Contributors: 4
Author Tokens Token Proportion Commits Commit Proportion
Thiago Jung Bauermann 2985 98.91% 3 50.00%
Philipp Rudo 30 0.99% 1 16.67%
Thomas Gleixner 2 0.07% 1 16.67%
AKASHI Takahiro 1 0.03% 1 16.67%
Total 3018 6


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Load ELF vmlinux file for the kexec_file_load syscall.
 *
 * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
 * Copyright (C) 2004  IBM Corp.
 * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
 * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
 * Copyright (C) 2016  IBM Corporation
 *
 * Based on kexec-tools' kexec-elf-exec.c and kexec-elf-ppc64.c.
 * Heavily modified for the kernel by
 * Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>.
 */

#define pr_fmt(fmt)	"kexec_elf: " fmt

#include <linux/elf.h>
#include <linux/kexec.h>
#include <linux/libfdt.h>
#include <linux/module.h>
#include <linux/of_fdt.h>
#include <linux/slab.h>
#include <linux/types.h>

#define PURGATORY_STACK_SIZE	(16 * 1024)

#define elf_addr_to_cpu	elf64_to_cpu

#ifndef Elf_Rel
#define Elf_Rel		Elf64_Rel
#endif /* Elf_Rel */

struct elf_info {
	/*
	 * Where the ELF binary contents are kept.
	 * Memory managed by the user of the struct.
	 */
	const char *buffer;

	const struct elfhdr *ehdr;
	const struct elf_phdr *proghdrs;
	struct elf_shdr *sechdrs;
};

static inline bool elf_is_elf_file(const struct elfhdr *ehdr)
{
       return memcmp(ehdr->e_ident, ELFMAG, SELFMAG) == 0;
}

static uint64_t elf64_to_cpu(const struct elfhdr *ehdr, uint64_t value)
{
	if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
		value = le64_to_cpu(value);
	else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
		value = be64_to_cpu(value);

	return value;
}

static uint16_t elf16_to_cpu(const struct elfhdr *ehdr, uint16_t value)
{
	if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
		value = le16_to_cpu(value);
	else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
		value = be16_to_cpu(value);

	return value;
}

static uint32_t elf32_to_cpu(const struct elfhdr *ehdr, uint32_t value)
{
	if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
		value = le32_to_cpu(value);
	else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
		value = be32_to_cpu(value);

	return value;
}

/**
 * elf_is_ehdr_sane - check that it is safe to use the ELF header
 * @buf_len:	size of the buffer in which the ELF file is loaded.
 */
static bool elf_is_ehdr_sane(const struct elfhdr *ehdr, size_t buf_len)
{
	if (ehdr->e_phnum > 0 && ehdr->e_phentsize != sizeof(struct elf_phdr)) {
		pr_debug("Bad program header size.\n");
		return false;
	} else if (ehdr->e_shnum > 0 &&
		   ehdr->e_shentsize != sizeof(struct elf_shdr)) {
		pr_debug("Bad section header size.\n");
		return false;
	} else if (ehdr->e_ident[EI_VERSION] != EV_CURRENT ||
		   ehdr->e_version != EV_CURRENT) {
		pr_debug("Unknown ELF version.\n");
		return false;
	}

	if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
		size_t phdr_size;

		/*
		 * e_phnum is at most 65535 so calculating the size of the
		 * program header cannot overflow.
		 */
		phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;

		/* Sanity check the program header table location. */
		if (ehdr->e_phoff + phdr_size < ehdr->e_phoff) {
			pr_debug("Program headers at invalid location.\n");
			return false;
		} else if (ehdr->e_phoff + phdr_size > buf_len) {
			pr_debug("Program headers truncated.\n");
			return false;
		}
	}

	if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
		size_t shdr_size;

		/*
		 * e_shnum is at most 65536 so calculating
		 * the size of the section header cannot overflow.
		 */
		shdr_size = sizeof(struct elf_shdr) * ehdr->e_shnum;

