Contributors: 33
Author Tokens Token Proportion Commits Commit Proportion
David S. Miller 5874 44.06% 76 54.29%
Linus Torvalds 4304 32.29% 6 4.29%
Linus Torvalds (pre-git) 1864 13.98% 18 12.86%
Khalid Aziz 397 2.98% 4 2.86%
Liam R. Howlett 241 1.81% 1 0.71%
Kirill V Tkhai 234 1.76% 1 0.71%
Rob Gardner 170 1.28% 1 0.71%
Eric W. Biedermann 83 0.62% 2 1.43%
Bob Picco 26 0.20% 1 0.71%
Sam Ravnborg 25 0.19% 4 2.86%
Steven Rostedt 14 0.11% 1 0.71%
Benjamin Collins 13 0.10% 2 1.43%
Prasanna S. Panchamukhi 12 0.09% 1 0.71%
Jane Chu 10 0.08% 1 0.71%
Roman Zippel 10 0.08% 1 0.71%
Dave Kleikamp 9 0.07% 1 0.71%
Al Viro 9 0.07% 2 1.43%
Pavel Emelyanov 5 0.04% 1 0.71%
Ingo Molnar 4 0.03% 2 1.43%
Tejun Heo 3 0.02% 1 0.71%
Fernando Luis Vázquez Cao 3 0.02% 1 0.71%
Alexey Dobriyan 3 0.02% 1 0.71%
Christoph Hellwig 3 0.02% 1 0.71%
David Howells 3 0.02% 1 0.71%
Dan Carpenter 2 0.02% 1 0.71%
Rusty Russell 2 0.02% 1 0.71%
Arnaldo Carvalho de Melo 2 0.02% 1 0.71%
Vegard Nossum 1 0.01% 1 0.71%
Dmitry V. Levin 1 0.01% 1 0.71%
Thomas Gleixner 1 0.01% 1 0.71%
Paul Gortmaker 1 0.01% 1 0.71%
Uwe Kleine-König 1 0.01% 1 0.71%
Akinobu Mita 1 0.01% 1 0.71%
Total 13331 140


// SPDX-License-Identifier: GPL-2.0-only
/* arch/sparc64/kernel/traps.c
 *
 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
 */

/*
 * I like traps on v9, :))))
 */

#include <linux/extable.h>
#include <linux/sched/mm.h>
#include <linux/sched/debug.h>
#include <linux/linkage.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/kdebug.h>
#include <linux/ftrace.h>
#include <linux/reboot.h>
#include <linux/gfp.h>
#include <linux/context_tracking.h>

#include <asm/smp.h>
#include <asm/delay.h>
#include <asm/ptrace.h>
#include <asm/oplib.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/unistd.h>
#include <linux/uaccess.h>
#include <asm/fpumacro.h>
#include <asm/lsu.h>
#include <asm/dcu.h>
#include <asm/estate.h>
#include <asm/chafsr.h>
#include <asm/sfafsr.h>
#include <asm/psrcompat.h>
#include <asm/processor.h>
#include <asm/timer.h>
#include <asm/head.h>
#include <asm/prom.h>
#include <asm/memctrl.h>
#include <asm/cacheflush.h>
#include <asm/setup.h>

#include "entry.h"
#include "kernel.h"
#include "kstack.h"

/* When an irrecoverable trap occurs at tl > 0, the trap entry
 * code logs the trap state registers at every level in the trap
 * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
 * is as follows:
 */
struct tl1_traplog {
	struct {
		unsigned long tstate;
		unsigned long tpc;
		unsigned long tnpc;
		unsigned long tt;
	} trapstack[4];
	unsigned long tl;
};

static void dump_tl1_traplog(struct tl1_traplog *p)
{
	int i, limit;

	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
	       "dumping track stack.\n", p->tl);

	limit = (tlb_type == hypervisor) ? 2 : 4;
	for (i = 0; i < limit; i++) {
		printk(KERN_EMERG
		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
		       "TNPC[%016lx] TT[%lx]\n",
		       i + 1,
		       p->trapstack[i].tstate, p->trapstack[i].tpc,
		       p->trapstack[i].tnpc, p->trapstack[i].tt);
		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
	}
}

void bad_trap(struct pt_regs *regs, long lvl)
{
	char buffer[36];

	if (notify_die(DIE_TRAP, "bad trap", regs,
		       0, lvl, SIGTRAP) == NOTIFY_STOP)
		return;

	if (lvl < 0x100) {
		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
		die_if_kernel(buffer, regs);
	}

	lvl -= 0x100;
	if (regs->tstate & TSTATE_PRIV) {
		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
		die_if_kernel(buffer, regs);
	}
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGILL, ILL_ILLTRP,
			(void __user *)regs->tpc, lvl, current);
}

void bad_trap_tl1(struct pt_regs *regs, long lvl)
{
	char buffer[36];
	
	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
		       0, lvl, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));

	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
	die_if_kernel (buffer, regs);
}

#ifdef CONFIG_DEBUG_BUGVERBOSE
void do_BUG(const char *file, int line)
{
	bust_spinlocks(1);
	printk("kernel BUG at %s:%d!\n", file, line);
}
EXPORT_SYMBOL(do_BUG);
#endif

static DEFINE_SPINLOCK(dimm_handler_lock);
static dimm_printer_t dimm_handler;

static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
{
	unsigned long flags;
	int ret = -ENODEV;

	spin_lock_irqsave(&dimm_handler_lock, flags);
	if (dimm_handler) {
		ret = dimm_handler(synd_code, paddr, buf, buflen);
	} else if (tlb_type == spitfire) {
		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
			ret = -EINVAL;
		else
			ret = 0;
	} else
		ret = -ENODEV;
	spin_unlock_irqrestore(&dimm_handler_lock, flags);

	return ret;
}

int register_dimm_printer(dimm_printer_t func)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&dimm_handler_lock, flags);
	if (!dimm_handler)
		dimm_handler = func;
	else
		ret = -EEXIST;
	spin_unlock_irqrestore(&dimm_handler_lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(register_dimm_printer);

void unregister_dimm_printer(dimm_printer_t func)
{
	unsigned long flags;

	spin_lock_irqsave(&dimm_handler_lock, flags);
	if (dimm_handler == func)
		dimm_handler = NULL;
	spin_unlock_irqrestore(&dimm_handler_lock, flags);
}
EXPORT_SYMBOL_GPL(unregister_dimm_printer);

void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "instruction access exception", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		goto out;

	if (regs->tstate & TSTATE_PRIV) {
		printk("spitfire_insn_access_exception: SFSR[%016lx] "
		       "SFAR[%016lx], going.\n", sfsr, sfar);
		die_if_kernel("Iax", regs);
	}
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGSEGV, SEGV_MAPERR,
			(void __user *)regs->tpc, 0, current);
out:
	exception_exit(prev_state);
}

void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	spitfire_insn_access_exception(regs, sfsr, sfar);
}

void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	unsigned short type = (type_ctx >> 16);
	unsigned short ctx  = (type_ctx & 0xffff);

	if (notify_die(DIE_TRAP, "instruction access exception", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		printk("sun4v_insn_access_exception: ADDR[%016lx] "
		       "CTX[%04x] TYPE[%04x], going.\n",
		       addr, ctx, type);
		die_if_kernel("Iax", regs);
	}

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0, current);
}

void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	sun4v_insn_access_exception(regs, addr, type_ctx);
}

bool is_no_fault_exception(struct pt_regs *regs)
{
	unsigned char asi;
	u32 insn;

	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
		return false;

	/*
	 * Must do a little instruction decoding here in order to
	 * decide on a course of action. The bits of interest are:
	 *  insn[31:30] = op, where 3 indicates the load/store group
	 *  insn[24:19] = op3, which identifies individual opcodes
	 *  insn[13] indicates an immediate offset
	 *  op3[4]=1 identifies alternate space instructions
	 *  op3[5:4]=3 identifies floating point instructions
	 *  op3[2]=1 identifies stores
	 * See "Opcode Maps" in the appendix of any Sparc V9
	 * architecture spec for full details.
	 */
	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
		if (insn & 0x2000)		    /* immediate offset */
			asi = (regs->tstate >> 24); /* saved %asi       */
		else
			asi = (insn >> 5);	    /* immediate asi    */
		if ((asi & 0xf2) == ASI_PNF) {
			if (insn & 0x1000000) {     /* op3[5:4]=3       */
				handle_ldf_stq(insn, regs);
				return true;
			} else if (insn & 0x200000) { /* op3[2], stores */
				return false;
			}
			handle_ld_nf(insn, regs);
			return true;
		}
	}
	return false;
}

void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "data access exception", regs,
		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
		goto out;

	if (regs->tstate & TSTATE_PRIV) {
		/* Test if this comes from uaccess places. */
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
			       regs->tpc, entry->fixup);
#endif
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			goto out;
		}
		/* Shit... */
		printk("spitfire_data_access_exception: SFSR[%016lx] "
		       "SFAR[%016lx], going.\n", sfsr, sfar);
		die_if_kernel("Dax", regs);
	}

	if (is_no_fault_exception(regs))
		return;

