Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thiago Jung Bauermann | 2985 | 98.91% | 3 | 50.00% |
Philipp Rudo | 30 | 0.99% | 1 | 16.67% |
Thomas Gleixner | 2 | 0.07% | 1 | 16.67% |
AKASHI Takahiro | 1 | 0.03% | 1 | 16.67% |
Total | 3018 | 6 |
// SPDX-License-Identifier: GPL-2.0-only /* * Load ELF vmlinux file for the kexec_file_load syscall. * * Copyright (C) 2004 Adam Litke (agl@us.ibm.com) * Copyright (C) 2004 IBM Corp. * Copyright (C) 2005 R Sharada (sharada@in.ibm.com) * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com) * Copyright (C) 2016 IBM Corporation * * Based on kexec-tools' kexec-elf-exec.c and kexec-elf-ppc64.c. * Heavily modified for the kernel by * Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>. */ #define pr_fmt(fmt) "kexec_elf: " fmt #include <linux/elf.h> #include <linux/kexec.h> #include <linux/libfdt.h> #include <linux/module.h> #include <linux/of_fdt.h> #include <linux/slab.h> #include <linux/types.h> #define PURGATORY_STACK_SIZE (16 * 1024) #define elf_addr_to_cpu elf64_to_cpu #ifndef Elf_Rel #define Elf_Rel Elf64_Rel #endif /* Elf_Rel */ struct elf_info { /* * Where the ELF binary contents are kept. * Memory managed by the user of the struct. */ const char *buffer; const struct elfhdr *ehdr; const struct elf_phdr *proghdrs; struct elf_shdr *sechdrs; }; static inline bool elf_is_elf_file(const struct elfhdr *ehdr) { return memcmp(ehdr->e_ident, ELFMAG, SELFMAG) == 0; } static uint64_t elf64_to_cpu(const struct elfhdr *ehdr, uint64_t value) { if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) value = le64_to_cpu(value); else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) value = be64_to_cpu(value); return value; } static uint16_t elf16_to_cpu(const struct elfhdr *ehdr, uint16_t value) { if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) value = le16_to_cpu(value); else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) value = be16_to_cpu(value); return value; } static uint32_t elf32_to_cpu(const struct elfhdr *ehdr, uint32_t value) { if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB) value = le32_to_cpu(value); else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) value = be32_to_cpu(value); return value; } /** * elf_is_ehdr_sane - check that it is safe to use the ELF header * @buf_len: size of the buffer in which the ELF file is loaded. */ static bool elf_is_ehdr_sane(const struct elfhdr *ehdr, size_t buf_len) { if (ehdr->e_phnum > 0 && ehdr->e_phentsize != sizeof(struct elf_phdr)) { pr_debug("Bad program header size.\n"); return false; } else if (ehdr->e_shnum > 0 && ehdr->e_shentsize != sizeof(struct elf_shdr)) { pr_debug("Bad section header size.\n"); return false; } else if (ehdr->e_ident[EI_VERSION] != EV_CURRENT || ehdr->e_version != EV_CURRENT) { pr_debug("Unknown ELF version.\n"); return false; } if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) { size_t phdr_size; /* * e_phnum is at most 65535 so calculating the size of the * program header cannot overflow. */ phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum; /* Sanity check the program header table location. */ if (ehdr->e_phoff + phdr_size < ehdr->e_phoff) { pr_debug("Program headers at invalid location.\n"); return false; } else if (ehdr->e_phoff + phdr_size > buf_len) { pr_debug("Program headers truncated.\n"); return false; } } if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) { size_t shdr_size; /* * e_shnum is at most 65536 so calculating * the size of the section header cannot overflow. */ shdr_size = sizeof(struct elf_shdr) * ehdr->e_shnum; /* Sanity check the section header table location. */ if (ehdr->e_shoff + shdr_size < ehdr->e_shoff) { pr_debug("Section headers at invalid location.\n"); return false; } else if (ehdr->e_shoff + shdr_size > buf_len) { pr_debug("Section headers truncated.\n"); return false; } } return true; } static int elf_read_ehdr(const char *buf, size_t len, struct elfhdr *ehdr) { struct elfhdr *buf_ehdr; if (len < sizeof(*buf_ehdr)) { pr_debug("Buffer is too small to hold ELF header.\n"); return -ENOEXEC; } memset(ehdr, 0, sizeof(*ehdr)); memcpy(ehdr->e_ident, buf, sizeof(ehdr->e_ident)); if (!elf_is_elf_file(ehdr)) { pr_debug("No ELF header magic.\n"); return -ENOEXEC; } if (ehdr->e_ident[EI_CLASS] != ELF_CLASS) { pr_debug("Not a supported ELF class.