Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 2440 | 84.60% | 28 | 62.22% |
Nitin Gupta | 244 | 8.46% | 5 | 11.11% |
Khalid Aziz | 111 | 3.85% | 1 | 2.22% |
Mike Kravetz | 67 | 2.32% | 3 | 6.67% |
Peter Zijlstra | 5 | 0.17% | 1 | 2.22% |
Doug Wilson | 4 | 0.14% | 1 | 2.22% |
Tejun Heo | 3 | 0.10% | 1 | 2.22% |
Sam Ravnborg | 3 | 0.10% | 1 | 2.22% |
Christoph Lameter | 3 | 0.10% | 2 | 4.44% |
Ingo Molnar | 3 | 0.10% | 1 | 2.22% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 2.22% |
Total | 2884 | 45 |
// SPDX-License-Identifier: GPL-2.0 /* arch/sparc64/mm/tsb.c * * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net> */ #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/slab.h> #include <linux/mm_types.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/mmu_context.h> #include <asm/setup.h> #include <asm/tsb.h> #include <asm/tlb.h> #include <asm/oplib.h> extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries) { vaddr >>= hash_shift; return vaddr & (nentries - 1); } static inline int tag_compare(unsigned long tag, unsigned long vaddr) { return (tag == (vaddr >> 22)); } static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end) { unsigned long idx; for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) { struct tsb *ent = &swapper_tsb[idx]; unsigned long match = idx << 13; match |= (ent->tag << 22); if (match >= start && match < end) ent->tag = (1UL << TSB_TAG_INVALID_BIT); } } /* TSB flushes need only occur on the processor initiating the address * space modification, not on each cpu the address space has run on. * Only the TLB flush needs that treatment. */ void flush_tsb_kernel_range(unsigned long start, unsigned long end) { unsigned long v; if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES) return flush_tsb_kernel_range_scan(start, end); for (v = start; v < end; v += PAGE_SIZE) { unsigned long hash = tsb_hash(v, PAGE_SHIFT, KERNEL_TSB_NENTRIES); struct tsb *ent = &swapper_tsb[hash]; if (tag_compare(ent->tag, v)) ent->tag = (1UL << TSB_TAG_INVALID_BIT); } } static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v, unsigned long hash_shift, unsigned long nentries) { unsigned long tag, ent, hash; v &= ~0x1UL; hash = tsb_hash(v, hash_shift, nentries); ent = tsb + (hash * sizeof(struct tsb)); tag = (v >> 22UL); tsb_flush(ent, tag); } static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift, unsigned long tsb, unsigned long nentries) { unsigned long i; for (i = 0; i < tb->tlb_nr; i++) __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries); } #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v, unsigned long hash_shift, unsigned long nentries, unsigned int hugepage_shift) { unsigned int hpage_entries; unsigned int i; hpage_entries = 1 << (hugepage_shift - hash_shift); for (i = 0; i < hpage_entries; i++) __flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift, nentries); } static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift, unsigned long tsb, unsigned long nentries, unsigned int hugepage_shift) { unsigned long i; for (i = 0; i < tb->tlb_nr; i++) __flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries, hugepage_shift); } #endif void flush_tsb_user(struct tlb_batch *tb) { struct mm_struct *mm = tb->mm; unsigned long nentries, base, flags; spin_lock_irqsave(&mm->context.lock, flags); if (tb->hugepage_shift < REAL_HPAGE_SHIFT) { base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb; nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries; if (tlb_type == cheetah_plus || tlb_type == hypervisor) base = __pa(base); if (tb->hugepage_shift == PAGE_SHIFT) __flush_tsb_one(tb, PAGE_SHIFT, base, nentries); #if defined(CONFIG_HUGETLB_PAGE) else __flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries, tb->hugepage_shift); #endif } #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) { base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb; nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries; if (tlb_type == cheetah_plus || tlb_type == hypervisor) base = __pa(base); __flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries, tb->hugepage_shift); } #endif