	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0, current);
out:
	exception_exit(prev_state);
}

void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
{
	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	spitfire_data_access_exception(regs, sfsr, sfar);
}

void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	unsigned short type = (type_ctx >> 16);
	unsigned short ctx  = (type_ctx & 0xffff);

	if (notify_die(DIE_TRAP, "data access exception", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		/* Test if this comes from uaccess places. */
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			/* Ouch, somebody is trying VM hole tricks on us... */
#ifdef DEBUG_EXCEPTIONS
			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
			       regs->tpc, entry->fixup);
#endif
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return;
		}
		printk("sun4v_data_access_exception: ADDR[%016lx] "
		       "CTX[%04x] TYPE[%04x], going.\n",
		       addr, ctx, type);
		die_if_kernel("Dax", regs);
	}

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	if (is_no_fault_exception(regs))
		return;

	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
	 * is vectored thorugh data access exception trap with fault type
	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
	 * Accessing an address with invalid ASI for the address, for
	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
	 * when TTE.mcd is not set for the VA, is also vectored into
	 * kerbel by HV as data access exception with fault type set to
	 * HV_FAULT_TYPE_INV_ASI.
	 */
	switch (type) {
	case HV_FAULT_TYPE_INV_ASI:
		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0,
				current);
		break;
	case HV_FAULT_TYPE_MCD_DIS:
		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0,
				current);
		break;
	default:
		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0,
				current);
		break;
	}
}

void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
		return;

	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	sun4v_data_access_exception(regs, addr, type_ctx);
}

#ifdef CONFIG_PCI
#include "pci_impl.h"
#endif

/* When access exceptions happen, we must do this. */
static void spitfire_clean_and_reenable_l1_caches(void)
{
	unsigned long va;

	if (tlb_type != spitfire)
		BUG();

	/* Clean 'em. */
	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
		spitfire_put_icache_tag(va, 0x0);
		spitfire_put_dcache_tag(va, 0x0);
	}

	/* Re-enable in LSU. */
	__asm__ __volatile__("flush %%g6\n\t"
			     "membar #Sync\n\t"
			     "stxa %0, [%%g0] %1\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
				    LSU_CONTROL_IM | LSU_CONTROL_DM),
			     "i" (ASI_LSU_CONTROL)
			     : "memory");
}

static void spitfire_enable_estate_errors(void)
{
	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
			     "membar	#Sync"
			     : /* no outputs */
			     : "r" (ESTATE_ERR_ALL),
			       "i" (ASI_ESTATE_ERROR_EN));
}

static char ecc_syndrome_table[] = {
	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
};

static char *syndrome_unknown = "<Unknown>";

static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
{
	unsigned short scode;
	char memmod_str[64], *p;

	if (udbl & bit) {
		scode = ecc_syndrome_table[udbl & 0xff];
		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
			p = syndrome_unknown;
		else
			p = memmod_str;
		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
		       "Memory Module \"%s\"\n",
		       smp_processor_id(), scode, p);
	}

	if (udbh & bit) {
		scode = ecc_syndrome_table[udbh & 0xff];
		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
			p = syndrome_unknown;
		else
			p = memmod_str;
		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
		       "Memory Module \"%s\"\n",
		       smp_processor_id(), scode, p);
	}

}

static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
{

	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);

	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);

	/* We always log it, even if someone is listening for this
	 * trap.
	 */
	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
		   0, TRAP_TYPE_CEE, SIGTRAP);

	/* The Correctable ECC Error trap does not disable I/D caches.  So
	 * we only have to restore the ESTATE Error Enable register.
	 */
	spitfire_enable_estate_errors();
}

static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
{
	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);

	/* XXX add more human friendly logging of the error status
	 * XXX as is implemented for cheetah
	 */

	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);

	/* We always log it, even if someone is listening for this
	 * trap.
	 */
	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
		   0, tt, SIGTRAP);

	if (regs->tstate & TSTATE_PRIV) {
		if (tl1)
			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
		die_if_kernel("UE", regs);
	}

	/* XXX need more intelligent processing here, such as is implemented
	 * XXX for cheetah errors, in fact if the E-cache still holds the
	 * XXX line with bad parity this will loop
	 */

	spitfire_clean_and_reenable_l1_caches();
	spitfire_enable_estate_errors();

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0, current);
}

void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
{
	unsigned long afsr, tt, udbh, udbl;
	int tl1;

	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;

#ifdef CONFIG_PCI
	if (tt == TRAP_TYPE_DAE &&
	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
		spitfire_clean_and_reenable_l1_caches();
		spitfire_enable_estate_errors();

		pci_poke_faulted = 1;
		regs->tnpc = regs->tpc + 4;
		return;
	}
#endif

	if (afsr & SFAFSR_UE)
		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);

	if (tt == TRAP_TYPE_CEE) {
		/* Handle the case where we took a CEE trap, but ACK'd
		 * only the UE state in the UDB error registers.
		 */
		if (afsr & SFAFSR_UE) {
			if (udbh & UDBE_CE) {
				__asm__ __volatile__(
					"stxa	%0, [%1] %2\n\t"
					"membar	#Sync"
					: /* no outputs */
					: "r" (udbh & UDBE_CE),
					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
			}
			if (udbl & UDBE_CE) {
				__asm__ __volatile__(
					"stxa	%0, [%1] %2\n\t"
					"membar	#Sync"
					: /* no outputs */
					: "r" (udbl & UDBE_CE),
					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
			}
		}

		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
	}
}

int cheetah_pcache_forced_on;

void cheetah_enable_pcache(void)
{
	unsigned long dcr;

	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
	       smp_processor_id());

	__asm__ __volatile__("ldxa [%%g0] %1, %0"
			     : "=r" (dcr)
			     : "i" (ASI_DCU_CONTROL_REG));
	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
}

/* Cheetah error trap handling. */
static unsigned long ecache_flush_physbase;
static unsigned long ecache_flush_linesize;
static unsigned long ecache_flush_size;

/* This table is ordered in priority of errors and matches the
 * AFAR overwrite policy as well.
 */

struct afsr_error_table {
	unsigned long mask;
	const char *name;
};