\n"); return -ENOEXEC; } else if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { pr_debug("Not a supported ELF data format.\n"); return -ENOEXEC; } buf_ehdr = (struct elfhdr *) buf; if (elf16_to_cpu(ehdr, buf_ehdr->e_ehsize) != sizeof(*buf_ehdr)) { pr_debug("Bad ELF header size.\n"); return -ENOEXEC; } ehdr->e_type = elf16_to_cpu(ehdr, buf_ehdr->e_type); ehdr->e_machine = elf16_to_cpu(ehdr, buf_ehdr->e_machine); ehdr->e_version = elf32_to_cpu(ehdr, buf_ehdr->e_version); ehdr->e_entry = elf_addr_to_cpu(ehdr, buf_ehdr->e_entry); ehdr->e_phoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_phoff); ehdr->e_shoff = elf_addr_to_cpu(ehdr, buf_ehdr->e_shoff); ehdr->e_flags = elf32_to_cpu(ehdr, buf_ehdr->e_flags); ehdr->e_phentsize = elf16_to_cpu(ehdr, buf_ehdr->e_phentsize); ehdr->e_phnum = elf16_to_cpu(ehdr, buf_ehdr->e_phnum); ehdr->e_shentsize = elf16_to_cpu(ehdr, buf_ehdr->e_shentsize); ehdr->e_shnum = elf16_to_cpu(ehdr, buf_ehdr->e_shnum); ehdr->e_shstrndx = elf16_to_cpu(ehdr, buf_ehdr->e_shstrndx); return elf_is_ehdr_sane(ehdr, len) ? 0 : -ENOEXEC; } /** * elf_is_phdr_sane - check that it is safe to use the program header * @buf_len: size of the buffer in which the ELF file is loaded. */ static bool elf_is_phdr_sane(const struct elf_phdr *phdr, size_t buf_len) { if (phdr->p_offset + phdr->p_filesz < phdr->p_offset) { pr_debug("ELF segment location wraps around.\n"); return false; } else if (phdr->p_offset + phdr->p_filesz > buf_len) { pr_debug("ELF segment not in file.\n"); return false; } else if (phdr->p_paddr + phdr->p_memsz < phdr->p_paddr) { pr_debug("ELF segment address wraps around.\n"); return false; } return true; } static int elf_read_phdr(const char *buf, size_t len, struct elf_info *elf_info, int idx) { /* Override the const in proghdrs, we are the ones doing the loading. */ struct elf_phdr *phdr = (struct elf_phdr *) &elf_info->proghdrs[idx]; const char *pbuf; struct elf_phdr *buf_phdr; pbuf = buf + elf_info->ehdr->e_phoff + (idx * sizeof(*buf_phdr)); buf_phdr = (struct elf_phdr *) pbuf; phdr->p_type = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_type); phdr->p_offset = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_offset); phdr->p_paddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_paddr); phdr->p_vaddr = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_vaddr); phdr->p_flags = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_flags); /* * The following fields have a type equivalent to Elf_Addr * both in 32 bit and 64 bit ELF. */ phdr->p_filesz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_filesz); phdr->p_memsz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_memsz); phdr->p_align = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_align); return elf_is_phdr_sane(phdr, len) ? 0 : -ENOEXEC; } /** * elf_read_phdrs - read the program headers from the buffer * * This function assumes that the program header table was checked for sanity. * Use elf_is_ehdr_sane() if it wasn't. */ static int elf_read_phdrs(const char *buf, size_t len, struct elf_info *elf_info) { size_t phdr_size, i; const struct elfhdr *ehdr = elf_info->ehdr; /* * e_phnum is at most 65535 so calculating the size of the * program header cannot overflow. */ phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum; elf_info->proghdrs = kzalloc(phdr_size, GFP_KERNEL); if (!elf_info->proghdrs) return -ENOMEM; for (i = 0; i < ehdr->e_phnum; i++) { int ret; ret = elf_read_phdr(buf, len, elf_info, i); if (ret) { kfree(elf_info->proghdrs); elf_info->proghdrs = NULL; return ret; } } return 0; } /** * elf_is_shdr_sane - check that it is safe to use the section header * @buf_len: size of the buffer in which the ELF file is loaded. */ static bool elf_is_shdr_sane(const struct elf_shdr *shdr, size_t buf_len) { bool size_ok; /* SHT_NULL headers have undefined values, so we can't check them. */ if (shdr->sh_type == SHT_NULL) return true; /* Now verify sh_entsize */ switch (shdr->sh_type) { case SHT_SYMTAB: size_ok = shdr->sh_entsize == sizeof(Elf_Sym); break; case SHT_RELA: size_ok = shdr->sh_entsize == sizeof(Elf_Rela); break; case SHT_DYNAMIC: size_ok = shdr->sh_entsize == sizeof(Elf_Dyn); break; case SHT_REL: size_ok = shdr->sh_entsize == sizeof(Elf_Rel); break; case SHT_NOTE: case SHT_PROGBITS: case SHT_HASH: case SHT_NOBITS: default: /* * This is a section whose entsize requirements * I don't care about. If I don't know about * the section I can't care about it's entsize * requirements. */ size_ok = true; break; } if (!size_ok) { pr_debug("ELF section with wrong entry size.