spin_unlock_irqrestore(&mm->context.lock, flags); } void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr, unsigned int hugepage_shift) { unsigned long nentries, base, flags; spin_lock_irqsave(&mm->context.lock, flags); if (hugepage_shift < REAL_HPAGE_SHIFT) { base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb; nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries; if (tlb_type == cheetah_plus || tlb_type == hypervisor) base = __pa(base); if (hugepage_shift == PAGE_SHIFT) __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries); #if defined(CONFIG_HUGETLB_PAGE) else __flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries, hugepage_shift); #endif } #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) { base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb; nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries; if (tlb_type == cheetah_plus || tlb_type == hypervisor) base = __pa(base); __flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries, hugepage_shift); } #endif spin_unlock_irqrestore(&mm->context.lock, flags); } #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB #endif static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes) { unsigned long tsb_reg, base, tsb_paddr; unsigned long page_sz, tte; mm->context.tsb_block[tsb_idx].tsb_nentries = tsb_bytes / sizeof(struct tsb); switch (tsb_idx) { case MM_TSB_BASE: base = TSBMAP_8K_BASE; break; #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) case MM_TSB_HUGE: base = TSBMAP_4M_BASE; break; #endif default: BUG(); } tte = pgprot_val(PAGE_KERNEL_LOCKED); tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb); BUG_ON(tsb_paddr & (tsb_bytes - 1UL)); /* Use the smallest page size that can map the whole TSB * in one TLB entry. */ switch (tsb_bytes) { case 8192 << 0: tsb_reg = 0x0UL; #ifdef DCACHE_ALIASING_POSSIBLE base += (tsb_paddr & 8192); #endif page_sz = 8192; break; case 8192 << 1: tsb_reg = 0x1UL; page_sz = 64 * 1024; break; case 8192 << 2: tsb_reg = 0x2UL; page_sz = 64 * 1024; break; case 8192 << 3: tsb_reg = 0x3UL; page_sz = 64 * 1024; break; case 8192 << 4: tsb_reg = 0x4UL; page_sz = 512 * 1024; break; case 8192 << 5: tsb_reg = 0x5UL; page_sz = 512 * 1024; break; case 8192 << 6: tsb_reg = 0x6UL; page_sz = 512 * 1024; break; case 8192 << 7: tsb_reg = 0x7UL; page_sz = 4 * 1024 * 1024; break; default: printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n", current->comm, current->pid, tsb_bytes); do_exit(SIGSEGV); } tte |= pte_sz_bits(page_sz); if (tlb_type == cheetah_plus || tlb_type == hypervisor) { /* Physical mapping, no locked TLB entry for TSB. */ tsb_reg |= tsb_paddr; mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg; mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0; mm->context.tsb_block[tsb_idx].tsb_map_pte = 0; } else { tsb_reg |= base; tsb_reg |= (tsb_paddr & (page_sz - 1UL)); tte |= (tsb_paddr & ~(page_sz - 1UL)); mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg; mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base; mm->context.tsb_block[tsb_idx].tsb_map_pte = tte; } /* Setup the Hypervisor TSB descriptor. */ if (tlb_type == hypervisor) { struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx]; switch (tsb_idx) { case MM_TSB_BASE: hp->pgsz_idx = HV_PGSZ_IDX_BASE; break; #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) case MM_TSB_HUGE: hp->pgsz_idx = HV_PGSZ_IDX_HUGE; break; #endif default: BUG(); } hp->assoc = 1; hp->num_ttes = tsb_bytes / 16; hp->ctx_idx = 0; switch (tsb_idx) { case MM_TSB_BASE: hp->pgsz_mask = HV_PGSZ_MASK_BASE; break; #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) case MM_TSB_HUGE: hp->pgsz_mask = HV_PGSZ_MASK_HUGE; break; #endif default: BUG(); } hp->tsb_base = tsb_paddr; hp->resv = 0; } } struct kmem_cache *pgtable_cache __read_mostly; static struct kmem_cache *tsb_caches[8] __read_mostly; static const char *tsb_cache_names[8] = { "tsb_8KB", "tsb_16KB", "tsb_32KB", "tsb_64KB", "tsb_128KB", "tsb_256KB", "tsb_512KB", "tsb_1MB", }; void __init pgtable_cache_init(void) { unsigned long i; pgtable_cache = kmem_cache_create("pgtable_cache", PAGE_SIZE, PAGE_SIZE, 0, _clear_page); if (!pgtable_cache) { prom_printf("pgtable_cache_init(): Could not create!