static const char CHAFSR_PERR_msg[] =
	"System interface protocol error";
static const char CHAFSR_IERR_msg[] =
	"Internal processor error";
static const char CHAFSR_ISAP_msg[] =
	"System request parity error on incoming address";
static const char CHAFSR_UCU_msg[] =
	"Uncorrectable E-cache ECC error for ifetch/data";
static const char CHAFSR_UCC_msg[] =
	"SW Correctable E-cache ECC error for ifetch/data";
static const char CHAFSR_UE_msg[] =
	"Uncorrectable system bus data ECC error for read";
static const char CHAFSR_EDU_msg[] =
	"Uncorrectable E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMU_msg[] =
	"Uncorrectable system bus MTAG error";
static const char CHAFSR_WDU_msg[] =
	"Uncorrectable E-cache ECC error for writeback";
static const char CHAFSR_CPU_msg[] =
	"Uncorrectable ECC error for copyout";
static const char CHAFSR_CE_msg[] =
	"HW corrected system bus data ECC error for read";
static const char CHAFSR_EDC_msg[] =
	"HW corrected E-cache ECC error for stmerge/blkld";
static const char CHAFSR_EMC_msg[] =
	"HW corrected system bus MTAG ECC error";
static const char CHAFSR_WDC_msg[] =
	"HW corrected E-cache ECC error for writeback";
static const char CHAFSR_CPC_msg[] =
	"HW corrected ECC error for copyout";
static const char CHAFSR_TO_msg[] =
	"Unmapped error from system bus";
static const char CHAFSR_BERR_msg[] =
	"Bus error response from system bus";
static const char CHAFSR_IVC_msg[] =
	"HW corrected system bus data ECC error for ivec read";
static const char CHAFSR_IVU_msg[] =
	"Uncorrectable system bus data ECC error for ivec read";
static struct afsr_error_table __cheetah_error_table[] = {
	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
	{	CHAFSR_UE,	CHAFSR_UE_msg		},
	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
	{	CHAFSR_CE,	CHAFSR_CE_msg		},
	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
	{	CHAFSR_TO,	CHAFSR_TO_msg		},
	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
	/* These two do not update the AFAR. */
	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
	{	0,		NULL			},
};
static const char CHPAFSR_DTO_msg[] =
	"System bus unmapped error for prefetch/storequeue-read";
static const char CHPAFSR_DBERR_msg[] =
	"System bus error for prefetch/storequeue-read";
static const char CHPAFSR_THCE_msg[] =
	"Hardware corrected E-cache Tag ECC error";
static const char CHPAFSR_TSCE_msg[] =
	"SW handled correctable E-cache Tag ECC error";
static const char CHPAFSR_TUE_msg[] =
	"Uncorrectable E-cache Tag ECC error";
static const char CHPAFSR_DUE_msg[] =
	"System bus uncorrectable data ECC error due to prefetch/store-fill";
static struct afsr_error_table __cheetah_plus_error_table[] = {
	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
	{	CHAFSR_UE,	CHAFSR_UE_msg		},
	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
	{	CHAFSR_CE,	CHAFSR_CE_msg		},
	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
	{	CHAFSR_TO,	CHAFSR_TO_msg		},
	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
	/* These two do not update the AFAR. */
	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
	{	0,		NULL			},
};
static const char JPAFSR_JETO_msg[] =
	"System interface protocol error, hw timeout caused";
static const char JPAFSR_SCE_msg[] =
	"Parity error on system snoop results";
static const char JPAFSR_JEIC_msg[] =
	"System interface protocol error, illegal command detected";
static const char JPAFSR_JEIT_msg[] =
	"System interface protocol error, illegal ADTYPE detected";
static const char JPAFSR_OM_msg[] =
	"Out of range memory error has occurred";
static const char JPAFSR_ETP_msg[] =
	"Parity error on L2 cache tag SRAM";
static const char JPAFSR_UMS_msg[] =
	"Error due to unsupported store";
static const char JPAFSR_RUE_msg[] =
	"Uncorrectable ECC error from remote cache/memory";
static const char JPAFSR_RCE_msg[] =
	"Correctable ECC error from remote cache/memory";
static const char JPAFSR_BP_msg[] =
	"JBUS parity error on returned read data";
static const char JPAFSR_WBP_msg[] =
	"JBUS parity error on data for writeback or block store";
static const char JPAFSR_FRC_msg[] =
	"Foreign read to DRAM incurring correctable ECC error";
static const char JPAFSR_FRU_msg[] =
	"Foreign read to DRAM incurring uncorrectable ECC error";
static struct afsr_error_table __jalapeno_error_table[] = {
	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
	{	CHAFSR_UE,	CHAFSR_UE_msg		},
	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
	{	JPAFSR_OM,	JPAFSR_OM_msg		},
	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
	{	CHAFSR_CE,	CHAFSR_CE_msg		},
	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
	{	CHAFSR_TO,	CHAFSR_TO_msg		},
	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
	{	JPAFSR_BP,	JPAFSR_BP_msg		},
	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
	/* These two do not update the AFAR. */
	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
	{	0,		NULL			},
};
static struct afsr_error_table *cheetah_error_table;
static unsigned long cheetah_afsr_errors;

struct cheetah_err_info *cheetah_error_log;

static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
{
	struct cheetah_err_info *p;
	int cpu = smp_processor_id();

	if (!cheetah_error_log)
		return NULL;

	p = cheetah_error_log + (cpu * 2);
	if ((afsr & CHAFSR_TL1) != 0UL)
		p++;

	return p;
}

extern unsigned int tl0_icpe[], tl1_icpe[];
extern unsigned int tl0_dcpe[], tl1_dcpe[];
extern unsigned int tl0_fecc[], tl1_fecc[];
extern unsigned int tl0_cee[], tl1_cee[];
extern unsigned int tl0_iae[], tl1_iae[];
extern unsigned int tl0_dae[], tl1_dae[];
extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];

void __init cheetah_ecache_flush_init(void)
{
	unsigned long largest_size, smallest_linesize, order, ver;
	int i, sz;

	/* Scan all cpu device tree nodes, note two values:
	 * 1) largest E-cache size
	 * 2) smallest E-cache line size
	 */
	largest_size = 0UL;
	smallest_linesize = ~0UL;

	for (i = 0; i < NR_CPUS; i++) {
		unsigned long val;

		val = cpu_data(i).ecache_size;
		if (!val)
			continue;

		if (val > largest_size)
			largest_size = val;

		val = cpu_data(i).ecache_line_size;
		if (val < smallest_linesize)
			smallest_linesize = val;

	}

	if (largest_size == 0UL || smallest_linesize == ~0UL) {
		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
			    "parameters.\n");
		prom_halt();
	}

	ecache_flush_size = (2 * largest_size);
	ecache_flush_linesize = smallest_linesize;

	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);

	if (ecache_flush_physbase == ~0UL) {
		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
			    "contiguous physical memory.\n",
			    ecache_flush_size);
		prom_halt();
	}

	/* Now allocate error trap reporting scoreboard. */
	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
	for (order = 0; order < MAX_ORDER; order++) {
		if ((PAGE_SIZE << order) >= sz)
			break;
	}
	cheetah_error_log = (struct cheetah_err_info *)
		__get_free_pages(GFP_KERNEL, order);
	if (!cheetah_error_log) {
		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
			    "error logging scoreboard (%d bytes).\n", sz);
		prom_halt();
	}
	memset(cheetah_error_log, 0, PAGE_SIZE << order);

	/* Mark all AFSRs as invalid so that the trap handler will
	 * log new new information there.
	 */
	for (i = 0; i < 2 * NR_CPUS; i++)
		cheetah_error_log[i].afsr = CHAFSR_INVALID;

	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
	if ((ver >> 32) == __JALAPENO_ID ||
	    (ver >> 32) == __SERRANO_ID) {
		cheetah_error_table = &__jalapeno_error_table[0];
		cheetah_afsr_errors = JPAFSR_ERRORS;
	} else if ((ver >> 32) == 0x003e0015) {
		cheetah_error_table = &__cheetah_plus_error_table[0];
		cheetah_afsr_errors = CHPAFSR_ERRORS;
	} else {
		cheetah_error_table = &__cheetah_error_table[0];
		cheetah_afsr_errors = CHAFSR_ERRORS;
	}

	/* Now patch trap tables. */
	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
	if (tlb_type == cheetah_plus) {
		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
	}
	flushi(PAGE_OFFSET);
}

static void cheetah_flush_ecache(void)
{
	unsigned long flush_base = ecache_flush_physbase;
	unsigned long flush_linesize = ecache_flush_linesize;
	unsigned long flush_size = ecache_flush_size;

	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
			     "   bne,pt	%%xcc, 1b\n\t"
			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
			     : "=&r" (flush_size)
			     : "0" (flush_size), "r" (flush_base),
			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
}

static void cheetah_flush_ecache_line(unsigned long physaddr)
{
	unsigned long alias;

	physaddr &= ~(8UL - 1UL);
	physaddr = (ecache_flush_physbase +
		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
	alias = physaddr + (ecache_flush_size >> 1UL);
	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
			     "ldxa [%1] %2, %%g0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (physaddr), "r" (alias),
			       "i" (ASI_PHYS_USE_EC));
}

/* Unfortunately, the diagnostic access to the I-cache tags we need to
 * use to clear the thing interferes with I-cache coherency transactions.
 *
 * So we must only flush the I-cache when it is disabled.
 */
static void __cheetah_flush_icache(void)
{
	unsigned int icache_size, icache_line_size;
	unsigned long addr;

	icache_size = local_cpu_data().icache_size;
	icache_line_size = local_cpu_data().icache_line_size;

	/* Clear the valid bits in all the tags. */
	for (addr = 0; addr < icache_size; addr += icache_line_size) {
		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "r" (addr | (2 << 3)),
				       "i" (ASI_IC_TAG));
	}
}

static void cheetah_flush_icache(void)
{
	unsigned long dcu_save;

	/* Save current DCU, disable I-cache. */
	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
			     "or %0, %2, %%g1\n\t"
			     "stxa %%g1, [%%g0] %1\n\t"
			     "membar #Sync"
			     : "=r" (dcu_save)
			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
			     : "g1");

	__cheetah_flush_icache();

	/* Restore DCU register */
	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
}

static void cheetah_flush_dcache(void)
{
	unsigned int dcache_size, dcache_line_size;
	unsigned long addr;

	dcache_size = local_cpu_data().dcache_size;
	dcache_line_size = local_cpu_data().dcache_line_size;

	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "r" (addr), "i" (ASI_DCACHE_TAG));
	}
}

/* In order to make the even parity correct we must do two things.
 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
 * Next, we clear out all 32-bytes of data for that line.  Data of
 * all-zero + tag parity value of zero == correct parity.
 */
static void cheetah_plus_zap_dcache_parity(void)
{
	unsigned int dcache_size, dcache_line_size;
	unsigned long addr;

	dcache_size = local_cpu_data().dcache_size;
	dcache_line_size = local_cpu_data().dcache_line_size;

