Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 1922 | 66.00% | 42 | 41.58% |
Linus Torvalds (pre-git) | 483 | 16.59% | 16 | 15.84% |
Khalid Aziz | 146 | 5.01% | 4 | 3.96% |
Allen Pais | 78 | 2.68% | 3 | 2.97% |
Keith M. Wesolowski | 71 | 2.44% | 1 | 0.99% |
Atish Patra | 66 | 2.27% | 2 | 1.98% |
Mike Rapoport | 47 | 1.61% | 3 | 2.97% |
Sam Ravnborg | 18 | 0.62% | 2 | 1.98% |
Anthony Yznaga | 17 | 0.58% | 1 | 0.99% |
Rusty Russell | 10 | 0.34% | 2 | 1.98% |
Al Viro | 10 | 0.34% | 3 | 2.97% |
Linus Torvalds | 7 | 0.24% | 2 | 1.98% |
David Howells | 6 | 0.21% | 2 | 1.98% |
Andrew Morton | 5 | 0.17% | 3 | 2.97% |
Pavel Tatashin | 4 | 0.14% | 2 | 1.98% |
Benjamin Collins | 4 | 0.14% | 2 | 1.98% |
Vijay Kumar | 3 | 0.10% | 1 | 0.99% |
Zhao Hongjiang | 3 | 0.10% | 1 | 0.99% |
Russell King | 3 | 0.10% | 1 | 0.99% |
Corentin Labbe | 2 | 0.07% | 1 | 0.99% |
Joe Perches | 1 | 0.03% | 1 | 0.99% |
Andres Salomon | 1 | 0.03% | 1 | 0.99% |
Jon Smirl | 1 | 0.03% | 1 | 0.99% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 0.99% |
Alon Bar-Lev | 1 | 0.03% | 1 | 0.99% |
Bob Picco | 1 | 0.03% | 1 | 0.99% |
Adrian Bunk | 1 | 0.03% | 1 | 0.99% |
Total | 2912 | 101 |
// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/sparc64/kernel/setup.c * * Copyright (C) 1995,1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <asm/smp.h> #include <linux/user.h> #include <linux/screen_info.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/syscalls.h> #include <linux/kdev_t.h> #include <linux/major.h> #include <linux/string.h> #include <linux/init.h> #include <linux/inet.h> #include <linux/console.h> #include <linux/root_dev.h> #include <linux/interrupt.h> #include <linux/cpu.h> #include <linux/initrd.h> #include <linux/module.h> #include <linux/start_kernel.h> #include <linux/memblock.h> #include <uapi/linux/mount.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/oplib.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/idprom.h> #include <asm/head.h> #include <asm/starfire.h> #include <asm/mmu_context.h> #include <asm/timer.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/mmu.h> #include <asm/ns87303.h> #include <asm/btext.h> #include <asm/elf.h> #include <asm/mdesc.h> #include <asm/cacheflush.h> #include <asm/dma.h> #include <asm/irq.h> #ifdef CONFIG_IP_PNP #include <net/ipconfig.h> #endif #include "entry.h" #include "kernel.h" /* Used to synchronize accesses to NatSemi SUPER I/O chip configure * operations in asm/ns87303.h */ DEFINE_SPINLOCK(ns87303_lock); EXPORT_SYMBOL(ns87303_lock); struct screen_info screen_info = { 0, 0, /* orig-x, orig-y */ 0, /* unused */ 0, /* orig-video-page */ 0, /* orig-video-mode */ 128, /* orig-video-cols */ 0, 0, 0, /* unused, ega_bx, unused */ 54, /* orig-video-lines */ 0, /* orig-video-isVGA */ 16 /* orig-video-points */ }; static void prom_console_write(struct console *con, const char *s, unsigned int n) { prom_write(s, n); } /* Exported for mm/init.c:paging_init. */ unsigned long cmdline_memory_size = 0; static struct console prom_early_console = { .name = "earlyprom", .write = prom_console_write, .flags = CON_PRINTBUFFER | CON_BOOT | CON_ANYTIME, .index = -1, }; /* * Process kernel command line switches that are specific to the * SPARC or that require special low-level processing. */ static void __init process_switch(char c) { switch (c) { case 'd': case 's': break; case 'h': prom_printf("boot_flags_init: Halt!