\n"); return false; } else if (shdr->sh_addr + shdr->sh_size < shdr->sh_addr) { pr_debug("ELF section address wraps around.\n"); return false; } if (shdr->sh_type != SHT_NOBITS) { if (shdr->sh_offset + shdr->sh_size < shdr->sh_offset) { pr_debug("ELF section location wraps around.\n"); return false; } else if (shdr->sh_offset + shdr->sh_size > buf_len) { pr_debug("ELF section not in file.\n"); return false; } } return true; } static int elf_read_shdr(const char *buf, size_t len, struct elf_info *elf_info, int idx) { struct elf_shdr *shdr = &elf_info->sechdrs[idx]; const struct elfhdr *ehdr = elf_info->ehdr; const char *sbuf; struct elf_shdr *buf_shdr; sbuf = buf + ehdr->e_shoff + idx * sizeof(*buf_shdr); buf_shdr = (struct elf_shdr *) sbuf; shdr->sh_name = elf32_to_cpu(ehdr, buf_shdr->sh_name); shdr->sh_type = elf32_to_cpu(ehdr, buf_shdr->sh_type); shdr->sh_addr = elf_addr_to_cpu(ehdr, buf_shdr->sh_addr); shdr->sh_offset = elf_addr_to_cpu(ehdr, buf_shdr->sh_offset); shdr->sh_link = elf32_to_cpu(ehdr, buf_shdr->sh_link); shdr->sh_info = elf32_to_cpu(ehdr, buf_shdr->sh_info); /* * The following fields have a type equivalent to Elf_Addr * both in 32 bit and 64 bit ELF. */ shdr->sh_flags = elf_addr_to_cpu(ehdr, buf_shdr->sh_flags); shdr->sh_size = elf_addr_to_cpu(ehdr, buf_shdr->sh_size); shdr->sh_addralign = elf_addr_to_cpu(ehdr, buf_shdr->sh_addralign); shdr->sh_entsize = elf_addr_to_cpu(ehdr, buf_shdr->sh_entsize); return elf_is_shdr_sane(shdr, len) ? 0 : -ENOEXEC; } /** * elf_read_shdrs - read the section headers from the buffer * * This function assumes that the section header table was checked for sanity. * Use elf_is_ehdr_sane() if it wasn't. */ static int elf_read_shdrs(const char *buf, size_t len, struct elf_info *elf_info) { size_t shdr_size, i; /* * e_shnum is at most 65536 so calculating * the size of the section header cannot overflow. */ shdr_size = sizeof(struct elf_shdr) * elf_info->ehdr->e_shnum; elf_info->sechdrs = kzalloc(shdr_size, GFP_KERNEL); if (!elf_info->sechdrs) return -ENOMEM; for (i = 0; i < elf_info->ehdr->e_shnum; i++) { int ret; ret = elf_read_shdr(buf, len, elf_info, i); if (ret) { kfree(elf_info->sechdrs); elf_info->sechdrs = NULL; return ret; } } return 0; } /** * elf_read_from_buffer - read ELF file and sets up ELF header and ELF info * @buf: Buffer to read ELF file from. * @len: Size of @buf. * @ehdr: Pointer to existing struct which will be populated. * @elf_info: Pointer to existing struct which will be populated. * * This function allows reading ELF files with different byte order than * the kernel, byte-swapping the fields as needed. * * Return: * On success returns 0, and the caller should call elf_free_info(elf_info) to * free the memory allocated for the section and program headers. */ int elf_read_from_buffer(const char *buf, size_t len, struct elfhdr *ehdr, struct elf_info *elf_info) { int ret; ret = elf_read_ehdr(buf, len, ehdr); if (ret) return ret; elf_info->buffer = buf; elf_info->ehdr = ehdr; if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) { ret = elf_read_phdrs(buf, len, elf_info); if (ret) return ret; } if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) { ret = elf_read_shdrs(buf, len, elf_info); if (ret) { kfree(elf_info->proghdrs); return ret; } } return 0; } /** * elf_free_info - free memory allocated by elf_read_from_buffer */ void elf_free_info(struct elf_info *elf_info) { kfree(elf_info->proghdrs); kfree(elf_info->sechdrs); memset(elf_info, 0, sizeof(*elf_info)); } /** * build_elf_exec_info - read ELF executable and check that we can use it */ static int build_elf_exec_info(const char *buf, size_t len, struct elfhdr *ehdr, struct elf_info *elf_info) { int i; int ret; ret = elf_read_from_buffer(buf, len, ehdr, elf_info); if (ret) return ret; /* Big endian vmlinux has type ET_DYN. */ if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) { pr_err("Not an ELF executable.