	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
		unsigned long tag = (addr >> 14);
		unsigned long line;

		__asm__ __volatile__("membar	#Sync\n\t"
				     "stxa	%0, [%1] %2\n\t"
				     "membar	#Sync"
				     : /* no outputs */
				     : "r" (tag), "r" (addr),
				       "i" (ASI_DCACHE_UTAG));
		for (line = addr; line < addr + dcache_line_size; line += 8)
			__asm__ __volatile__("membar	#Sync\n\t"
					     "stxa	%%g0, [%0] %1\n\t"
					     "membar	#Sync"
					     : /* no outputs */
					     : "r" (line),
					       "i" (ASI_DCACHE_DATA));
	}
}

/* Conversion tables used to frob Cheetah AFSR syndrome values into
 * something palatable to the memory controller driver get_unumber
 * routine.
 */
#define MT0	137
#define MT1	138
#define MT2	139
#define NONE	254
#define MTC0	140
#define MTC1	141
#define MTC2	142
#define MTC3	143
#define C0	128
#define C1	129
#define C2	130
#define C3	131
#define C4	132
#define C5	133
#define C6	134
#define C7	135
#define C8	136
#define M2	144
#define M3	145
#define M4	146
#define M	147
static unsigned char cheetah_ecc_syntab[] = {
/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
};
static unsigned char cheetah_mtag_syntab[] = {
       NONE, MTC0,
       MTC1, NONE,
       MTC2, NONE,
       NONE, MT0,
       MTC3, NONE,
       NONE, MT1,
       NONE, MT2,
       NONE, NONE
};

/* Return the highest priority error conditon mentioned. */
static inline unsigned long cheetah_get_hipri(unsigned long afsr)
{
	unsigned long tmp = 0;
	int i;

	for (i = 0; cheetah_error_table[i].mask; i++) {
		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
			return tmp;
	}
	return tmp;
}

static const char *cheetah_get_string(unsigned long bit)
{
	int i;

	for (i = 0; cheetah_error_table[i].mask; i++) {
		if ((bit & cheetah_error_table[i].mask) != 0UL)
			return cheetah_error_table[i].name;
	}
	return "???";
}

static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
			       unsigned long afsr, unsigned long afar, int recoverable)
{
	unsigned long hipri;
	char unum[256];

	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       afsr, afar,
	       (afsr & CHAFSR_TL1) ? 1 : 0);
	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
	printk("%s" "ERROR(%d): ",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
	printk("TPC<%pS>\n", (void *) regs->tpc);
	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
	hipri = cheetah_get_hipri(afsr);
	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       hipri, cheetah_get_string(hipri));

	/* Try to get unumber if relevant. */
#define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
			 CHAFSR_CPC | CHAFSR_CPU | \
			 CHAFSR_UE  | CHAFSR_CE  | \
			 CHAFSR_EDC | CHAFSR_EDU  | \
			 CHAFSR_UCC | CHAFSR_UCU  | \
			 CHAFSR_WDU | CHAFSR_WDC)
#define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
	if (afsr & ESYND_ERRORS) {
		int syndrome;
		int ret;

		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
		syndrome = cheetah_ecc_syntab[syndrome];
		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
		if (ret != -1)
			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
			       (recoverable ? KERN_WARNING : KERN_CRIT),
			       smp_processor_id(), unum);
	} else if (afsr & MSYND_ERRORS) {
		int syndrome;
		int ret;

		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
		syndrome = cheetah_mtag_syntab[syndrome];
		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
		if (ret != -1)
			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
			       (recoverable ? KERN_WARNING : KERN_CRIT),
			       smp_processor_id(), unum);
	}

	/* Now dump the cache snapshots. */
	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (int) info->dcache_index,
	       info->dcache_tag,
	       info->dcache_utag,
	       info->dcache_stag);
	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->dcache_data[0],
	       info->dcache_data[1],
	       info->dcache_data[2],
	       info->dcache_data[3]);
	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
	       "u[%016llx] l[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (int) info->icache_index,
	       info->icache_tag,
	       info->icache_utag,
	       info->icache_stag,
	       info->icache_upper,
	       info->icache_lower);
	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->icache_data[0],
	       info->icache_data[1],
	       info->icache_data[2],
	       info->icache_data[3]);
	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->icache_data[4],
	       info->icache_data[5],
	       info->icache_data[6],
	       info->icache_data[7]);
	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       (int) info->ecache_index, info->ecache_tag);
	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
	       info->ecache_data[0],
	       info->ecache_data[1],
	       info->ecache_data[2],
	       info->ecache_data[3]);

	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
	while (afsr != 0UL) {
		unsigned long bit = cheetah_get_hipri(afsr);

		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
		       (recoverable ? KERN_WARNING : KERN_CRIT),
		       bit, cheetah_get_string(bit));

		afsr &= ~bit;
	}

	if (!recoverable)
		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
}

static int cheetah_recheck_errors(struct cheetah_err_info *logp)
{
	unsigned long afsr, afar;
	int ret = 0;

	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
			     : "=r" (afsr)
			     : "i" (ASI_AFSR));
	if ((afsr & cheetah_afsr_errors) != 0) {
		if (logp != NULL) {
			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
					     : "=r" (afar)
					     : "i" (ASI_AFAR));
			logp->afsr = afsr;
			logp->afar = afar;
		}
		ret = 1;
	}
	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
			     "membar #Sync\n\t"
			     : : "r" (afsr), "i" (ASI_AFSR));

	return ret;
}

void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
	struct cheetah_err_info local_snapshot, *p;
	int recoverable;

	/* Flush E-cache */
	cheetah_flush_ecache();

	p = cheetah_get_error_log(afsr);
	if (!p) {
		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
			    afsr, afar);
		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
		prom_halt();
	}

	/* Grab snapshot of logged error. */
	memcpy(&local_snapshot, p, sizeof(local_snapshot));

	/* If the current trap snapshot does not match what the
	 * trap handler passed along into our args, big trouble.
	 * In such a case, mark the local copy as invalid.
	 *
	 * Else, it matches and we mark the afsr in the non-local
	 * copy as invalid so we may log new error traps there.
	 */
	if (p->afsr != afsr || p->afar != afar)
		local_snapshot.afsr = CHAFSR_INVALID;
	else
		p->afsr = CHAFSR_INVALID;

	cheetah_flush_icache();
	cheetah_flush_dcache();

	/* Re-enable I-cache/D-cache */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_DCU_CONTROL_REG),
			       "i" (DCU_DC | DCU_IC)
			     : "g1");

	/* Re-enable error reporting */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_ESTATE_ERROR_EN),
			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
			     : "g1");

	/* Decide if we can continue after handling this trap and
	 * logging the error.
	 */
	recoverable = 1;
	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
		recoverable = 0;

	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
	 * error was logged while we had error reporting traps disabled.
	 */
	if (cheetah_recheck_errors(&local_snapshot)) {
		unsigned long new_afsr = local_snapshot.afsr;

		/* If we got a new asynchronous error, die... */
		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
				CHAFSR_WDU | CHAFSR_CPU |
				CHAFSR_IVU | CHAFSR_UE |
				CHAFSR_BERR | CHAFSR_TO))
			recoverable = 0;
	}

	/* Log errors. */
	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);

	if (!recoverable)
		panic("Irrecoverable Fast-ECC error trap.\n");

	/* Flush E-cache to kick the error trap handlers out. */
	cheetah_flush_ecache();
}

/* Try to fix a correctable error by pushing the line out from
 * the E-cache.  Recheck error reporting registers to see if the
 * problem is intermittent.
 */
static int cheetah_fix_ce(unsigned long physaddr)
{
	unsigned long orig_estate;
	unsigned long alias1, alias2;
	int ret;

	/* Make sure correctable error traps are disabled. */
	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
			     "andn	%0, %1, %%g1\n\t"
			     "stxa	%%g1, [%%g0] %2\n\t"
			     "membar	#Sync"
			     : "=&r" (orig_estate)
			     : "i" (ESTATE_ERROR_CEEN),
			       "i" (ASI_ESTATE_ERROR_EN)
			     : "g1");

	/* We calculate alias addresses that will force the
	 * cache line in question out of the E-cache.  Then
	 * we bring it back in with an atomic instruction so
	 * that we get it in some modified/exclusive state,
	 * then we displace it again to try and get proper ECC
	 * pushed back into the system.
	 */
	physaddr &= ~(8UL - 1UL);
	alias1 = (ecache_flush_physbase +
		  (physaddr & ((ecache_flush_size >> 1) - 1)));
	alias2 = alias1 + (ecache_flush_size >> 1);
	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
			     "ldxa	[%1] %3, %%g0\n\t"
			     "casxa	[%2] %3, %%g0, %%g0\n\t"
			     "ldxa	[%0] %3, %%g0\n\t"
			     "ldxa	[%1] %3, %%g0\n\t"
			     "membar	#Sync"
			     : /* no outputs */
			     : "r" (alias1), "r" (alias2),
			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));

