and save messing with LR */ #define __EXCEPTION_PROLOG_2_RELON(label, h) \ mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \ mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \ li r10,MSR_RI; \ mtmsrd r10,1; /* Set RI (EE=0) */ \ b label; #endif #define EXCEPTION_PROLOG_2_RELON(label, h) \ __EXCEPTION_PROLOG_2_RELON(label, h) /* * As EXCEPTION_PROLOG(), except we've already got relocation on so no need to * rfid. Save LR in case we're CONFIG_RELOCATABLE, in which case * EXCEPTION_PROLOG_2_RELON will be using LR. */ #define EXCEPTION_RELON_PROLOG(area, label, h, extra, vec) \ SET_SCRATCH0(r13); /* save r13 */ \ EXCEPTION_PROLOG_0(area); \ EXCEPTION_PROLOG_1(area, extra, vec); \ EXCEPTION_PROLOG_2_RELON(label, h) /* * We're short on space and time in the exception prolog, so we can't * use the normal LOAD_REG_IMMEDIATE macro to load the address of label. * Instead we get the base of the kernel from paca->kernelbase and or in the low * part of label. This requires that the label be within 64KB of kernelbase, and * that kernelbase be 64K aligned. */ #define LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); /* get high part of &label */ \ ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label); #define __LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label))@l; /* * Branches from unrelocated code (e.g., interrupts) to labels outside * head-y require >64K offsets. */ #define __LOAD_FAR_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label))@l; \ addis reg,reg,(ABS_ADDR(label))@h; /* Exception register prefixes */ #define EXC_HV H #define EXC_STD #if defined(CONFIG_RELOCATABLE) /* * If we support interrupts with relocation on AND we're a relocatable kernel, * we need to use CTR to get to the 2nd level handler. So, save/restore it * when required. */ #define SAVE_CTR(reg, area) mfctr reg ; std reg,area+EX_CTR(r13) #define GET_CTR(reg, area) ld reg,area+EX_CTR(r13) #define RESTORE_CTR(reg, area) ld reg,area+EX_CTR(r13) ; mtctr reg #else /* ...else CTR is unused and in register. */ #define SAVE_CTR(reg, area) #define GET_CTR(reg, area) mfctr reg #define RESTORE_CTR(reg, area) #endif /* * PPR save/restore macros used in exceptions_64s.S * Used for P7 or later processors */ #define SAVE_PPR(area, ra) \ BEGIN_FTR_SECTION_NESTED(940) \ ld ra,area+EX_PPR(r13); /* Read PPR from paca */ \ std ra,_PPR(r1); \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,940) #define RESTORE_PPR_PACA(area, ra) \ BEGIN_FTR_SECTION_NESTED(941) \ ld ra,area+EX_PPR(r13); \ mtspr SPRN_PPR,ra; \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,941) /* * Get an SPR into a register if the CPU has the given feature */ #define OPT_GET_SPR(ra, spr, ftr) \ BEGIN_FTR_SECTION_NESTED(943) \ mfspr ra,spr; \ END_FTR_SECTION_NESTED(ftr,ftr,943) /* * Set an SPR from a register if the CPU has the given feature */ #define OPT_SET_SPR(ra, spr, ftr) \ BEGIN_FTR_SECTION_NESTED(943) \ mtspr spr,ra; \ END_FTR_SECTION_NESTED(ftr,ftr,943) /* * Save