\n"); prom_halt(); break; case 'p': prom_early_console.flags &= ~CON_BOOT; break; case 'P': /* Force UltraSPARC-III P-Cache on. */ if (tlb_type != cheetah) { printk("BOOT: Ignoring P-Cache force option.\n"); break; } cheetah_pcache_forced_on = 1; add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); cheetah_enable_pcache(); break; default: printk("Unknown boot switch (-%c)\n", c); break; } } static void __init boot_flags_init(char *commands) { while (*commands) { /* Move to the start of the next "argument". */ while (*commands == ' ') commands++; /* Process any command switches, otherwise skip it. */ if (*commands == '\0') break; if (*commands == '-') { commands++; while (*commands && *commands != ' ') process_switch(*commands++); continue; } if (!strncmp(commands, "mem=", 4)) cmdline_memory_size = memparse(commands + 4, &commands); while (*commands && *commands != ' ') commands++; } } extern unsigned short root_flags; extern unsigned short root_dev; extern unsigned short ram_flags; #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 extern int root_mountflags; char reboot_command[COMMAND_LINE_SIZE]; static struct pt_regs fake_swapper_regs = { { 0, }, 0, 0, 0, 0 }; static void __init per_cpu_patch(void) { struct cpuid_patch_entry *p; unsigned long ver; int is_jbus; if (tlb_type == spitfire && !this_is_starfire) return; is_jbus = 0; if (tlb_type != hypervisor) { __asm__ ("rdpr %%ver, %0" : "=r" (ver)); is_jbus = ((ver >> 32UL) == __JALAPENO_ID || (ver >> 32UL) == __SERRANO_ID); } p = &__cpuid_patch; while (p < &__cpuid_patch_end) { unsigned long addr = p->addr; unsigned int *insns; switch (tlb_type) { case spitfire: insns = &p->starfire[0]; break; case cheetah: case cheetah_plus: if (is_jbus) insns = &p->cheetah_jbus[0]; else insns = &p->cheetah_safari[0]; break; case hypervisor: insns = &p->sun4v[0]; break; default: prom_printf("Unknown cpu type, halting.\n"); prom_halt(); } *(unsigned int *) (addr + 0) = insns[0]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 0)); *(unsigned int *) (addr + 4) = insns[1]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 4)); *(unsigned int *) (addr + 8) = insns[2]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 8)); *(unsigned int *) (addr + 12) = insns[3]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 12)); p++; } } void sun4v_patch_1insn_range(struct sun4v_1insn_patch_entry *start, struct sun4v_1insn_patch_entry *end) { while (start < end) { unsigned long addr = start->addr; *(unsigned int *) (addr + 0) = start->insn; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 0)); start++; } } void sun4v_patch_2insn_range(struct sun4v_2insn_patch_entry *start, struct sun4v_2insn_patch_entry *end) { while (start < end) { unsigned long addr = start->addr; *(unsigned int *) (addr + 0) = start->insns[0]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 0)); *(unsigned int *) (addr + 4) = start->insns[1]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 4)); start++; } } void sun_m7_patch_2insn_range(struct