	/* Did that trigger another error? */
	if (cheetah_recheck_errors(NULL)) {
		/* Try one more time. */
		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
				     "membar #Sync"
				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
		if (cheetah_recheck_errors(NULL))
			ret = 2;
		else
			ret = 1;
	} else {
		/* No new error, intermittent problem. */
		ret = 0;
	}

	/* Restore error enables. */
	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
			     "membar	#Sync"
			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));

	return ret;
}

/* Return non-zero if PADDR is a valid physical memory address. */
static int cheetah_check_main_memory(unsigned long paddr)
{
	unsigned long vaddr = PAGE_OFFSET + paddr;

	if (vaddr > (unsigned long) high_memory)
		return 0;

	return kern_addr_valid(vaddr);
}

void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
	struct cheetah_err_info local_snapshot, *p;
	int recoverable, is_memory;

	p = cheetah_get_error_log(afsr);
	if (!p) {
		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
			    afsr, afar);
		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
		prom_halt();
	}

	/* Grab snapshot of logged error. */
	memcpy(&local_snapshot, p, sizeof(local_snapshot));

	/* If the current trap snapshot does not match what the
	 * trap handler passed along into our args, big trouble.
	 * In such a case, mark the local copy as invalid.
	 *
	 * Else, it matches and we mark the afsr in the non-local
	 * copy as invalid so we may log new error traps there.
	 */
	if (p->afsr != afsr || p->afar != afar)
		local_snapshot.afsr = CHAFSR_INVALID;
	else
		p->afsr = CHAFSR_INVALID;

	is_memory = cheetah_check_main_memory(afar);

	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
		/* XXX Might want to log the results of this operation
		 * XXX somewhere... -DaveM
		 */
		cheetah_fix_ce(afar);
	}

	{
		int flush_all, flush_line;

		flush_all = flush_line = 0;
		if ((afsr & CHAFSR_EDC) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
				flush_line = 1;
			else
				flush_all = 1;
		} else if ((afsr & CHAFSR_CPC) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
				flush_line = 1;
			else
				flush_all = 1;
		}

		/* Trap handler only disabled I-cache, flush it. */
		cheetah_flush_icache();

		/* Re-enable I-cache */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_DCU_CONTROL_REG),
				     "i" (DCU_IC)
				     : "g1");

		if (flush_all)
			cheetah_flush_ecache();
		else if (flush_line)
			cheetah_flush_ecache_line(afar);
	}

	/* Re-enable error reporting */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_ESTATE_ERROR_EN),
			       "i" (ESTATE_ERROR_CEEN)
			     : "g1");

	/* Decide if we can continue after handling this trap and
	 * logging the error.
	 */
	recoverable = 1;
	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
		recoverable = 0;

	/* Re-check AFSR/AFAR */
	(void) cheetah_recheck_errors(&local_snapshot);

	/* Log errors. */
	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);

	if (!recoverable)
		panic("Irrecoverable Correctable-ECC error trap.\n");
}

void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
{
	struct cheetah_err_info local_snapshot, *p;
	int recoverable, is_memory;

#ifdef CONFIG_PCI
	/* Check for the special PCI poke sequence. */
	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
		cheetah_flush_icache();
		cheetah_flush_dcache();

		/* Re-enable I-cache/D-cache */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_DCU_CONTROL_REG),
				       "i" (DCU_DC | DCU_IC)
				     : "g1");

		/* Re-enable error reporting */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_ESTATE_ERROR_EN),
				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
				     : "g1");

		(void) cheetah_recheck_errors(NULL);

		pci_poke_faulted = 1;
		regs->tpc += 4;
		regs->tnpc = regs->tpc + 4;
		return;
	}
#endif

	p = cheetah_get_error_log(afsr);
	if (!p) {
		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
			    afsr, afar);
		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
		prom_halt();
	}

	/* Grab snapshot of logged error. */
	memcpy(&local_snapshot, p, sizeof(local_snapshot));

	/* If the current trap snapshot does not match what the
	 * trap handler passed along into our args, big trouble.
	 * In such a case, mark the local copy as invalid.
	 *
	 * Else, it matches and we mark the afsr in the non-local
	 * copy as invalid so we may log new error traps there.
	 */
	if (p->afsr != afsr || p->afar != afar)
		local_snapshot.afsr = CHAFSR_INVALID;
	else
		p->afsr = CHAFSR_INVALID;

	is_memory = cheetah_check_main_memory(afar);

	{
		int flush_all, flush_line;

		flush_all = flush_line = 0;
		if ((afsr & CHAFSR_EDU) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
				flush_line = 1;
			else
				flush_all = 1;
		} else if ((afsr & CHAFSR_BERR) != 0UL) {
			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
				flush_line = 1;
			else
				flush_all = 1;
		}

		cheetah_flush_icache();
		cheetah_flush_dcache();

		/* Re-enable I/D caches */
		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
				     "or %%g1, %1, %%g1\n\t"
				     "stxa %%g1, [%%g0] %0\n\t"
				     "membar #Sync"
				     : /* no outputs */
				     : "i" (ASI_DCU_CONTROL_REG),
				     "i" (DCU_IC | DCU_DC)
				     : "g1");

		if (flush_all)
			cheetah_flush_ecache();
		else if (flush_line)
			cheetah_flush_ecache_line(afar);
	}

	/* Re-enable error reporting */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_ESTATE_ERROR_EN),
			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
			     : "g1");

	/* Decide if we can continue after handling this trap and
	 * logging the error.
	 */
	recoverable = 1;
	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
		recoverable = 0;

	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
	 * error was logged while we had error reporting traps disabled.
	 */
	if (cheetah_recheck_errors(&local_snapshot)) {
		unsigned long new_afsr = local_snapshot.afsr;

		/* If we got a new asynchronous error, die... */
		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
				CHAFSR_WDU | CHAFSR_CPU |
				CHAFSR_IVU | CHAFSR_UE |
				CHAFSR_BERR | CHAFSR_TO))
			recoverable = 0;
	}

	/* Log errors. */
	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);

	/* "Recoverable" here means we try to yank the page from ever
	 * being newly used again.  This depends upon a few things:
	 * 1) Must be main memory, and AFAR must be valid.
	 * 2) If we trapped from user, OK.
	 * 3) Else, if we trapped from kernel we must find exception
	 *    table entry (ie. we have to have been accessing user
	 *    space).
	 *
	 * If AFAR is not in main memory, or we trapped from kernel
	 * and cannot find an exception table entry, it is unacceptable
	 * to try and continue.
	 */
	if (recoverable && is_memory) {
		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
			/* OK, usermode access. */
			recoverable = 1;
		} else {
			const struct exception_table_entry *entry;

			entry = search_exception_tables(regs->tpc);
			if (entry) {
				/* OK, kernel access to userspace. */
				recoverable = 1;

			} else {
				/* BAD, privileged state is corrupted. */
				recoverable = 0;
			}

			if (recoverable) {
				if (pfn_valid(afar >> PAGE_SHIFT))
					get_page(pfn_to_page(afar >> PAGE_SHIFT));
				else
					recoverable = 0;

				/* Only perform fixup if we still have a
				 * recoverable condition.
				 */
				if (recoverable) {
					regs->tpc = entry->fixup;
					regs->tnpc = regs->tpc + 4;
				}
			}
		}
	} else {
		recoverable = 0;
	}

	if (!recoverable)
		panic("Irrecoverable deferred error trap.\n");
}

/* Handle a D/I cache parity error trap.  TYPE is encoded as:
 *
 * Bit0:	0=dcache,1=icache
 * Bit1:	0=recoverable,1=unrecoverable
 *
 * The hardware has disabled both the I-cache and D-cache in
 * the %dcr register.  
 */
void cheetah_plus_parity_error(int type, struct pt_regs *regs)
{
	if (type & 0x1)
		__cheetah_flush_icache();
	else
		cheetah_plus_zap_dcache_parity();
	cheetah_flush_dcache();

	/* Re-enable I-cache/D-cache */
	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
			     "or %%g1, %1, %%g1\n\t"
			     "stxa %%g1, [%%g0] %0\n\t"
			     "membar #Sync"
			     : /* no outputs */
			     : "i" (ASI_DCU_CONTROL_REG),
			       "i" (DCU_DC | DCU_IC)
			     : "g1");

	if (type & 0x2) {
		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
		       smp_processor_id(),
		       (type & 0x1) ? 'I' : 'D',
		       regs->tpc);
		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
		panic("Irrecoverable Cheetah+ parity error.");
	}