		/* Sanity check the section header table location. */
		if (ehdr->e_shoff + shdr_size < ehdr->e_shoff) {
			pr_debug("Section headers at invalid location.\n");
			return false;
		} else if (ehdr->e_shoff + shdr_size > buf_len) {
			pr_debug("Section headers truncated.\n");
			return false;
		}
	}

	return true;
}

static int elf_read_ehdr(const char *buf, size_t len, struct elfhdr *ehdr)
{
	struct elfhdr *buf_ehdr;

	if (len < sizeof(*buf_ehdr)) {
		pr_debug("Buffer is too small to hold ELF header.\n");
		return -ENOEXEC;
	}

	memset(ehdr, 0, sizeof(*ehdr));
	memcpy(ehdr->e_ident, buf, sizeof(ehdr->e_ident));
	if (!elf_is_elf_file(ehdr)) {
		pr_debug("No ELF header magic.\n");
		return -ENOEXEC;
	}

	if (ehdr->e_ident[EI_CLASS] != ELF_CLASS) {
		pr_debug("Not a supported ELF class.\n");
		return -ENOEXEC;
	} else  if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
		ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
		pr_debug("Not a supported ELF data format.\n");
		return -ENOEXEC;
	}

	buf_ehdr = (struct elfhdr *) buf;
	if (elf16_to_cpu(ehdr, buf_ehdr->e_ehsize) != sizeof(*buf_ehdr)) {
		pr_debug("Bad ELF header size.\n");
		return -ENOEXEC;
	}

	ehdr->e_type      = elf16_to_cpu(ehdr, buf_ehdr->e_type);
	ehdr->e_machine   = elf16_to_cpu(ehdr, buf_ehdr->e_machine);
	ehdr->e_version   = elf32_to_cpu(ehdr, buf_ehdr->e_version);
	ehdr->e_entry     = elf_addr_to_cpu(ehdr, buf_ehdr->e_entry);
	ehdr->e_phoff     = elf_addr_to_cpu(ehdr, buf_ehdr->e_phoff);
	ehdr->e_shoff     = elf_addr_to_cpu(ehdr, buf_ehdr->e_shoff);
	ehdr->e_flags     = elf32_to_cpu(ehdr, buf_ehdr->e_flags);
	ehdr->e_phentsize = elf16_to_cpu(ehdr, buf_ehdr->e_phentsize);
	ehdr->e_phnum     = elf16_to_cpu(ehdr, buf_ehdr->e_phnum);
	ehdr->e_shentsize = elf16_to_cpu(ehdr, buf_ehdr->e_shentsize);
	ehdr->e_shnum     = elf16_to_cpu(ehdr, buf_ehdr->e_shnum);
	ehdr->e_shstrndx  = elf16_to_cpu(ehdr, buf_ehdr->e_shstrndx);

	return elf_is_ehdr_sane(ehdr, len) ? 0 : -ENOEXEC;
}

/**
 * elf_is_phdr_sane - check that it is safe to use the program header
 * @buf_len:	size of the buffer in which the ELF file is loaded.
 */
static bool elf_is_phdr_sane(const struct elf_phdr *phdr, size_t buf_len)
{

	if (phdr->p_offset + phdr->p_filesz < phdr->p_offset) {
		pr_debug("ELF segment location wraps around.\n");
		return false;
	} else if (phdr->p_offset + phdr->p_filesz > buf_len) {
		pr_debug("ELF segment not in file.\n");
		return false;
	} else if (phdr->p_paddr + phdr->p_memsz < phdr->p_paddr) {
		pr_debug("ELF segment address wraps around.\n");
		return false;
	}

	return true;
}

static int elf_read_phdr(const char *buf, size_t len, struct elf_info *elf_info,
			 int idx)
{
	/* Override the const in proghdrs, we are the ones doing the loading. */
	struct elf_phdr *phdr = (struct elf_phdr *) &elf_info->proghdrs[idx];
	const char *pbuf;
	struct elf_phdr *buf_phdr;

	pbuf = buf + elf_info->ehdr->e_phoff + (idx * sizeof(*buf_phdr));
	buf_phdr = (struct elf_phdr *) pbuf;

	phdr->p_type   = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_type);
	phdr->p_offset = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_offset);
	phdr->p_paddr  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_paddr);
	phdr->p_vaddr  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_vaddr);
	phdr->p_flags  = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_flags);