a register to the PACA if the CPU has the given feature */ #define OPT_SAVE_REG_TO_PACA(offset, ra, ftr) \ BEGIN_FTR_SECTION_NESTED(943) \ std ra,offset(r13); \ END_FTR_SECTION_NESTED(ftr,ftr,943) #define EXCEPTION_PROLOG_0(area) \ GET_PACA(r13); \ std r9,area+EX_R9(r13); /* save r9 */ \ OPT_GET_SPR(r9, SPRN_PPR, CPU_FTR_HAS_PPR); \ HMT_MEDIUM; \ std r10,area+EX_R10(r13); /* save r10 - r12 */ \ OPT_GET_SPR(r10, SPRN_CFAR, CPU_FTR_CFAR) #define __EXCEPTION_PROLOG_1_PRE(area) \ OPT_SAVE_REG_TO_PACA(area+EX_PPR, r9, CPU_FTR_HAS_PPR); \ OPT_SAVE_REG_TO_PACA(area+EX_CFAR, r10, CPU_FTR_CFAR); \ INTERRUPT_TO_KERNEL; \ SAVE_CTR(r10, area); \ mfcr r9; #define __EXCEPTION_PROLOG_1_POST(area) \ std r11,area+EX_R11(r13); \ std r12,area+EX_R12(r13); \ GET_SCRATCH0(r10); \ std r10,area+EX_R13(r13) /* * This version of the EXCEPTION_PROLOG_1 will carry * addition parameter called "bitmask" to support * checking of the interrupt maskable level in the SOFTEN_TEST. * Intended to be used in MASKABLE_EXCPETION_* macros. */ #define MASKABLE_EXCEPTION_PROLOG_1(area, extra, vec, bitmask) \ __EXCEPTION_PROLOG_1_PRE(area); \ extra(vec, bitmask); \ __EXCEPTION_PROLOG_1_POST(area); /* * This version of the EXCEPTION_PROLOG_1 is intended * to be used in STD_EXCEPTION* macros */ #define _EXCEPTION_PROLOG_1(area, extra, vec) \ __EXCEPTION_PROLOG_1_PRE(area); \ extra(vec); \ __EXCEPTION_PROLOG_1_POST(area); #define EXCEPTION_PROLOG_1(area, extra, vec) \ _EXCEPTION_PROLOG_1(area, extra, vec) #define __EXCEPTION_PROLOG_2(label, h) \ ld r10,PACAKMSR(r13); /* get MSR value for kernel */ \ mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \ LOAD_HANDLER(r12,label) \ mtspr SPRN_##h##SRR0,r12; \ mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \ mtspr SPRN_##h##SRR1,r10; \ h##RFI_TO_KERNEL; \ b . /* prevent speculative execution */ #define EXCEPTION_PROLOG_2(label, h) \ __EXCEPTION_PROLOG_2(label, h) /* _NORI variant keeps MSR_RI clear */ #define __EXCEPTION_PROLOG_2_NORI(label, h) \ ld r10,PACAKMSR(r13); /* get MSR value for kernel */ \ xori r10,r10,MSR_RI; /* Clear MSR_RI */ \ mfspr r11,SPRN_##h##SRR0; /* save SRR0 */ \ LOAD_HANDLER(r12,label) \ mtspr SPRN_##h##SRR0,r12; \ mfspr r12,SPRN_##h##SRR1; /* and SRR1 */ \ mtspr SPRN_##h##SRR1,r10; \ h##RFI_TO_KERNEL; \ b . /* prevent speculative execution */ #define EXCEPTION_PROLOG_2_NORI(label, h) \ __EXCEPTION_PROLOG_2_NORI(label, h) #define EXCEPTION_PROLOG(area, label, h, extra, vec) \ SET_SCRATCH0(r13); /* save r13 */ \ EXCEPTION_PROLOG_0(area); \ EXCEPTION_PROLOG_1(area, extra, vec); \ EXCEPTION_PROLOG_2(label, h); #define __KVMTEST(h, n) \ lbz r10,HSTATE_IN_GUEST(r13); \ cmpwi r10,0; \ bne do_kvm_##h##n #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE /* * If hv is possible, interrupts come into to the hv version * of the kvmppc_interrupt code, which then jumps to the PR handler, * kvmppc_interrupt_pr, if the guest is a PR guest. */ #define kvmppc_interrupt