	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
	       smp_processor_id(),
	       (type & 0x1) ? 'I' : 'D',
	       regs->tpc);
	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
}

struct sun4v_error_entry {
	/* Unique error handle */
/*0x00*/u64		err_handle;

	/* %stick value at the time of the error */
/*0x08*/u64		err_stick;

/*0x10*/u8		reserved_1[3];

	/* Error type */
/*0x13*/u8		err_type;
#define SUN4V_ERR_TYPE_UNDEFINED	0
#define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
#define SUN4V_ERR_TYPE_PRECISE_NONRES	2
#define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
#define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
#define SUN4V_ERR_TYPE_DUMP_CORE	5
#define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
#define SUN4V_ERR_TYPE_NUM		7

	/* Error attributes */
/*0x14*/u32		err_attrs;
#define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
#define SUN4V_ERR_ATTRS_MEMORY		0x00000002
#define SUN4V_ERR_ATTRS_PIO		0x00000004
#define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
#define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
#define SUN4V_ERR_ATTRS_ASR		0x00000040
#define SUN4V_ERR_ATTRS_ASI		0x00000080
#define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
#define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
#define SUN4V_ERR_ATTRS_MCD		0x00000800
#define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
#define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
#define SUN4V_ERR_ATTRS_MODE_SHFT	24
#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000

#define SUN4V_ERR_SPSTATE_FAULTED	0
#define SUN4V_ERR_SPSTATE_AVAILABLE	1
#define SUN4V_ERR_SPSTATE_NOT_PRESENT	2

#define SUN4V_ERR_MODE_USER		1
#define SUN4V_ERR_MODE_PRIV		2

	/* Real address of the memory region or PIO transaction */
/*0x18*/u64		err_raddr;

	/* Size of the operation triggering the error, in bytes */
/*0x20*/u32		err_size;

	/* ID of the CPU */
/*0x24*/u16		err_cpu;

	/* Grace periof for shutdown, in seconds */
/*0x26*/u16		err_secs;

	/* Value of the %asi register */
/*0x28*/u8		err_asi;

/*0x29*/u8		reserved_2;

	/* Value of the ASR register number */
/*0x2a*/u16		err_asr;
#define SUN4V_ERR_ASR_VALID		0x8000

/*0x2c*/u32		reserved_3;
/*0x30*/u64		reserved_4;
/*0x38*/u64		reserved_5;
};

static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);

static const char *sun4v_err_type_to_str(u8 type)
{
	static const char *types[SUN4V_ERR_TYPE_NUM] = {
		"undefined",
		"uncorrected resumable",
		"precise nonresumable",
		"deferred nonresumable",
		"shutdown request",
		"dump core",
		"SP state change",
	};

	if (type < SUN4V_ERR_TYPE_NUM)
		return types[type];

	return "unknown";
}

static void sun4v_emit_err_attr_strings(u32 attrs)
{
	static const char *attr_names[] = {
		"processor",
		"memory",
		"PIO",
		"int-registers",
		"fpu-registers",
		"shutdown-request",
		"ASR",
		"ASI",
		"priv-reg",
	};
	static const char *sp_states[] = {
		"sp-faulted",
		"sp-available",
		"sp-not-present",
		"sp-state-reserved",
	};
	static const char *modes[] = {
		"mode-reserved0",
		"user",
		"priv",
		"mode-reserved1",
	};
	u32 sp_state, mode;
	int i;

	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
		if (attrs & (1U << i)) {
			const char *s = attr_names[i];

			pr_cont("%s ", s);
		}
	}

	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
	pr_cont("%s ", sp_states[sp_state]);

	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
		SUN4V_ERR_ATTRS_MODE_SHFT);
	pr_cont("%s ", modes[mode]);

	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
		pr_cont("res-queue-full ");
}

/* When the report contains a real-address of "-1" it means that the
 * hardware did not provide the address.  So we compute the effective
 * address of the load or store instruction at regs->tpc and report
 * that.  Usually when this happens it's a PIO and in such a case we
 * are using physical addresses with bypass ASIs anyways, so what we
 * report here is exactly what we want.
 */
static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
{
	unsigned int insn;
	u64 addr;

	if (!(regs->tstate & TSTATE_PRIV))
		return;

	insn = *(unsigned int *) regs->tpc;

	addr = compute_effective_address(regs, insn, 0);

	printk("%s: insn effective address [0x%016llx]\n",
	       pfx, addr);
}

static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
			    int cpu, const char *pfx, atomic_t *ocnt)
{
	u64 *raw_ptr = (u64 *) ent;
	u32 attrs;
	int cnt;

	printk("%s: Reporting on cpu %d\n", pfx, cpu);
	printk("%s: TPC [0x%016lx] <%pS>\n",
	       pfx, regs->tpc, (void *) regs->tpc);

	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);

	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
	       pfx, ent->err_handle, ent->err_stick);

	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));

	attrs = ent->err_attrs;
	printk("%s: attrs [0x%08x] < ", pfx, attrs);
	sun4v_emit_err_attr_strings(attrs);
	pr_cont(">\n");

	/* Various fields in the error report are only valid if
	 * certain attribute bits are set.
	 */
	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
		     SUN4V_ERR_ATTRS_PIO |
		     SUN4V_ERR_ATTRS_ASI)) {
		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);

		if (ent->err_raddr == ~(u64)0)
			sun4v_report_real_raddr(pfx, regs);
	}

	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
		printk("%s: size [0x%x]\n", pfx, ent->err_size);

	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
		     SUN4V_ERR_ATTRS_INT_REGISTERS |
		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
		     SUN4V_ERR_ATTRS_PRIV_REG))
		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);

	if (attrs & SUN4V_ERR_ATTRS_ASI)
		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);

	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
		printk("%s: reg [0x%04x]\n",
		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);

	show_regs(regs);

	if ((cnt = atomic_read(ocnt)) != 0) {
		atomic_set(ocnt, 0);
		wmb();
		printk("%s: Queue overflowed %d times.\n",
		       pfx, cnt);
	}
}

/* Handle memory corruption detected error which is vectored in
 * through resumable error trap.
 */
void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
{
	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
		       SIGSEGV) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		/* MCD exception could happen because the task was
		 * running a system call with MCD enabled and passed a
		 * non-versioned pointer or pointer with bad version
		 * tag to the system call. In such cases, hypervisor
		 * places the address of offending instruction in the
		 * resumable error report. This is a deferred error,
		 * so the read/write that caused the trap was potentially
		 * retired long time back and we may have no choice
		 * but to send SIGSEGV to the process.
		 */
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			/* Looks like a bad syscall parameter */
#ifdef DEBUG_EXCEPTIONS
			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
				 regs->tpc);
			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
				 ent.err_raddr, entry->fixup);
#endif
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return;
		}
	}

	/* Send SIGSEGV to the userspace process with the right signal
	 * code
	 */
	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
			0, current);
}

/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
 * Log the event and clear the first word of the entry.
 */
void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
{
	enum ctx_state prev_state = exception_enter();
	struct sun4v_error_entry *ent, local_copy;
	struct trap_per_cpu *tb;
	unsigned long paddr;
	int cpu;

	cpu = get_cpu();

	tb = &trap_block[cpu];
	paddr = tb->resum_kernel_buf_pa + offset;
	ent = __va(paddr);

	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));

	/* We have a local copy now, so release the entry.  */
	ent->err_handle = 0;
	wmb();

	put_cpu();

	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
		/* We should really take the seconds field of
		 * the error report and use it for the shutdown
		 * invocation, but for now do the same thing we
		 * do for a DS shutdown request.
		 */
		pr_info("Shutdown request, %u seconds...\n",
			local_copy.err_secs);
		orderly_poweroff(true);
		goto out;
	}

	/* If this is a memory corruption detected error vectored in
	 * by HV through resumable error trap, call the handler
	 */
	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
		do_mcd_err(regs, local_copy);
		return;
	}

	sun4v_log_error(regs, &local_copy, cpu,
			KERN_ERR "RESUMABLE ERROR",
			&sun4v_resum_oflow_cnt);
out:
	exception_exit(prev_state);
}

/* If we try to printk() we'll probably make matters worse, by trying
 * to retake locks this cpu already holds or causing more errors. So
 * just bump a counter, and we'll report these counter bumps above.
 */
void sun4v_resum_overflow(struct pt_regs *regs)
{
	atomic_inc(&sun4v_resum_oflow_cnt);
}

/* Given a set of registers, get the virtual addressi that was being accessed
 * by the faulting instructions at tpc.
 */
static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
{
	unsigned int insn;

	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
		return compute_effective_address(regs, insn,
						 (insn >> 25) & 0x1f);
	}
	return 0;
}

/* Attempt to handle non-resumable errors generated from userspace.
 * Returns true if the signal was handled, false otherwise.
 */
bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
				  struct sun4v_error_entry *ent) {

	unsigned int attrs = ent->err_attrs;

