Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linas Vepstas | 854 | 72.62% | 3 | 12.50% |
Oliver O'Halloran | 160 | 13.61% | 3 | 12.50% |
Gavin Shan | 125 | 10.63% | 8 | 33.33% |
Wei Yang | 12 | 1.02% | 2 | 8.33% |
Andrew Donnellan | 6 | 0.51% | 1 | 4.17% |
Nathan T. Lynch | 5 | 0.43% | 1 | 4.17% |
Thadeu Lima de Souza Cascardo | 5 | 0.43% | 1 | 4.17% |
Tejun Heo | 3 | 0.26% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.17% | 1 | 4.17% |
Vasiliy Kulikov | 2 | 0.17% | 1 | 4.17% |
Sam Bobroff | 1 | 0.09% | 1 | 4.17% |
Arun Sharma | 1 | 0.09% | 1 | 4.17% |
Total | 1176 | 24 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PCI address cache; allows the lookup of PCI devices based on I/O address * * Copyright IBM Corporation 2004 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004 */ #include <linux/list.h> #include <linux/pci.h> #include <linux/rbtree.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <asm/pci-bridge.h> #include <asm/debugfs.h> #include <asm/ppc-pci.h> /** * The pci address cache subsystem. This subsystem places * PCI device address resources into a red-black tree, sorted * according to the address range, so that given only an i/o * address, the corresponding PCI device can be **quickly** * found. It is safe to perform an address lookup in an interrupt * context; this ability is an important feature. * * Currently, the only customer of this code is the EEH subsystem; * thus, this code has been somewhat tailored to suit EEH better. * In particular, the cache does *not* hold the addresses of devices * for which EEH is not enabled. * * (Implementation Note: The RB tree seems to be better/faster * than any hash algo I could think of for this problem, even * with the penalty of slow pointer chases for d-cache misses). */ struct pci_io_addr_range { struct rb_node rb_node; resource_size_t addr_lo; resource_size_t addr_hi; struct eeh_dev *edev; struct pci_dev *pcidev; unsigned long flags; }; static struct pci_io_addr_cache { struct rb_root rb_root; spinlock_t piar_lock; } pci_io_addr_cache_root; static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr) { struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; while (n) { struct pci_io_addr_range *piar; piar = rb_entry(n, struct pci_io_addr_range, rb_node); if (addr < piar->addr_lo) n = n->rb_left; else if (addr > piar->addr_hi) n = n->rb_right; else return piar->edev; } return NULL; } /** * eeh_addr_cache_get_dev - Get device, given only address * @addr: mmio (PIO) phys address or i/o port number * * Given an mmio phys address, or a port number, find a pci device * that implements this address. I/O port numbers are assumed to be offset * from zero (that is, they do *not* have pci_io_addr added in). * It is safe to call this function within an interrupt. */ struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr) { struct eeh_dev *edev; unsigned long flags; spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); edev = __eeh_addr_cache_get_device(addr); spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); return edev; } #ifdef DEBUG /* * Handy-dandy debug print routine, does nothing more * than print out the contents of our addr cache. */ static void eeh_addr_cache_print(struct pci_io_addr_cache *cache) { struct rb_node *n; int cnt = 0; n = rb_first(&cache->rb_root); while (n) { struct pci_io_addr_range *piar; piar = rb_entry(n, struct pci_io_addr_range, rb_node); pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n", (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); cnt++; n = rb_next(n); } } #endif /* Insert address range into the rb tree. */ static struct pci_io_addr_range * eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo, resource_size_t ahi, unsigned long flags) { struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; struct rb_node *parent = NULL; struct pci_io_addr_range *piar; /* Walk tree, find a place to insert into tree */ while (*p) { parent = *p; piar = rb_entry(parent, struct pci_io_addr_range, rb_node); if (ahi < piar->addr_lo) { p = &parent->rb_left; } else if (alo > piar->addr_hi) { p = &parent->rb_right; } else { if (dev != piar->pcidev || alo != piar->addr_lo || ahi != piar->addr_hi) { pr_warn("PIAR: overlapping address range\n"); } return piar; } } piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); if (!piar) return