	/*
	 * The following fields have a type equivalent to Elf_Addr
	 * both in 32 bit and 64 bit ELF.
	 */
	phdr->p_filesz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_filesz);
	phdr->p_memsz  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_memsz);
	phdr->p_align  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_align);

	return elf_is_phdr_sane(phdr, len) ? 0 : -ENOEXEC;
}

/**
 * elf_read_phdrs - read the program headers from the buffer
 *
 * This function assumes that the program header table was checked for sanity.
 * Use elf_is_ehdr_sane() if it wasn't.
 */
static int elf_read_phdrs(const char *buf, size_t len,
			  struct elf_info *elf_info)
{
	size_t phdr_size, i;
	const struct elfhdr *ehdr = elf_info->ehdr;

	/*
	 * e_phnum is at most 65535 so calculating the size of the
	 * program header cannot overflow.
	 */
	phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;

	elf_info->proghdrs = kzalloc(phdr_size, GFP_KERNEL);
	if (!elf_info->proghdrs)
		return -ENOMEM;

	for (i = 0; i < ehdr->e_phnum; i++) {
		int ret;

		ret = elf_read_phdr(buf, len, elf_info, i);
		if (ret) {
			kfree(elf_info->proghdrs);
			elf_info->proghdrs = NULL;
			return ret;
		}
	}

	return 0;
}

/**
 * elf_is_shdr_sane - check that it is safe to use the section header
 * @buf_len:	size of the buffer in which the ELF file is loaded.
 */
static bool elf_is_shdr_sane(const struct elf_shdr *shdr, size_t buf_len)
{
	bool size_ok;

	/* SHT_NULL headers have undefined values, so we can't check them. */
	if (shdr->sh_type == SHT_NULL)
		return true;

	/* Now verify sh_entsize */
	switch (shdr->sh_type) {
	case SHT_SYMTAB:
		size_ok = shdr->sh_entsize == sizeof(Elf_Sym);
		break;
	case SHT_RELA:
		size_ok = shdr->sh_entsize == sizeof(Elf_Rela);
		break;
	case SHT_DYNAMIC:
		size_ok = shdr->sh_entsize == sizeof(Elf_Dyn);
		break;
	case SHT_REL:
		size_ok = shdr->sh_entsize == sizeof(Elf_Rel);
		break;
	case SHT_NOTE:
	case SHT_PROGBITS:
	case SHT_HASH:
	case SHT_NOBITS:
	default:
		/*
		 * This is a section whose entsize requirements
		 * I don't care about.  If I don't know about
		 * the section I can't care about it's entsize
		 * requirements.
		 */
		size_ok = true;
		break;
	}

	if (!size_ok) {
		pr_debug("ELF section with wrong entry size.\n");
		return false;
	} else if (shdr->sh_addr + shdr->sh_size < shdr->sh_addr) {
		pr_debug("ELF section address wraps around.\n");
		return false;
	}

	if (shdr->sh_type != SHT_NOBITS) {
		if (shdr->sh_offset + shdr->sh_size < shdr->sh_offset) {
			pr_debug("ELF section location wraps around.\n");
			return false;
		} else if (shdr->sh_offset + shdr->sh_size > buf_len) {
			pr_debug("ELF section not in file.\n");
			return false;
		}
	}

	return true;
}

static int elf_read_shdr(const char *buf, size_t len, struct elf_info *elf_info,
			 int idx)
{
	struct elf_shdr *shdr = &elf_info->sechdrs[idx];
	const struct elfhdr *ehdr = elf_info->ehdr;
	const char *sbuf;
	struct elf_shdr *buf_shdr;

	sbuf = buf + ehdr->e_shoff + idx * sizeof(*buf_shdr);
	buf_shdr = (struct elf_shdr *) sbuf;

	shdr->sh_name      = elf32_to_cpu(ehdr, buf_shdr->sh_name);
	shdr->sh_type      = elf32_to_cpu(ehdr, buf_shdr->sh_type);
	shdr->sh_addr      = elf_addr_to_cpu(ehdr, buf_shdr->sh_addr);
	shdr->sh_offset    = elf_addr_to_cpu(ehdr, buf_shdr->sh_offset);
	shdr->sh_link      = elf32_to_cpu(ehdr, buf_shdr->sh_link);
	shdr->sh_info      = elf32_to_cpu(ehdr, buf_shdr->sh_info);