	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
		unsigned long addr = ent->err_raddr;

		if (addr == ~(u64)0) {
			/* This seems highly unlikely to ever occur */
			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
		} else {
			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
							      PAGE_SIZE);

			/* Break the unfortunate news. */
			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
				 addr);
			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
				 page_cnt);

			while (page_cnt-- > 0) {
				if (pfn_valid(addr >> PAGE_SHIFT))
					get_page(pfn_to_page(addr >> PAGE_SHIFT));
				addr += PAGE_SIZE;
			}
		}
		force_sig(SIGKILL, current);

		return true;
	}
	if (attrs & SUN4V_ERR_ATTRS_PIO) {
		force_sig_fault(SIGBUS, BUS_ADRERR,
				(void __user *)sun4v_get_vaddr(regs), 0, current);
		return true;
	}

	/* Default to doing nothing */
	return false;
}

/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
 * Log the event, clear the first word of the entry, and die.
 */
void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
{
	struct sun4v_error_entry *ent, local_copy;
	struct trap_per_cpu *tb;
	unsigned long paddr;
	int cpu;

	cpu = get_cpu();

	tb = &trap_block[cpu];
	paddr = tb->nonresum_kernel_buf_pa + offset;
	ent = __va(paddr);

	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));

	/* We have a local copy now, so release the entry.  */
	ent->err_handle = 0;
	wmb();

	put_cpu();

	if (!(regs->tstate & TSTATE_PRIV) &&
	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
		/* DON'T PANIC: This userspace error was handled. */
		return;
	}

#ifdef CONFIG_PCI
	/* Check for the special PCI poke sequence. */
	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
		pci_poke_faulted = 1;
		regs->tpc += 4;
		regs->tnpc = regs->tpc + 4;
		return;
	}
#endif

	sun4v_log_error(regs, &local_copy, cpu,
			KERN_EMERG "NON-RESUMABLE ERROR",
			&sun4v_nonresum_oflow_cnt);

	panic("Non-resumable error.");
}

/* If we try to printk() we'll probably make matters worse, by trying
 * to retake locks this cpu already holds or causing more errors. So
 * just bump a counter, and we'll report these counter bumps above.
 */
void sun4v_nonresum_overflow(struct pt_regs *regs)
{
	/* XXX Actually even this can make not that much sense.  Perhaps
	 * XXX we should just pull the plug and panic directly from here?
	 */
	atomic_inc(&sun4v_nonresum_oflow_cnt);
}

static void sun4v_tlb_error(struct pt_regs *regs)
{
	die_if_kernel("TLB/TSB error", regs);
}

unsigned long sun4v_err_itlb_vaddr;
unsigned long sun4v_err_itlb_ctx;
unsigned long sun4v_err_itlb_pte;
unsigned long sun4v_err_itlb_error;

void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));

	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
	       regs->tpc, tl);
	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
	       (void *) regs->u_regs[UREG_I7]);
	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
	       "pte[%lx] error[%lx]\n",
	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
	       sun4v_err_itlb_pte, sun4v_err_itlb_error);

	sun4v_tlb_error(regs);
}

unsigned long sun4v_err_dtlb_vaddr;
unsigned long sun4v_err_dtlb_ctx;
unsigned long sun4v_err_dtlb_pte;
unsigned long sun4v_err_dtlb_error;

void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
{
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));

	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
	       regs->tpc, tl);
	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
	       (void *) regs->u_regs[UREG_I7]);
	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
	       "pte[%lx] error[%lx]\n",
	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);

	sun4v_tlb_error(regs);
}

void hypervisor_tlbop_error(unsigned long err, unsigned long op)
{
	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
	       err, op);
}

void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
{
	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
	       err, op);
}

static void do_fpe_common(struct pt_regs *regs)
{
	if (regs->tstate & TSTATE_PRIV) {
		regs->tpc = regs->tnpc;
		regs->tnpc += 4;
	} else {
		unsigned long fsr = current_thread_info()->xfsr[0];
		int code;

		if (test_thread_flag(TIF_32BIT)) {
			regs->tpc &= 0xffffffff;
			regs->tnpc &= 0xffffffff;
		}
		code = FPE_FLTUNK;
		if ((fsr & 0x1c000) == (1 << 14)) {
			if (fsr & 0x10)
				code = FPE_FLTINV;
			else if (fsr & 0x08)
				code = FPE_FLTOVF;
			else if (fsr & 0x04)
				code = FPE_FLTUND;
			else if (fsr & 0x02)
				code = FPE_FLTDIV;
			else if (fsr & 0x01)
				code = FPE_FLTRES;
		}
		force_sig_fault(SIGFPE, code,
				(void __user *)regs->tpc, 0, current);
	}
}

void do_fpieee(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
		       0, 0x24, SIGFPE) == NOTIFY_STOP)
		goto out;

	do_fpe_common(regs);
out:
	exception_exit(prev_state);
}

void do_fpother(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();
	struct fpustate *f = FPUSTATE;
	int ret = 0;

	if (notify_die(DIE_TRAP, "fpu exception other", regs,
		       0, 0x25, SIGFPE) == NOTIFY_STOP)
		goto out;

	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
	case (2 << 14): /* unfinished_FPop */
	case (3 << 14): /* unimplemented_FPop */
		ret = do_mathemu(regs, f, false);
		break;
	}
	if (ret)
		goto out;
	do_fpe_common(regs);
out:
	exception_exit(prev_state);
}

void do_tof(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
		       0, 0x26, SIGEMT) == NOTIFY_STOP)
		goto out;

	if (regs->tstate & TSTATE_PRIV)
		die_if_kernel("Penguin overflow trap from kernel mode", regs);
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGEMT, EMT_TAGOVF,
			(void __user *)regs->tpc, 0, current);
out:
	exception_exit(prev_state);
}

void do_div0(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "integer division by zero", regs,
		       0, 0x28, SIGFPE) == NOTIFY_STOP)
		goto out;

	if (regs->tstate & TSTATE_PRIV)
		die_if_kernel("TL0: Kernel divide by zero.", regs);
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGFPE, FPE_INTDIV,
			(void __user *)regs->tpc, 0, current);
out:
	exception_exit(prev_state);
}

static void instruction_dump(unsigned int *pc)
{
	int i;

	if ((((unsigned long) pc) & 3))
		return;

	printk("Instruction DUMP:");
	for (i = -3; i < 6; i++)
		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
	printk("\n");
}

static void user_instruction_dump(unsigned int __user *pc)
{
	int i;
	unsigned int buf[9];
	
	if ((((unsigned long) pc) & 3))
		return;
		
	if (copy_from_user(buf, pc - 3, sizeof(buf)))
		return;

	printk("Instruction DUMP:");
	for (i = 0; i < 9; i++)
		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
	printk("\n");
}

void show_stack(struct task_struct *tsk, unsigned long *_ksp)
{
	unsigned long fp, ksp;
	struct thread_info *tp;
	int count = 0;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif

	ksp = (unsigned long) _ksp;
	if (!tsk)
		tsk = current;
	tp = task_thread_info(tsk);
	if (ksp == 0UL) {
		if (tsk == current)
			asm("mov %%fp, %0" : "=r" (ksp));
		else
			ksp = tp->ksp;
	}
	if (tp == current_thread_info())
		flushw_all();

	fp = ksp + STACK_BIAS;

	printk("Call Trace:\n");
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(tp, fp))
			break;
		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(tp, regs)) {
			if (!(regs->tstate & TSTATE_PRIV))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}

		printk(" [%016lx] %pS\n", pc, (void *) pc);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			struct ftrace_ret_stack *ret_stack;
			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
			if (ret_stack) {
				pc = ret_stack->ret;
				printk(" [%016lx] %pS\n", pc, (void *) pc);
				graph++;
			}
		}
#endif
	} while (++count < 16);
}

static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
{
	unsigned long fp = rw->ins[6];

	if (!fp)
		return NULL;

	return (struct reg_window *) (fp + STACK_BIAS);
}

void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
{
	static int die_counter;
	int count = 0;
	
	/* Amuse the user. */
	printk(
"              \\|/ ____ \\|/\n"
"              \"@'/ .. \\`@\"\n"
"              /_| \\__/ |_\\\n"
"                 \\__U_/\n");

	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
	__asm__ __volatile__("flushw");
	show_regs(regs);
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
	if (regs->tstate & TSTATE_PRIV) {
		struct thread_info *tp = current_thread_info();
		struct reg_window *rw = (struct reg_window *)
			(regs->u_regs[UREG_FP] + STACK_BIAS);