kvmppc_interrupt_hv #else #define kvmppc_interrupt kvmppc_interrupt_pr #endif /* * Branch to label using its 0xC000 address. This results in instruction * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned * on using mtmsr rather than rfid. * * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than * load KBASE for a slight optimisation. */ #define BRANCH_TO_C000(reg, label) \ __LOAD_HANDLER(reg, label); \ mtctr reg; \ bctr #ifdef CONFIG_RELOCATABLE #define BRANCH_TO_COMMON(reg, label) \ __LOAD_HANDLER(reg, label); \ mtctr reg; \ bctr #define BRANCH_LINK_TO_FAR(label) \ __LOAD_FAR_HANDLER(r12, label); \ mtctr r12; \ bctrl /* * KVM requires __LOAD_FAR_HANDLER. * * __BRANCH_TO_KVM_EXIT branches are also a special case because they * explicitly use r9 then reload it from PACA before branching. Hence * the double-underscore. */ #define __BRANCH_TO_KVM_EXIT(area, label) \ mfctr r9; \ std r9,HSTATE_SCRATCH1(r13); \ __LOAD_FAR_HANDLER(r9, label); \ mtctr r9; \ ld r9,area+EX_R9(r13); \ bctr #else #define BRANCH_TO_COMMON(reg, label) \ b label #define BRANCH_LINK_TO_FAR(label) \ bl label #define __BRANCH_TO_KVM_EXIT(area, label) \ ld r9,area+EX_R9(r13); \ b label #endif /* Do not enable RI */ #define EXCEPTION_PROLOG_NORI(area, label, h, extra, vec) \ EXCEPTION_PROLOG_0(area); \ EXCEPTION_PROLOG_1(area, extra, vec); \ EXCEPTION_PROLOG_2_NORI(label, h); #define __KVM_HANDLER(area, h, n) \ BEGIN_FTR_SECTION_NESTED(947) \ ld r10,area+EX_CFAR(r13); \ std r10,HSTATE_CFAR(r13); \ END_FTR_SECTION_NESTED(CPU_FTR_CFAR,CPU_FTR_CFAR,947); \ BEGIN_FTR_SECTION_NESTED(948) \ ld r10,area+EX_PPR(r13); \ std r10,HSTATE_PPR(r13); \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,948); \ ld r10,area+EX_R10(r13); \ std r12,HSTATE_SCRATCH0(r13); \ sldi r12,r9,32; \ ori r12,r12,(n); \ /* This reloads r9 before branching to kvmppc_interrupt */ \ __BRANCH_TO_KVM_EXIT(area, kvmppc_interrupt) #define __KVM_HANDLER_SKIP(area, h, n) \ cmpwi r10,KVM_GUEST_MODE_SKIP; \ beq 89f; \ BEGIN_FTR_SECTION_NESTED(948) \ ld r10,area+EX_PPR(r13); \ std r10,HSTATE_PPR(r13); \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,948); \ ld r10,area+EX_R10(r13); \ std r12,HSTATE_SCRATCH0(r13); \ sldi r12,r9,32; \ ori r12,r12,(n); \ /* This reloads r9 before branching to kvmppc_interrupt */ \ __BRANCH_TO_KVM_EXIT(area, kvmppc_interrupt); \ 89: mtocrf 0x80,r9; \ ld r9,area+EX_R9(r13); \ ld r10,area+EX_R10(r13); \ b kvmppc_skip_##h##interrupt #ifdef CONFIG_KVM_BOOK3S_64_HANDLER #define KVMTEST(h, n) __KVMTEST(h, n) #define KVM_HANDLER(area, h, n) __KVM_HANDLER(area, h, n) #define KVM_HANDLER_SKIP(area, h, n) __KVM_HANDLER_SKIP(area, h, n) #else #define KVMTEST(h, n) #define KVM_HANDLER(area, h, n) #define KVM_HANDLER_SKIP(area, h, n) #endif #define NOTEST(n) #define EXCEPTION_PROLOG_COMMON_1() \ std r9,_CCR(r1); /* save CR in stackframe */ \ std r11,_NIP(r1); /* save SRR0 in stackframe */ \ std r12,_MSR(r1); /* save SRR1 in stackframe */ \ std