	/*
	 * The following fields have a type equivalent to Elf_Addr
	 * both in 32 bit and 64 bit ELF.
	 */
	shdr->sh_flags     = elf_addr_to_cpu(ehdr, buf_shdr->sh_flags);
	shdr->sh_size      = elf_addr_to_cpu(ehdr, buf_shdr->sh_size);
	shdr->sh_addralign = elf_addr_to_cpu(ehdr, buf_shdr->sh_addralign);
	shdr->sh_entsize   = elf_addr_to_cpu(ehdr, buf_shdr->sh_entsize);

	return elf_is_shdr_sane(shdr, len) ? 0 : -ENOEXEC;
}

/**
 * elf_read_shdrs - read the section headers from the buffer
 *
 * This function assumes that the section header table was checked for sanity.
 * Use elf_is_ehdr_sane() if it wasn't.
 */
static int elf_read_shdrs(const char *buf, size_t len,
			  struct elf_info *elf_info)
{
	size_t shdr_size, i;

	/*
	 * e_shnum is at most 65536 so calculating
	 * the size of the section header cannot overflow.
	 */
	shdr_size = sizeof(struct elf_shdr) * elf_info->ehdr->e_shnum;

	elf_info->sechdrs = kzalloc(shdr_size, GFP_KERNEL);
	if (!elf_info->sechdrs)
		return -ENOMEM;

	for (i = 0; i < elf_info->ehdr->e_shnum; i++) {
		int ret;

		ret = elf_read_shdr(buf, len, elf_info, i);
		if (ret) {
			kfree(elf_info->sechdrs);
			elf_info->sechdrs = NULL;
			return ret;
		}
	}

	return 0;
}

/**
 * elf_read_from_buffer - read ELF file and sets up ELF header and ELF info
 * @buf:	Buffer to read ELF file from.
 * @len:	Size of @buf.
 * @ehdr:	Pointer to existing struct which will be populated.
 * @elf_info:	Pointer to existing struct which will be populated.
 *
 * This function allows reading ELF files with different byte order than
 * the kernel, byte-swapping the fields as needed.
 *
 * Return:
 * On success returns 0, and the caller should call elf_free_info(elf_info) to
 * free the memory allocated for the section and program headers.
 */
int elf_read_from_buffer(const char *buf, size_t len, struct elfhdr *ehdr,
			 struct elf_info *elf_info)
{
	int ret;

	ret = elf_read_ehdr(buf, len, ehdr);
	if (ret)
		return ret;

	elf_info->buffer = buf;
	elf_info->ehdr = ehdr;
	if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
		ret = elf_read_phdrs(buf, len, elf_info);
		if (ret)
			return ret;
	}
	if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
		ret = elf_read_shdrs(buf, len, elf_info);
		if (ret) {
			kfree(elf_info->proghdrs);
			return ret;
		}
	}

	return 0;
}

/**
 * elf_free_info - free memory allocated by elf_read_from_buffer
 */
void elf_free_info(struct elf_info *elf_info)
{
	kfree(elf_info->proghdrs);
	kfree(elf_info->sechdrs);
	memset(elf_info, 0, sizeof(*elf_info));
}
/**
 * build_elf_exec_info - read ELF executable and check that we can use it
 */
static int build_elf_exec_info(const char *buf, size_t len, struct elfhdr *ehdr,
			       struct elf_info *elf_info)
{
	int i;
	int ret;

	ret = elf_read_from_buffer(buf, len, ehdr, elf_info);
	if (ret)
		return ret;

	/* Big endian vmlinux has type ET_DYN. */
	if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) {
		pr_err("Not an ELF executable.\n");
		goto error;
	} else if (!elf_info->proghdrs) {
		pr_err("No ELF program header.\n");
		goto error;
	}

	for (i = 0; i < ehdr->e_phnum; i++) {
		/*
		 * Kexec does not support loading interpreters.
		 * In addition this check keeps us from attempting
		 * to kexec ordinay executables.
		 */
		if (elf_info->proghdrs[i].p_type == PT_INTERP) {
			pr_err("Requires an ELF interpreter.\n");
			goto error;
		}
	}

	return 0;
error:
	elf_free_info(elf_info);
	return -ENOEXEC;
}

static int elf64_probe(const char *buf, unsigned long len)
{
	struct elfhdr ehdr;
	struct elf_info elf_info;
	int ret;

	ret = build_elf_exec_info(buf, len, &ehdr, &elf_info);
	if (ret)
		return ret;

	elf_free_info(&elf_info);

	return elf_check_arch(&ehdr) ? 0 : -ENOEXEC;
}

/**
 * elf_exec_load - load ELF executable image
 * @lowest_load_addr:	On return, will be the address where the first PT_LOAD
 *			section will be loaded in memory.
 *
 * Return:
 * 0 on success, negative value on failure.
 */
static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr,
			 struct elf_info *elf_info,
			 unsigned long *lowest_load_addr)
{
	unsigned long base = 0, lowest_addr = UINT_MAX;
	int ret;
	size_t i;
	struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size,
				  .top_down = false };