sun4v_2insn_patch_entry *start, struct sun4v_2insn_patch_entry *end) { while (start < end) { unsigned long addr = start->addr; *(unsigned int *) (addr + 0) = start->insns[0]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 0)); *(unsigned int *) (addr + 4) = start->insns[1]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + 4)); start++; } } static void __init sun4v_patch(void) { extern void sun4v_hvapi_init(void); if (tlb_type != hypervisor) return; sun4v_patch_1insn_range(&__sun4v_1insn_patch, &__sun4v_1insn_patch_end); sun4v_patch_2insn_range(&__sun4v_2insn_patch, &__sun4v_2insn_patch_end); switch (sun4v_chip_type) { case SUN4V_CHIP_SPARC_M7: case SUN4V_CHIP_SPARC_M8: case SUN4V_CHIP_SPARC_SN: sun4v_patch_1insn_range(&__sun_m7_1insn_patch, &__sun_m7_1insn_patch_end); sun_m7_patch_2insn_range(&__sun_m7_2insn_patch, &__sun_m7_2insn_patch_end); break; default: break; } if (sun4v_chip_type != SUN4V_CHIP_NIAGARA1) { sun4v_patch_1insn_range(&__fast_win_ctrl_1insn_patch, &__fast_win_ctrl_1insn_patch_end); } sun4v_hvapi_init(); } static void __init popc_patch(void) { struct popc_3insn_patch_entry *p3; struct popc_6insn_patch_entry *p6; p3 = &__popc_3insn_patch; while (p3 < &__popc_3insn_patch_end) { unsigned long i, addr = p3->addr; for (i = 0; i < 3; i++) { *(unsigned int *) (addr + (i * 4)) = p3->insns[i]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + (i * 4))); } p3++; } p6 = &__popc_6insn_patch; while (p6 < &__popc_6insn_patch_end) { unsigned long i, addr = p6->addr; for (i = 0; i < 6; i++) { *(unsigned int *) (addr + (i * 4)) = p6->insns[i]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + (i * 4))); } p6++; } } static void __init pause_patch(void) { struct pause_patch_entry *p; p = &__pause_3insn_patch; while (p < &__pause_3insn_patch_end) { unsigned long i, addr = p->addr; for (i = 0; i < 3; i++) { *(unsigned int *) (addr + (i * 4)) = p->insns[i]; wmb(); __asm__ __volatile__("flush %0" : : "r" (addr + (i * 4))); } p++; } } void __init start_early_boot(void) { int cpu; check_if_starfire(); per_cpu_patch(); sun4v_patch(); smp_init_cpu_poke(); cpu = hard_smp_processor_id(); if (cpu >= NR_CPUS) { prom_printf("Serious problem, boot cpu id (%d) >= NR_CPUS (%d)\n", cpu, NR_CPUS); prom_halt(); } current_thread_info()->cpu = cpu; time_init_early(); prom_init_report(); start_kernel(); } /* On Ultra, we support all of the v8 capabilities. */ unsigned long sparc64_elf_hwcap = (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9); EXPORT_SYMBOL(sparc64_elf_hwcap); static const char *hwcaps[] = { "flush", "stbar", "swap", "muldiv", "v9", "ultra3", "blkinit", "n2", /* These strings are as they appear in the machine description * 'hwcap-list' property for cpu nodes. */ "mul32", "div32", "fsmuld", "v8plus", "popc", "vis", "vis2", "ASIBlkInit", "fmaf", "vis3", "hpc", "random", "trans", "fjfmau", "ima", "cspare", "pause", "cbcond", NULL /*reserved for crypto */, "adp", }; static const char *crypto_hwcaps[] = { "aes", "des", "kasumi", "camellia", "md5", "sha1", "sha256", "sha512", "mpmul", "montmul", "montsqr", "crc32c", }; void cpucap_info(struct seq_file *m) { unsigned long caps = sparc64_elf_hwcap; int i, printed = 0; seq_puts(m, "cpucaps\t\t: "); for (i = 0; i < ARRAY_SIZE(hwcaps); i++) { unsigned long bit = 1UL << i; if (hwcaps[i] && (caps & bit)) { seq_printf(m, "%s%s", printed ? "," : "", hwcaps[i]); printed++; } } if (caps & HWCAP_SPARC_CRYPTO) { unsigned long cfr; __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) { unsigned long bit = 1UL << i; if (cfr & bit) { seq_printf(m, "%s%s", printed ? "," : "", crypto_hwcaps[i]); printed++; } } } seq_putc(m, '\n'); } static void __init report_one_hwcap(int *printed, const char *name) { if ((*printed) == 0) printk(KERN_INFO "CPU CAPS: ["); printk(KERN_CONT "%s%s", (*printed) ? "," : "", name); if (++(*printed) == 8) { printk(KERN_CONT "]\n"); *printed = 0; } } static void __init report_crypto_hwcaps(int *printed) { unsigned long cfr; int i; __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) { unsigned long bit = 1UL << i; if (cfr & bit) report_one_hwcap(printed, crypto_hwcaps[i]); } } static void __init report_hwcaps(unsigned long caps) { int i, printed = 0; for (i = 0; i < ARRAY_SIZE(hwcaps); i++) { unsigned long bit = 1UL << i; if (hwcaps[i] && (caps & bit)) report_one_hwcap(&printed, hwcaps[i]); } if (caps & HWCAP_SPARC_CRYPTO) report_crypto_hwcaps(&printed); if (printed != 0) printk(KERN_CONT "]\n"); } static unsigned long __init mdesc_cpu_hwcap_list(void) { struct mdesc_handle *hp; unsigned long caps = 0; const char *prop; int len; u64 pn; hp = mdesc_grab(); if (!hp) return 0; pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "cpu"); if (pn == MDESC_NODE_NULL) goto out; prop = mdesc_get_property(hp, pn, "hwcap-list", &len); if (!prop) goto out; while (len) { int i, plen; for (i = 0; i < ARRAY_SIZE(hwcaps); i++) { unsigned long bit = 1UL << i; if (hwcaps[i] && !strcmp(prop, hwcaps[i])) { caps |= bit; break; } } for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) { if (!strcmp(prop, crypto_hwcaps[i])) caps |= HWCAP_SPARC_CRYPTO; } plen = strlen(prop) + 1; prop += plen; len -= plen; } out: mdesc_release(hp); return caps; } /* This yields a mask that user programs can use to figure out what * instruction set this cpu supports. */ static void __init init_sparc64_elf_hwcap(void) { unsigned long cap = sparc64_elf_hwcap; unsigned long mdesc_caps; if (tlb_type == cheetah || tlb_type == cheetah_plus) cap |= HWCAP_SPARC_ULTRA3; else if (tlb_type == hypervisor) { if (sun4v_chip_type == SUN4V_CHIP_NIAGARA1 || sun4v_chip_type == SUN4V_CHIP_NIAGARA2 || sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || sun4v_chip_type == SUN4V_CHIP_SPARC_SN || sun4v_chip_type == SUN4V_CHIP_SPARC64X) cap |= HWCAP_SPARC_BLKINIT; if (sun4v_chip_type == SUN4V_CHIP_NIAGARA2 || sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || sun4v_chip_type == SUN4V_CHIP_SPARC_SN || sun4v_chip_type == SUN4V_CHIP_SPARC64X) cap |= HWCAP_SPARC_N2; } cap |= (AV_SPARC_MUL32 | AV_SPARC_DIV32 | AV_SPARC_V8PLUS); mdesc_caps = mdesc_cpu_hwcap_list(); if (!mdesc_caps) { if (tlb_type == spitfire) cap |= AV_SPARC_VIS; if (tlb_type == cheetah || tlb_type == cheetah_plus) cap |= AV_SPARC_VIS | AV_SPARC_VIS2; if (tlb_type == cheetah_plus) { unsigned long impl, ver; __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); impl = ((ver >> 32) & 0xffff); if (impl == PANTHER_IMPL) cap |= AV_SPARC_POPC; } if (tlb_type == hypervisor) { if (sun4v_chip_type == SUN4V_CHIP_NIAGARA1) cap |= AV_SPARC_ASI_BLK_INIT; if (sun4v_chip_type == SUN4V_CHIP_NIAGARA2 || sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || sun4v_chip_type == SUN4V_CHIP_SPARC_SN || sun4v_chip_type == SUN4V_CHIP_SPARC64X) cap |= (AV_SPARC_VIS | AV_SPARC_VIS2 | AV_SPARC_ASI_BLK_INIT | AV_SPARC_POPC); if (sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || sun4v_chip_type == SUN4V_CHIP_SPARC_SN || sun4v_chip_type == SUN4V_CHIP_SPARC64X) cap |= (AV_SPARC_VIS3 | AV_SPARC_HPC | AV_SPARC_FMAF); } } sparc64_elf_hwcap = cap | mdesc_caps; report_hwcaps(sparc64_elf_hwcap); if (sparc64_elf_hwcap & AV_SPARC_POPC) popc_patch(); if (sparc64_elf_hwcap & AV_SPARC_PAUSE) pause_patch(); } void __init alloc_irqstack_bootmem(void) { unsigned int i, node; for_each_possible_cpu(i) { node = cpu_to_node(i); softirq_stack[i] = memblock_alloc_node(THREAD_SIZE, THREAD_SIZE, node); if (!softirq_stack[i]) panic("%s: Failed to allocate %lu bytes align=%lx nid=%d\n", __func__, THREAD_SIZE, THREAD_SIZE, node); hardirq_stack[i] = memblock_alloc_node(THREAD_SIZE, THREAD_SIZE, node); if (!hardirq_stack[i]) panic("%s: Failed to allocate %lu bytes align=%lx nid=%d\n", __func__, THREAD_SIZE, THREAD_SIZE, node); } } void __init setup_arch(char **cmdline_p) { /* Initialize PROM console and command line. */ *cmdline_p = prom_getbootargs(); strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); parse_early_param(); boot_flags_init(*cmdline_p); #ifdef CONFIG_EARLYFB if (btext_find_display()) #endif register_console(&prom_early_console); if (tlb_type == hypervisor) pr_info("ARCH: SUN4V\n"); else pr_info("ARCH: SUN4U\n"); #ifdef CONFIG_DUMMY_CONSOLE conswitchp = &dummy_con; #endif idprom_init(); if (!root_flags) root_mountflags &= ~MS_RDONLY; ROOT_DEV = old_decode_dev(root_dev); #ifdef CONFIG_BLK_DEV_RAM rd_image_start = ram_flags & RAMDISK_IMAGE_START_MASK; rd_prompt = ((ram_flags & RAMDISK_PROMPT_FLAG) != 0); rd_doload = ((ram_flags & RAMDISK_LOAD_FLAG) != 0); #endif task_thread_info(&init_task)->kregs = &fake_swapper_regs; #ifdef CONFIG_IP_PNP if (!ic_set_manually) { phandle chosen = prom_finddevice("/chosen"); u32 cl, sv, gw; cl = prom_getintdefault (chosen, "client-ip", 0); sv = prom_getintdefault (chosen, "server-ip", 0); gw = prom_getintdefault (chosen, "gateway-ip", 0); if (cl && sv) { ic_myaddr = cl; ic_servaddr = sv; if (gw) ic_gateway = gw; #if defined(CONFIG_IP_PNP_BOOTP) || defined(CONFIG_IP_PNP_RARP) ic_proto_enabled = 0; #endif } } #endif /* Get boot processor trap_block[] setup. */ init_cur_cpu_trap(current_thread_info()); paging_init(); init_sparc64_elf_hwcap(); smp_fill_in_cpu_possible_map(); /* * Once the OF device tree and MDESC have been setup and nr_cpus has * been parsed, we know the list of possible cpus. Therefore we can * allocate the IRQ stacks. */ alloc_irqstack_bootmem(); } extern int stop_a_enabled; void sun_do_break(void) { if (!stop_a_enabled) return; prom_printf("\n"); flush_user_windows(); prom_cmdline(); } EXPORT_SYMBOL(sun_do_break); int stop_a_enabled = 1; EXPORT_SYMBOL(stop_a_enabled);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1