\n"); prom_halt(); } for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) { unsigned long size = 8192 << i; const char *name = tsb_cache_names[i]; tsb_caches[i] = kmem_cache_create(name, size, size, 0, NULL); if (!tsb_caches[i]) { prom_printf("Could not create %s cache\n", name); prom_halt(); } } } int sysctl_tsb_ratio = -2; static unsigned long tsb_size_to_rss_limit(unsigned long new_size) { unsigned long num_ents = (new_size / sizeof(struct tsb)); if (sysctl_tsb_ratio < 0) return num_ents - (num_ents >> -sysctl_tsb_ratio); else return num_ents + (num_ents >> sysctl_tsb_ratio); } /* When the RSS of an address space exceeds tsb_rss_limit for a TSB, * do_sparc64_fault() invokes this routine to try and grow it. * * When we reach the maximum TSB size supported, we stick ~0UL into * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault() * will not trigger any longer. * * The TSB can be anywhere from 8K to 1MB in size, in increasing powers * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB * must be 512K aligned. It also must be physically contiguous, so we * cannot use vmalloc(). * * The idea here is to grow the TSB when the RSS of the process approaches * the number of entries that the current TSB can hold at once. Currently, * we trigger when the RSS hits 3/4 of the TSB capacity. */ void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss) { unsigned long max_tsb_size = 1 * 1024 * 1024; unsigned long new_size, old_size, flags; struct tsb *old_tsb, *new_tsb; unsigned long new_cache_index, old_cache_index; unsigned long new_rss_limit; gfp_t gfp_flags; if (max_tsb_size > (PAGE_SIZE << MAX_ORDER)) max_tsb_size = (PAGE_SIZE << MAX_ORDER); new_cache_index = 0; for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) { new_rss_limit = tsb_size_to_rss_limit(new_size); if (new_rss_limit > rss) break; new_cache_index++; } if (new_size == max_tsb_size) new_rss_limit = ~0UL; retry_tsb_alloc: gfp_flags = GFP_KERNEL; if (new_size > (PAGE_SIZE * 2)) gfp_flags |= __GFP_NOWARN | __GFP_NORETRY; new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index], gfp_flags, numa_node_id()); if (unlikely(!new_tsb)) { /* Not being able to fork due to a high-order TSB * allocation failure is very bad behavior. Just back * down to a 0-order allocation and force no TSB * growing for this address space. */ if (mm->context.tsb_block[tsb_index].tsb == NULL && new_cache_index > 0) { new_cache_index = 0; new_size = 8192; new_rss_limit = ~0UL; goto retry_tsb_alloc; } /* If we failed on a TSB grow, we are under serious * memory pressure so don't try to grow any more. */ if (mm->context.tsb_block[tsb_index].tsb != NULL) mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL; return; } /* Mark all tags as invalid. */ tsb_init(new_tsb, new_size); /* Ok, we are about to commit the changes. If we are * growing an existing TSB the locking is very tricky, * so WATCH OUT! * * We have to hold mm->context.lock while committing to the * new TSB, this synchronizes us with processors in * flush_tsb_user() and switch_mm() for this address space. * * But even with that lock held, processors run asynchronously * accessing the old TSB via TLB miss handling. This is OK * because those actions are just propagating state from the * Linux page tables into the TSB, page table mappings are not * being changed. If a real fault occurs, the processor will * synchronize with us when it hits flush_tsb_user(), this is * also true for the case where vmscan is modifying the page * tables. The only thing we need to be careful with is to * skip any locked TSB entries during copy_tsb(). * * When we finish committing to the new TSB, we have to drop * the lock and ask all other cpus running this address space * to run tsb_context_switch() to see the new TSB table. */ spin_lock_irqsave(&mm->context.lock, flags); old_tsb = mm->context.tsb_block[tsb_index].tsb; old_cache_index = (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL); old_size = (mm->context.tsb_block[tsb_index].tsb_nentries * sizeof(struct tsb)); /* Handle multiple threads trying to grow the TSB at the same time. * One will get in here first, and bump the size and the RSS limit. * The others will get in here next and hit this check. */ if (unlikely(old_tsb && (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) { spin_unlock_irqrestore(&mm->context.lock, flags); kmem_cache_free(tsb_caches[new_cache_index], new_tsb); return; } mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit; if (old_tsb) { extern void copy_tsb(unsigned long old_tsb_base, unsigned long old_tsb_size, unsigned long new_tsb_base, unsigned long new_tsb_size, unsigned long page_size_shift); unsigned long old_tsb_base = (unsigned long) old_tsb; unsigned long new_tsb_base = (unsigned long) new_tsb; if (tlb_type == cheetah_plus || tlb_type == hypervisor) { old_tsb_base = __pa(old_tsb_base); new_tsb_base = __pa(new_tsb_base); } copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size, tsb_index == MM_TSB_BASE ? PAGE_SHIFT : REAL_HPAGE_SHIFT); } mm->context.tsb_block[tsb_index].tsb = new_tsb; setup_tsb_params(mm, tsb_index, new_size); spin_unlock_irqrestore(&mm->context.lock, flags); /* If old_tsb is NULL, we're being invoked for the first time * from init_new_context(). */ if (old_tsb) { /* Reload it on the local cpu. */ tsb_context_switch(mm); /* Now force other processors to do the same. */ preempt_disable(); smp_tsb_sync(mm); preempt_enable(); /* Now it is safe to free the old tsb. */ kmem_cache_free(tsb_caches[old_cache_index], old_tsb); } } int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { unsigned long mm_rss = get_mm_rss(mm); #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) unsigned long saved_hugetlb_pte_count; unsigned long saved_thp_pte_count; #endif unsigned int i; spin_lock_init(&mm->context.lock); mm->context.sparc64_ctx_val = 0UL; mm->context.tag_store = NULL; spin_lock_init(&mm->context.tag_lock); #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) /* We reset them to zero because the fork() page copying * will re-increment the counters as the parent PTEs are * copied into the child address space. */ saved_hugetlb_pte_count = mm->context.hugetlb_pte_count; saved_thp_pte_count = mm->context.thp_pte_count; mm->context.hugetlb_pte_count = 0; mm->context.thp_pte_count = 0; mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE); #endif /* copy_mm() copies over the parent's mm_struct before calling * us, so we need to zero out the TSB pointer or else tsb_grow() * will be confused and think there is an older TSB to free up. */ for (i = 0; i < MM_NUM_TSBS; i++) mm->context.tsb_block[i].tsb = NULL; /* If this is fork, inherit the parent's TSB size. We would * grow it to that size on the first page fault anyways. */ tsb_grow(mm, MM_TSB_BASE, mm_rss); #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count)) tsb_grow(mm, MM_TSB_HUGE, (saved_hugetlb_pte_count + saved_thp_pte_count) * REAL_HPAGE_PER_HPAGE); #endif if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb)) return -ENOMEM; return 0; } static void tsb_destroy_one(struct tsb_config *tp) { unsigned long cache_index; if (!tp->tsb) return; cache_index = tp->tsb_reg_val & 0x7UL; kmem_cache_free(tsb_caches[cache_index], tp->tsb); tp->tsb = NULL; tp->tsb_reg_val = 0UL; } void destroy_context(struct mm_struct *mm) { unsigned long flags, i; for (i = 0; i < MM_NUM_TSBS; i++) tsb_destroy_one(&mm->context.tsb_block[i]); spin_lock_irqsave(&ctx_alloc_lock, flags); if (CTX_VALID(mm->context)) { unsigned long nr = CTX_NRBITS(mm->context); mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63)); } spin_unlock_irqrestore(&ctx_alloc_lock, flags); /* If ADI tag storage was allocated for this task, free it */ if (mm->context.tag_store) { tag_storage_desc_t *tag_desc; unsigned long max_desc; unsigned char *tags; tag_desc = mm->context.tag_store; max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t); for (i = 0; i < max_desc; i++) { tags = tag_desc->tags; tag_desc->tags = NULL; kfree(tags); tag_desc++; } kfree(mm->context.tag_store); mm->context.tag_store = NULL; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1