r10,0(r1); /* make stack chain pointer */ \ std r0,GPR0(r1); /* save r0 in stackframe */ \ std r10,GPR1(r1); /* save r1 in stackframe */ \ /* * The common exception prolog is used for all except a few exceptions * such as a segment miss on a kernel address. We have to be prepared * to take another exception from the point where we first touch the * kernel stack onwards. * * On entry r13 points to the paca, r9-r13 are saved in the paca, * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and * SRR1, and relocation is on. */ #define EXCEPTION_PROLOG_COMMON(n, area) \ andi. r10,r12,MSR_PR; /* See if coming from user */ \ mr r10,r1; /* Save r1 */ \ subi r1,r1,INT_FRAME_SIZE; /* alloc frame on kernel stack */ \ beq- 1f; \ ld r1,PACAKSAVE(r13); /* kernel stack to use */ \ 1: cmpdi cr1,r1,-INT_FRAME_SIZE; /* check if r1 is in userspace */ \ blt+ cr1,3f; /* abort if it is */ \ li r1,(n); /* will be reloaded later */ \ sth r1,PACA_TRAP_SAVE(r13); \ std r3,area+EX_R3(r13); \ addi r3,r13,area; /* r3 -> where regs are saved*/ \ RESTORE_CTR(r1, area); \ b bad_stack; \ 3: EXCEPTION_PROLOG_COMMON_1(); \ kuap_save_amr_and_lock r9, r10, cr1, cr0; \ beq 4f; /* if from kernel mode */ \ ACCOUNT_CPU_USER_ENTRY(r13, r9, r10); \ SAVE_PPR(area, r9); \ 4: EXCEPTION_PROLOG_COMMON_2(area) \ EXCEPTION_PROLOG_COMMON_3(n) \ ACCOUNT_STOLEN_TIME /* Save original regs values from save area to stack frame. */ #define EXCEPTION_PROLOG_COMMON_2(area) \ ld r9,area+EX_R9(r13); /* move r9, r10 to stackframe */ \ ld r10,area+EX_R10(r13); \ std r9,GPR9(r1); \ std r10,GPR10(r1); \ ld r9,area+EX_R11(r13); /* move r11 - r13 to stackframe */ \ ld r10,area+EX_R12(r13); \ ld r11,area+EX_R13(r13); \ std r9,GPR11(r1); \ std r10,GPR12(r1); \ std r11,GPR13(r1); \ BEGIN_FTR_SECTION_NESTED(66); \ ld r10,area+EX_CFAR(r13); \ std r10,ORIG_GPR3(r1); \ END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 66); \ GET_CTR(r10, area); \ std r10,_CTR(r1); #define EXCEPTION_PROLOG_COMMON_3(n) \ std r2,GPR2(r1); /* save r2 in stackframe */ \ SAVE_4GPRS(3, r1); /* save r3 - r6 in stackframe */ \ SAVE_2GPRS(7, r1); /* save r7, r8 in stackframe */ \ mflr r9; /* Get LR, later save to stack */ \ ld r2,PACATOC(r13); /* get kernel TOC into r2 */ \ std r9,_LINK(r1); \ lbz r10,PACAIRQSOFTMASK(r13); \ mfspr r11,SPRN_XER; /* save XER in stackframe */ \ std r10,SOFTE(r1); \ std r11,_XER(r1); \ li r9,(n)+1; \ std r9,_TRAP(r1); /* set trap number */ \ li r10,0; \ ld r11,exception_marker@toc(r2); \ std r10,RESULT(r1); /* clear regs->result */ \ std r11,STACK_FRAME_OVERHEAD-16(r1); /* mark the frame */ /* * Exception vectors. */ #define STD_EXCEPTION(vec, label) \ EXCEPTION_PROLOG(PACA_EXGEN, label, EXC_STD, KVMTEST_PR, vec); /* Version of above for when we have to branch out-of-line */ #define __OOL_EXCEPTION(vec, label, hdlr) \ SET_SCRATCH0(r13) \ EXCEPTION_PROLOG_0(PACA_EXGEN) \ b hdlr; #define STD_EXCEPTION_OOL(vec, label) \ EXCEPTION_PROLOG_1(PACA_EXGEN, KVMTEST_PR, vec); \ EXCEPTION_PROLOG_2(label, EXC_STD) #define STD_EXCEPTION_HV(loc, vec, label) \ EXCEPTION_PROLOG(PACA_EXGEN, label, EXC_HV, KVMTEST_HV, vec); #define STD_EXCEPTION_HV_OOL(vec, label) \ EXCEPTION_PROLOG_1(PACA_EXGEN, KVMTEST_HV, vec); \ EXCEPTION_PROLOG_2(label, EXC_HV) #define STD_RELON_EXCEPTION(loc, vec, label) \ /* No guest interrupts come through here */ \ EXCEPTION_RELON_PROLOG(PACA_EXGEN, label, EXC_STD, NOTEST, vec); #define STD_RELON_EXCEPTION_OOL(vec, label) \ EXCEPTION_PROLOG_1(PACA_EXGEN, NOTEST, vec); \ EXCEPTION_PROLOG_2_RELON(label, EXC_STD) #define STD_RELON_EXCEPTION_HV(loc, vec, label) \ EXCEPTION_RELON_PROLOG(PACA_EXGEN, label, EXC_HV, KVMTEST_HV, vec); #define STD_RELON_EXCEPTION_HV_OOL(vec, label) \ EXCEPTION_PROLOG_1(PACA_EXGEN, KVMTEST_HV, vec); \ EXCEPTION_PROLOG_2_RELON(label, EXC_HV) /* This associate vector numbers with bits in paca->irq_happened */ #define SOFTEN_VALUE_0x500 PACA_IRQ_EE #define SOFTEN_VALUE_0x900 PACA_IRQ_DEC #define SOFTEN_VALUE_0x980 PACA_IRQ_DEC #define SOFTEN_VALUE_0xa00 PACA_IRQ_DBELL #define SOFTEN_VALUE_0xe80 PACA_IRQ_DBELL #define SOFTEN_VALUE_0xe60 PACA_IRQ_HMI #define SOFTEN_VALUE_0xea0 PACA_IRQ_EE #define SOFTEN_VALUE_0xf00 PACA_IRQ_PMI #define __SOFTEN_TEST(h, vec, bitmask) \ lbz r10,PACAIRQSOFTMASK(r13); \ andi. r10,r10,bitmask; \ li r10,SOFTEN_VALUE_##vec; \ bne masked_##h##interrupt #define _SOFTEN_TEST(h, vec, bitmask) __SOFTEN_TEST(h, vec, bitmask) #define SOFTEN_TEST_PR(vec, bitmask) \ KVMTEST(EXC_STD, vec); \ _SOFTEN_TEST(EXC_STD, vec, bitmask) #define SOFTEN_TEST_HV(vec, bitmask) \ KVMTEST(EXC_HV, vec); \ _SOFTEN_TEST(EXC_HV, vec, bitmask) #define KVMTEST_PR(vec) \ KVMTEST(EXC_STD, vec) #define KVMTEST_HV(vec) \ KVMTEST(EXC_HV, vec) #define SOFTEN_NOTEST_PR(vec, bitmask) _SOFTEN_TEST(EXC_STD, vec, bitmask) #define SOFTEN_NOTEST_HV(vec, bitmask) _SOFTEN_TEST(EXC_HV, vec, bitmask) #define __MASKABLE_EXCEPTION(vec, label, h, extra, bitmask) \ SET_SCRATCH0(r13); /* save r13 */ \ EXCEPTION_PROLOG_0(PACA_EXGEN); \ MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, extra, vec, bitmask); \ EXCEPTION_PROLOG_2(label, h); #define MASKABLE_EXCEPTION(vec, label, bitmask) \ __MASKABLE_EXCEPTION(vec, label, EXC_STD, SOFTEN_TEST_PR, bitmask) #define MASKABLE_EXCEPTION_OOL(vec, label, bitmask) \ MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_TEST_PR, vec, bitmask);\ EXCEPTION_PROLOG_2(label, EXC_STD) #define MASKABLE_EXCEPTION_HV(vec, label, bitmask) \ __MASKABLE_EXCEPTION(vec, label, EXC_HV, SOFTEN_TEST_HV, bitmask) #define MASKABLE_EXCEPTION_HV_OOL(vec, label, bitmask) \ MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_TEST_HV, vec, bitmask);\ EXCEPTION_PROLOG_2(label, EXC_HV) #define __MASKABLE_RELON_EXCEPTION(vec, label, h, extra, bitmask) \ SET_SCRATCH0(r13); /* save r13 */ \ EXCEPTION_PROLOG_0(PACA_EXGEN); \ MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, extra, vec, bitmask); \ EXCEPTION_PROLOG_2_RELON(label, h) #define