\n"); goto error; } else if (!elf_info->proghdrs) { pr_err("No ELF program header.\n"); goto error; } for (i = 0; i < ehdr->e_phnum; i++) { /* * Kexec does not support loading interpreters. * In addition this check keeps us from attempting * to kexec ordinay executables. */ if (elf_info->proghdrs[i].p_type == PT_INTERP) { pr_err("Requires an ELF interpreter.\n"); goto error; } } return 0; error: elf_free_info(elf_info); return -ENOEXEC; } static int elf64_probe(const char *buf, unsigned long len) { struct elfhdr ehdr; struct elf_info elf_info; int ret; ret = build_elf_exec_info(buf, len, &ehdr, &elf_info); if (ret) return ret; elf_free_info(&elf_info); return elf_check_arch(&ehdr) ? 0 : -ENOEXEC; } /** * elf_exec_load - load ELF executable image * @lowest_load_addr: On return, will be the address where the first PT_LOAD * section will be loaded in memory. * * Return: * 0 on success, negative value on failure. */ static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr, struct elf_info *elf_info, unsigned long *lowest_load_addr) { unsigned long base = 0, lowest_addr = UINT_MAX; int ret; size_t i; struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size, .top_down = false }; /* Read in the PT_LOAD segments. */ for (i = 0; i < ehdr->e_phnum; i++) { unsigned long load_addr; size_t size; const struct elf_phdr *phdr; phdr = &elf_info->proghdrs[i]; if (phdr->p_type != PT_LOAD) continue; size = phdr->p_filesz; if (size > phdr->p_memsz) size = phdr->p_memsz; kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset; kbuf.bufsz = size; kbuf.memsz = phdr->p_memsz; kbuf.buf_align = phdr->p_align; kbuf.buf_min = phdr->p_paddr + base; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out; load_addr = kbuf.mem; if (load_addr < lowest_addr) lowest_addr = load_addr; } /* Update entry point to reflect new load address. */ ehdr->e_entry += base; *lowest_load_addr = lowest_addr; ret = 0; out: return ret; } static void *elf64_load(struct kimage *image, char *kernel_buf, unsigned long kernel_len, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len) { int ret; unsigned int fdt_size; unsigned long kernel_load_addr; unsigned long initrd_load_addr = 0, fdt_load_addr; void *fdt; const void *slave_code; struct elfhdr ehdr; struct elf_info elf_info; struct kexec_buf kbuf = { .image = image, .buf_min = 0, .buf_max = ppc64_rma_size }; struct kexec_buf pbuf = { .image = image, .buf_min = 0, .buf_max = ppc64_rma_size, .top_down = true, .mem = KEXEC_BUF_MEM_UNKNOWN }; ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info); if (ret) goto out; ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr); if (ret) goto out; pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr); ret = kexec_load_purgatory(image, &pbuf); if (ret) { pr_err("Loading purgatory failed.\n"); goto out; } pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem); if (initrd != NULL) { kbuf.buffer = initrd; kbuf.bufsz = kbuf.memsz = initrd_len; kbuf.buf_align = PAGE_SIZE; kbuf.top_down = false; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out; initrd_load_addr = kbuf.mem; pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr); } fdt_size = fdt_totalsize(initial_boot_params) * 2; fdt = kmalloc(fdt_size, GFP_KERNEL); if (!fdt) { pr_err("Not enough memory for the device tree.\n"); ret = -ENOMEM; goto out; } ret = fdt_open_into(initial_boot_params, fdt, fdt_size); if (ret < 0) { pr_err("Error setting up the new device tree.\n"); ret = -EINVAL; goto out; } ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline); if (ret) goto out; fdt_pack(fdt); kbuf.buffer = fdt; kbuf.bufsz = kbuf.memsz = fdt_size; kbuf.buf_align = PAGE_SIZE; kbuf.top_down = true; kbuf.mem = KEXEC_BUF_MEM_UNKNOWN; ret = kexec_add_buffer(&kbuf); if (ret) goto out; fdt_load_addr = kbuf.mem; pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr); slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset; ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr, fdt_load_addr); if (ret) pr_err("Error setting up the purgatory.\n"); out: elf_free_info(&elf_info); /* Make kimage_file_post_load_cleanup free the fdt buffer for us. */ return ret ? ERR_PTR(ret) : fdt; } const struct kexec_file_ops kexec_elf64_ops = { .probe = elf64_probe, .load = elf64_load, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1