Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vitaly Kuznetsov | 813 | 53.88% | 22 | 37.29% |
K. Y. Srinivasan | 422 | 27.97% | 19 | 32.20% |
Lan Tianyu | 88 | 5.83% | 2 | 3.39% |
Michael Kelley | 73 | 4.84% | 3 | 5.08% |
Thomas Gleixner | 34 | 2.25% | 4 | 6.78% |
H. Peter Anvin | 22 | 1.46% | 1 | 1.69% |
Sunil Muthuswamy | 18 | 1.19% | 2 | 3.39% |
Yi Sun | 14 | 0.93% | 1 | 1.69% |
Seiji Aguchi | 9 | 0.60% | 1 | 1.69% |
David Woodhouse | 7 | 0.46% | 1 | 1.69% |
Greg Kroah-Hartman | 6 | 0.40% | 2 | 3.39% |
Denis V. Lunev | 3 | 0.20% | 1 | 1.69% |
Total | 1509 | 59 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_MSHYPER_H #define _ASM_X86_MSHYPER_H #include <linux/types.h> #include <linux/atomic.h> #include <linux/nmi.h> #include <asm/io.h> #include <asm/hyperv-tlfs.h> #include <asm/nospec-branch.h> #define VP_INVAL U32_MAX struct ms_hyperv_info { u32 features; u32 misc_features; u32 hints; u32 nested_features; u32 max_vp_index; u32 max_lp_index; }; extern struct ms_hyperv_info ms_hyperv; typedef int (*hyperv_fill_flush_list_func)( struct hv_guest_mapping_flush_list *flush, void *data); /* * Generate the guest ID. */ static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, __u64 d_info2) { __u64 guest_id = 0; guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); guest_id |= (d_info1 << 48); guest_id |= (kernel_version << 16); guest_id |= d_info2; return guest_id; } /* Free the message slot and signal end-of-message if required */ static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) { /* * On crash we're reading some other CPU's message page and we need * to be careful: this other CPU may already had cleared the header * and the host may already had delivered some other message there. * In case we blindly write msg->header.message_type we're going * to lose it. We can still lose a message of the same type but * we count on the fact that there can only be one * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages * on crash. */ if (cmpxchg(&msg->header.message_type, old_msg_type, HVMSG_NONE) != old_msg_type) return; /* * Make sure the write to MessageType (ie set to * HVMSG_NONE) happens before we read the * MessagePending and EOMing. Otherwise, the EOMing * will not deliver any more messages since there is * no empty slot */ mb(); if (msg->header.message_flags.msg_pending) { /* * This will cause message queue rescan to * possibly deliver another msg from the * hypervisor */ wrmsrl(HV_X64_MSR_EOM, 0); } } #define hv_init_timer(timer, tick) \ wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick) #define hv_init_timer_config(timer, val) \ wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val) #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val) #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val) #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val) #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val) #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val) #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val) #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index) #define hv_get_synint_state(int_num, val) \ rdmsrl(HV_X64_MSR_SINT0 + int_num, val) #define hv_set_synint_state(int_num, val) \ wrmsrl(HV_X64_MSR_SINT0 + int_num, val) #define hv_get_crash_ctl(val) \ rdmsrl(HV_X64_MSR_CRASH_CTL, val) void hyperv_callback_vector(void); void hyperv_reenlightenment_vector(void); #ifdef CONFIG_TRACING #define trace_hyperv_callback_vector hyperv_callback_vector #endif void hyperv_vector_handler(struct pt_regs *regs); void hv_setup_vmbus_irq(void (*handler)(void)); void hv_remove_vmbus_irq(void); void hv_setup_kexec_handler(void (*handler)(void)); void hv_remove_kexec_handler(void); void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); void hv_remove_crash_handler(void); /* * Routines for stimer0 Direct Mode handling. * On x86/x64, there are no percpu actions to take. */ void hv_stimer0_vector_handler(struct pt_regs *regs); void hv_stimer0_callback_vector(void); int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void)); void hv_remove_stimer0_irq(int