MASKABLE_RELON_EXCEPTION(vec, label, bitmask) \ __MASKABLE_RELON_EXCEPTION(vec, label, EXC_STD, SOFTEN_NOTEST_PR, bitmask) #define MASKABLE_RELON_EXCEPTION_OOL(vec, label, bitmask) \ MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_NOTEST_PR, vec, bitmask);\ EXCEPTION_PROLOG_2(label, EXC_STD); #define MASKABLE_RELON_EXCEPTION_HV(vec, label, bitmask) \ __MASKABLE_RELON_EXCEPTION(vec, label, EXC_HV, SOFTEN_TEST_HV, bitmask) #define MASKABLE_RELON_EXCEPTION_HV_OOL(vec, label, bitmask) \ MASKABLE_EXCEPTION_PROLOG_1(PACA_EXGEN, SOFTEN_TEST_HV, vec, bitmask);\ EXCEPTION_PROLOG_2_RELON(label, EXC_HV) /* * Our exception common code can be passed various "additions" * to specify the behaviour of interrupts, whether to kick the * runlatch, etc... */ /* * This addition reconciles our actual IRQ state with the various software * flags that track it. This may call C code. */ #define ADD_RECONCILE RECONCILE_IRQ_STATE(r10,r11) #define ADD_NVGPRS \ bl save_nvgprs #define RUNLATCH_ON \ BEGIN_FTR_SECTION \ ld r3, PACA_THREAD_INFO(r13); \ ld r4,TI_LOCAL_FLAGS(r3); \ andi. r0,r4,_TLF_RUNLATCH; \ beql ppc64_runlatch_on_trampoline; \ END_FTR_SECTION_IFSET(CPU_FTR_CTRL) #define EXCEPTION_COMMON(area, trap, label, hdlr, ret, additions) \ EXCEPTION_PROLOG_COMMON(trap, area); \ /* Volatile regs are potentially clobbered here */ \ additions; \ addi r3,r1,STACK_FRAME_OVERHEAD; \ bl hdlr; \ b ret /* * Exception where stack is already set in r1, r1 is saved in r10, and it * continues rather than returns. */ #define EXCEPTION_COMMON_NORET_STACK(area, trap, label, hdlr, additions) \ EXCEPTION_PROLOG_COMMON_1(); \ kuap_save_amr_and_lock r9, r10, cr1; \ EXCEPTION_PROLOG_COMMON_2(area); \ EXCEPTION_PROLOG_COMMON_3(trap); \ /* Volatile regs are potentially clobbered here */ \ additions; \ addi r3,r1,STACK_FRAME_OVERHEAD; \ bl hdlr #define STD_EXCEPTION_COMMON(trap, label, hdlr) \ EXCEPTION_COMMON(PACA_EXGEN, trap, label, hdlr, \ ret_from_except, ADD_NVGPRS;ADD_RECONCILE) /* * Like STD_EXCEPTION_COMMON, but for exceptions that can occur * in the idle task and therefore need the special idle handling * (finish nap and runlatch) */ #define STD_EXCEPTION_COMMON_ASYNC(trap, label, hdlr) \ EXCEPTION_COMMON(PACA_EXGEN, trap, label, hdlr, \ ret_from_except_lite, FINISH_NAP;ADD_RECONCILE;RUNLATCH_ON) /* * When the idle code in power4_idle puts the CPU into NAP mode, * it has to do so in a loop, and relies on the external interrupt * and decrementer interrupt entry code to get it out of the loop. * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags * to signal that it is in the loop and needs help to get out. */ #ifdef CONFIG_PPC_970_NAP #define FINISH_NAP \ BEGIN_FTR_SECTION \ ld r11, PACA_THREAD_INFO(r13); \ ld r9,TI_LOCAL_FLAGS(r11); \ andi. r10,r9,_TLF_NAPPING; \ bnel power4_fixup_nap; \ END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP) #else #define FINISH_NAP #endif #endif /* _ASM_POWERPC_EXCEPTION_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1