		/* Stop the back trace when we hit userland or we
		 * find some badly aligned kernel stack.
		 */
		while (rw &&
		       count++ < 30 &&
		       kstack_valid(tp, (unsigned long) rw)) {
			printk("Caller[%016lx]: %pS\n", rw->ins[7],
			       (void *) rw->ins[7]);

			rw = kernel_stack_up(rw);
		}
		instruction_dump ((unsigned int *) regs->tpc);
	} else {
		if (test_thread_flag(TIF_32BIT)) {
			regs->tpc &= 0xffffffff;
			regs->tnpc &= 0xffffffff;
		}
		user_instruction_dump ((unsigned int __user *) regs->tpc);
	}
	if (panic_on_oops)
		panic("Fatal exception");
	if (regs->tstate & TSTATE_PRIV)
		do_exit(SIGKILL);
	do_exit(SIGSEGV);
}
EXPORT_SYMBOL(die_if_kernel);

#define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
#define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))

void do_illegal_instruction(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();
	unsigned long pc = regs->tpc;
	unsigned long tstate = regs->tstate;
	u32 insn;

	if (notify_die(DIE_TRAP, "illegal instruction", regs,
		       0, 0x10, SIGILL) == NOTIFY_STOP)
		goto out;

	if (tstate & TSTATE_PRIV)
		die_if_kernel("Kernel illegal instruction", regs);
	if (test_thread_flag(TIF_32BIT))
		pc = (u32)pc;
	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
			if (handle_popc(insn, regs))
				goto out;
		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
			if (handle_ldf_stq(insn, regs))
				goto out;
		} else if (tlb_type == hypervisor) {
			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
				if (!vis_emul(regs, insn))
					goto out;
			} else {
				struct fpustate *f = FPUSTATE;

				/* On UltraSPARC T2 and later, FPU insns which
				 * are not implemented in HW signal an illegal
				 * instruction trap and do not set the FP Trap
				 * Trap in the %fsr to unimplemented_FPop.
				 */
				if (do_mathemu(regs, f, true))
					goto out;
			}
		}
	}
	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0, current);
out:
	exception_exit(prev_state);
}

void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
		goto out;

	if (regs->tstate & TSTATE_PRIV) {
		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
		goto out;
	}
	if (is_no_fault_exception(regs))
		return;

	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0, current);
out:
	exception_exit(prev_state);
}

void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
{
	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
		return;
	}
	if (is_no_fault_exception(regs))
		return;

	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0, current);
}

/* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
 * tag mismatch.
 *
 * ADI version tag mismatch on a load from memory always results in a
 * precise exception. Tag mismatch on a store to memory will result in
 * precise exception if MCDPER or PMCDPER is set to 1.
 */
void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
				      unsigned long context)
{
	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
		return;

	if (regs->tstate & TSTATE_PRIV) {
		/* MCD exception could happen because the task was running
		 * a system call with MCD enabled and passed a non-versioned
		 * pointer or pointer with bad version tag to  the system
		 * call.
		 */
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			/* Looks like a bad syscall parameter */
#ifdef DEBUG_EXCEPTIONS
			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
				 regs->tpc);
			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
				 regs->tpc, entry->fixup);
#endif
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return;
		}
		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
			 __func__, addr, context);
		die_if_kernel("MCD precise", regs);
	}

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current);
}

void do_privop(struct pt_regs *regs)
{
	enum ctx_state prev_state = exception_enter();

	if (notify_die(DIE_TRAP, "privileged operation", regs,
		       0, 0x11, SIGILL) == NOTIFY_STOP)
		goto out;

	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
	force_sig_fault(SIGILL, ILL_PRVOPC,
			(void __user *)regs->tpc, 0, current);
out:
	exception_exit(prev_state);
}

void do_privact(struct pt_regs *regs)
{
	do_privop(regs);
}

/* Trap level 1 stuff or other traps we should never see... */
void do_cee(struct pt_regs *regs)
{
	exception_enter();
	die_if_kernel("TL0: Cache Error Exception", regs);
}

void do_div0_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: DIV0 Exception", regs);
}

void do_fpieee_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: FPU IEEE Exception", regs);
}

void do_fpother_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: FPU Other Exception", regs);
}

void do_ill_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Illegal Instruction Exception", regs);
}

void do_irq_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: IRQ Exception", regs);
}

void do_lddfmna_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: LDDF Exception", regs);
}

void do_stdfmna_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: STDF Exception", regs);
}

void do_paw(struct pt_regs *regs)
{
	exception_enter();
	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
}

void do_paw_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
}

void do_vaw(struct pt_regs *regs)
{
	exception_enter();
	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
}

void do_vaw_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
}

void do_tof_tl1(struct pt_regs *regs)
{
	exception_enter();
	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
	die_if_kernel("TL1: Tag Overflow Exception", regs);
}

void do_getpsr(struct pt_regs *regs)
{
	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
	regs->tpc   = regs->tnpc;
	regs->tnpc += 4;
	if (test_thread_flag(TIF_32BIT)) {
		regs->tpc &= 0xffffffff;
		regs->tnpc &= 0xffffffff;
	}
}

u64 cpu_mondo_counter[NR_CPUS] = {0};
struct trap_per_cpu trap_block[NR_CPUS];
EXPORT_SYMBOL(trap_block);

/* This can get invoked before sched_init() so play it super safe
 * and use hard_smp_processor_id().
 */
void notrace init_cur_cpu_trap(struct thread_info *t)
{
	int cpu = hard_smp_processor_id();
	struct trap_per_cpu *p = &trap_block[cpu];

	p->thread = t;
	p->pgd_paddr = 0;
}

extern void thread_info_offsets_are_bolixed_dave(void);
extern void trap_per_cpu_offsets_are_bolixed_dave(void);
extern void tsb_config_offsets_are_bolixed_dave(void);

/* Only invoked on boot processor. */
void __init trap_init(void)
{
	/* Compile time sanity check. */
	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
		     TI_FLAGS != offsetof(struct thread_info, flags) ||
		     TI_CPU != offsetof(struct thread_info, cpu) ||
		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
		     TI_KSP != offsetof(struct thread_info, ksp) ||
		     TI_FAULT_ADDR != offsetof(struct thread_info,
					       fault_address) ||
		     TI_KREGS != offsetof(struct thread_info, kregs) ||
		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
		     TI_REG_WINDOW != offsetof(struct thread_info,
					       reg_window) ||
		     TI_RWIN_SPTRS != offsetof(struct thread_info,
					       rwbuf_stkptrs) ||
		     TI_GSR != offsetof(struct thread_info, gsr) ||
		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
		     TI_PRE_COUNT != offsetof(struct thread_info,
					      preempt_count) ||
		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
		     TI_CURRENT_DS != offsetof(struct thread_info,
						current_ds) ||
		     TI_KUNA_REGS != offsetof(struct thread_info,
					      kern_una_regs) ||
		     TI_KUNA_INSN != offsetof(struct thread_info,
					      kern_una_insn) ||
		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
		     (TI_FPREGS & (64 - 1)));

	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
						     thread) ||
		     (TRAP_PER_CPU_PGD_PADDR !=
		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
		     (TRAP_PER_CPU_CPU_MONDO_PA !=
		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
		     (TRAP_PER_CPU_DEV_MONDO_PA !=
		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
		     (TRAP_PER_CPU_FAULT_INFO !=
		      offsetof(struct trap_per_cpu, fault_info)) ||
		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
		     (TRAP_PER_CPU_CPU_LIST_PA !=
		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
		     (TRAP_PER_CPU_TSB_HUGE !=
		      offsetof(struct trap_per_cpu, tsb_huge)) ||
		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
		     (TRAP_PER_CPU_RESUM_QMASK !=
		      offsetof(struct trap_per_cpu, resum_qmask)) ||
		     (TRAP_PER_CPU_NONRESUM_QMASK !=
		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
		     (TRAP_PER_CPU_PER_CPU_BASE !=
		      offsetof(struct trap_per_cpu, __per_cpu_base)));

	BUILD_BUG_ON((TSB_CONFIG_TSB !=
		      offsetof(struct tsb_config, tsb)) ||
		     (TSB_CONFIG_RSS_LIMIT !=
		      offsetof(struct tsb_config, tsb_rss_limit)) ||
		     (TSB_CONFIG_NENTRIES !=
		      offsetof(struct tsb_config, tsb_nentries)) ||
		     (TSB_CONFIG_REG_VAL !=
		      offsetof(struct tsb_config, tsb_reg_val)) ||
		     (TSB_CONFIG_MAP_VADDR !=
		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
		     (TSB_CONFIG_MAP_PTE !=
		      offsetof(struct tsb_config, tsb_map_pte)));

	/* Attach to the address space of init_task.  On SMP we
	 * do this in smp.c:smp_callin for other cpus.
	 */
	mmgrab(&init_mm);
	current->active_mm = &init_mm;
}