NULL; piar->addr_lo = alo; piar->addr_hi = ahi; piar->edev = pci_dev_to_eeh_dev(dev); piar->pcidev = dev; piar->flags = flags; pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n", &alo, &ahi, pci_name(dev)); rb_link_node(&piar->rb_node, parent, p); rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); return piar; } static void __eeh_addr_cache_insert_dev(struct pci_dev *dev) { struct pci_dn *pdn; struct eeh_dev *edev; int i; pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); if (!pdn) { pr_warn("PCI: no pci dn found for dev=%s\n", pci_name(dev)); return; } edev = pdn_to_eeh_dev(pdn); if (!edev) { pr_warn("PCI: no EEH dev found for %s\n", pci_name(dev)); return; } /* Skip any devices for which EEH is not enabled. */ if (!edev->pe) { dev_dbg(&dev->dev, "EEH: Skip building address cache\n"); return; } /* * Walk resources on this device, poke the first 7 (6 normal BAR and 1 * ROM BAR) into the tree. */ for (i = 0; i <= PCI_ROM_RESOURCE; i++) { resource_size_t start = pci_resource_start(dev,i); resource_size_t end = pci_resource_end(dev,i); unsigned long flags = pci_resource_flags(dev,i); /* We are interested only bus addresses, not dma or other stuff */ if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) continue; if (start == 0 || ~start == 0 || end == 0 || ~end == 0) continue; eeh_addr_cache_insert(dev, start, end, flags); } } /** * eeh_addr_cache_insert_dev - Add a device to the address cache * @dev: PCI device whose I/O addresses we are interested in. * * In order to support the fast lookup of devices based on addresses, * we maintain a cache of devices that can be quickly searched. * This routine adds a device to that cache. */ void eeh_addr_cache_insert_dev(struct pci_dev *dev) { unsigned long flags; spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); __eeh_addr_cache_insert_dev(dev); spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); } static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev) { struct rb_node *n; restart: n = rb_first(&pci_io_addr_cache_root.rb_root); while (n) { struct pci_io_addr_range *piar; piar = rb_entry(n, struct pci_io_addr_range, rb_node); if (piar->pcidev == dev) { pr_debug("PIAR: remove range=[%pap:%pap] dev=%s\n", &piar->addr_lo, &piar->addr_hi, pci_name(dev)); rb_erase(n, &pci_io_addr_cache_root.rb_root); kfree(piar); goto restart; } n = rb_next(n); } } /** * eeh_addr_cache_rmv_dev - remove pci device from addr cache * @dev: device to remove * * Remove a device from the addr-cache tree. * This is potentially expensive, since it will walk * the tree multiple times (once per resource). * But so what; device removal doesn't need to be that fast. */ void eeh_addr_cache_rmv_dev(struct pci_dev *dev) { unsigned long flags; spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); __eeh_addr_cache_rmv_dev(dev); spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); } /** * eeh_addr_cache_build - Build a cache of I/O addresses * * Build a cache of pci i/o addresses. This cache will be used to * find the pci device that corresponds to a given address. * This routine scans all pci busses to build the cache. * Must be run late in boot process, after the pci controllers * have been scanned for devices (after all device resources are known). */ void eeh_addr_cache_build(void) { struct pci_dn *pdn; struct eeh_dev *edev; struct pci_dev *dev = NULL; spin_lock_init(&pci_io_addr_cache_root.piar_lock); for_each_pci_dev(dev) { pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); if (!pdn) continue; edev = pdn_to_eeh_dev(pdn); if (!edev) continue; dev->dev.archdata.edev = edev; edev->pdev = dev; eeh_addr_cache_insert_dev(dev); eeh_sysfs_add_device(dev); } } static int eeh_addr_cache_show(struct seq_file *s, void *v) { struct pci_io_addr_range *piar; struct rb_node *n; spin_lock(&pci_io_addr_cache_root.piar_lock); for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) { piar = rb_entry(n, struct pci_io_addr_range, rb_node); seq_printf(s, "%s addr range [%pap-%pap]: %s\n", (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev)); } spin_unlock(&pci_io_addr_cache_root.piar_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache); void eeh_cache_debugfs_init(void) { debugfs_create_file_unsafe("eeh_address_cache", 0400, powerpc_debugfs_root, NULL, &eeh_addr_cache_fops); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1