	/* Read in the PT_LOAD segments. */
	for (i = 0; i < ehdr->e_phnum; i++) {
		unsigned long load_addr;
		size_t size;
		const struct elf_phdr *phdr;

		phdr = &elf_info->proghdrs[i];
		if (phdr->p_type != PT_LOAD)
			continue;

		size = phdr->p_filesz;
		if (size > phdr->p_memsz)
			size = phdr->p_memsz;

		kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
		kbuf.bufsz = size;
		kbuf.memsz = phdr->p_memsz;
		kbuf.buf_align = phdr->p_align;
		kbuf.buf_min = phdr->p_paddr + base;
		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
		ret = kexec_add_buffer(&kbuf);
		if (ret)
			goto out;
		load_addr = kbuf.mem;

		if (load_addr < lowest_addr)
			lowest_addr = load_addr;
	}

	/* Update entry point to reflect new load address. */
	ehdr->e_entry += base;

	*lowest_load_addr = lowest_addr;
	ret = 0;
 out:
	return ret;
}

static void *elf64_load(struct kimage *image, char *kernel_buf,
			unsigned long kernel_len, char *initrd,
			unsigned long initrd_len, char *cmdline,
			unsigned long cmdline_len)
{
	int ret;
	unsigned int fdt_size;
	unsigned long kernel_load_addr;
	unsigned long initrd_load_addr = 0, fdt_load_addr;
	void *fdt;
	const void *slave_code;
	struct elfhdr ehdr;
	struct elf_info elf_info;
	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
				  .buf_max = ppc64_rma_size };
	struct kexec_buf pbuf = { .image = image, .buf_min = 0,
				  .buf_max = ppc64_rma_size, .top_down = true,
				  .mem = KEXEC_BUF_MEM_UNKNOWN };

	ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info);
	if (ret)
		goto out;

	ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr);
	if (ret)
		goto out;

	pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr);

	ret = kexec_load_purgatory(image, &pbuf);
	if (ret) {
		pr_err("Loading purgatory failed.\n");
		goto out;
	}

	pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem);

	if (initrd != NULL) {
		kbuf.buffer = initrd;
		kbuf.bufsz = kbuf.memsz = initrd_len;
		kbuf.buf_align = PAGE_SIZE;
		kbuf.top_down = false;
		kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
		ret = kexec_add_buffer(&kbuf);
		if (ret)
			goto out;
		initrd_load_addr = kbuf.mem;

		pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr);
	}

	fdt_size = fdt_totalsize(initial_boot_params) * 2;
	fdt = kmalloc(fdt_size, GFP_KERNEL);
	if (!fdt) {
		pr_err("Not enough memory for the device tree.\n");
		ret = -ENOMEM;
		goto out;
	}
	ret = fdt_open_into(initial_boot_params, fdt, fdt_size);
	if (ret < 0) {
		pr_err("Error setting up the new device tree.\n");
		ret = -EINVAL;
		goto out;
	}

	ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
	if (ret)
		goto out;

	fdt_pack(fdt);

	kbuf.buffer = fdt;
	kbuf.bufsz = kbuf.memsz = fdt_size;
	kbuf.buf_align = PAGE_SIZE;
	kbuf.top_down = true;
	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
	ret = kexec_add_buffer(&kbuf);
	if (ret)
		goto out;
	fdt_load_addr = kbuf.mem;

	pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr);

	slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset;
	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
			      fdt_load_addr);
	if (ret)
		pr_err("Error setting up the purgatory.\n");

out:
	elf_free_info(&elf_info);

	/* Make kimage_file_post_load_cleanup free the fdt buffer for us. */
	return ret ? ERR_PTR(ret) : fdt;
}

const struct kexec_file_ops kexec_elf64_ops = {
	.probe = elf64_probe,
	.load = elf64_load,
};