irq); static inline void hv_enable_stimer0_percpu_irq(int irq) {} static inline void hv_disable_stimer0_percpu_irq(int irq) {} #if IS_ENABLED(CONFIG_HYPERV) extern struct clocksource *hyperv_cs; extern void *hv_hypercall_pg; extern void __percpu **hyperv_pcpu_input_arg; static inline u64 hv_do_hypercall(u64 control, void *input, void *output) { u64 input_address = input ? virt_to_phys(input) : 0; u64 output_address = output ? virt_to_phys(output) : 0; u64 hv_status; #ifdef CONFIG_X86_64 if (!hv_hypercall_pg) return U64_MAX; __asm__ __volatile__("mov %4, %%r8\n" CALL_NOSPEC : "=a" (hv_status), ASM_CALL_CONSTRAINT, "+c" (control), "+d" (input_address) : "r" (output_address), THUNK_TARGET(hv_hypercall_pg) : "cc", "memory", "r8", "r9", "r10", "r11"); #else u32 input_address_hi = upper_32_bits(input_address); u32 input_address_lo = lower_32_bits(input_address); u32 output_address_hi = upper_32_bits(output_address); u32 output_address_lo = lower_32_bits(output_address); if (!hv_hypercall_pg) return U64_MAX; __asm__ __volatile__(CALL_NOSPEC : "=A" (hv_status), "+c" (input_address_lo), ASM_CALL_CONSTRAINT : "A" (control), "b" (input_address_hi), "D"(output_address_hi), "S"(output_address_lo), THUNK_TARGET(hv_hypercall_pg) : "cc", "memory"); #endif /* !x86_64 */ return hv_status; } /* Fast hypercall with 8 bytes of input and no output */ static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1) { u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; #ifdef CONFIG_X86_64 { __asm__ __volatile__(CALL_NOSPEC : "=a" (hv_status), ASM_CALL_CONSTRAINT, "+c" (control), "+d" (input1) : THUNK_TARGET(hv_hypercall_pg) : "cc", "r8", "r9", "r10", "r11"); } #else { u32 input1_hi = upper_32_bits(input1); u32 input1_lo = lower_32_bits(input1); __asm__ __volatile__ (CALL_NOSPEC : "=A"(hv_status), "+c"(input1_lo), ASM_CALL_CONSTRAINT : "A" (control), "b" (input1_hi), THUNK_TARGET(hv_hypercall_pg) : "cc", "edi", "esi"); } #endif return hv_status; } /* Fast hypercall with 16 bytes of input */ static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2) { u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; #ifdef CONFIG_X86_64 { __asm__ __volatile__("mov %4, %%r8\n" CALL_NOSPEC : "=a" (hv_status), ASM_CALL_CONSTRAINT, "+c" (control), "+d" (input1) : "r" (input2), THUNK_TARGET(hv_hypercall_pg) : "cc", "r8", "r9", "r10", "r11"); } #else { u32 input1_hi = upper_32_bits(input1); u32 input1_lo = lower_32_bits(input1); u32 input2_hi = upper_32_bits(input2); u32 input2_lo = lower_32_bits(input2); __asm__ __volatile__ (CALL_NOSPEC : "=A"(hv_status), "+c"(input1_lo), ASM_CALL_CONSTRAINT : "A" (control), "b" (input1_hi), "D"(input2_hi), "S"(input2_lo), THUNK_TARGET(hv_hypercall_pg) : "cc"); } #endif return hv_status; } /* * Rep hypercalls. Callers of this functions are supposed to ensure that * rep_count and varhead_size comply with Hyper-V hypercall definition. */ static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, void *input, void *output) { u64 control = code; u64 status; u16 rep_comp; control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; do { status = hv_do_hypercall(control, input, output); if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) return status; /* Bits 32-43 of status have 'Reps completed' data. */ rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >> HV_HYPERCALL_REP_COMP_OFFSET; control &= ~HV_HYPERCALL_REP_START_MASK; control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; touch_nmi_watchdog(); } while (rep_comp < rep_count); return status; } /* * Hypervisor's notion of virtual processor ID is different from * Linux' notion of CPU ID. This information can only be retrieved * in the context of the calling CPU. Setup a map for easy access * to this information. */ extern u32 *hv_vp_index; extern u32 hv_max_vp_index; extern struct hv_vp_assist_page **hv_vp_assist_page; static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) { if (!hv_vp_assist_page) return NULL; return hv_vp_assist_page[cpu]; } /** * hv_cpu_number_to_vp_number() - Map CPU to VP. * @cpu_number: CPU number in Linux terms * * This function returns the mapping between the Linux processor * number and the hypervisor's virtual processor number, useful * in making hypercalls and such that talk about specific * processors. * * Return: Virtual processor number in Hyper-V terms */ static inline int hv_cpu_number_to_vp_number(int cpu_number) { return hv_vp_index[cpu_number]; } static inline int cpumask_to_vpset(struct hv_vpset *vpset, const struct cpumask *cpus) { int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; /* valid_bank_mask can represent up to 64 banks */ if (hv_max_vp_index / 64 >= 64) return 0; /* * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex * structs are not cleared between calls, we risk flushing unneeded * vCPUs otherwise. */ for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) vpset->bank_contents[vcpu_bank] = 0; /* * Some banks may end up being empty but this is acceptable. */ for_each_cpu(cpu, cpus) { vcpu = hv_cpu_number_to_vp_number(cpu); if (vcpu == VP_INVAL) return -1; vcpu_bank = vcpu / 64; vcpu_offset = vcpu % 64; __set_bit(vcpu_offset, (unsigned long *) &vpset->bank_contents[vcpu_bank]); if (vcpu_bank >= nr_bank) nr_bank = vcpu_bank + 1; } vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); return nr_bank; } void __init hyperv_init(void); void hyperv_setup_mmu_ops(void); void hyperv_report_panic(struct pt_regs *regs, long err); void hyperv_report_panic_msg(phys_addr_t pa, size_t size); bool hv_is_hyperv_initialized(void); void hyperv_cleanup(void); void hyperv_reenlightenment_intr(struct pt_regs *regs); void set_hv_tscchange_cb(void (*cb)(void)); void clear_hv_tscchange_cb(void); void hyperv_stop_tsc_emulation(void); int hyperv_flush_guest_mapping(u64 as); int hyperv_flush_guest_mapping_range(u64 as, hyperv_fill_flush_list_func fill_func, void *data); int hyperv_fill_flush_guest_mapping_list( struct hv_guest_mapping_flush_list *flush, u64 start_gfn, u64 end_gfn); #ifdef CONFIG_X86_64 void hv_apic_init(void); void __init hv_init_spinlocks(void); bool hv_vcpu_is_preempted(int vcpu); #else static inline void hv_apic_init(void) {} #endif #else /* CONFIG_HYPERV */ static inline void hyperv_init(void) {} static inline bool hv_is_hyperv_initialized(void) { return false; } static inline void hyperv_cleanup(void) {} static inline void hyperv_setup_mmu_ops(void) {} static inline void set_hv_tscchange_cb(void (*cb)(void)) {} static inline void clear_hv_tscchange_cb(void) {} static inline void hyperv_stop_tsc_emulation(void) {}; static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) { return NULL; } static inline int hyperv_flush_guest_mapping(u64 as) { return -1; } static inline int hyperv_flush_guest_mapping_range(u64 as, hyperv_fill_flush_list_func fill_func, void *data) { return -1; } #endif /* CONFIG_HYPERV */ #ifdef CONFIG_HYPERV_TSCPAGE struct ms_hyperv_tsc_page *hv_get_tsc_page(void); static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, u64 *cur_tsc) { u64 scale, offset; u32 sequence; /* * The protocol for reading Hyper-V TSC page is specified in Hypervisor * Top-Level Functional Specification ver. 3.0 and above. To get the * reference time we must do the following: * - READ ReferenceTscSequence * A special '0' value indicates the time source is unreliable and we * need to use something else. The currently published specification * versions (up to 4.0b) contain a mistake and wrongly claim '-1' * instead of '0' as the special value, see commit c35b82ef0294. * - ReferenceTime = * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset * - READ ReferenceTscSequence again. In case its value has changed * since our first reading we need to discard ReferenceTime and repeat * the whole sequence as the hypervisor was updating the page in * between. */ do { sequence = READ_ONCE(tsc_pg->tsc_sequence); if (!sequence) return U64_MAX; /* * Make sure we read sequence before we read other values from * TSC page. */ smp_rmb(); scale = READ_ONCE(tsc_pg->tsc_scale); offset = READ_ONCE(tsc_pg->tsc_offset); *cur_tsc = rdtsc_ordered(); /* * Make sure we read sequence after we read all other values * from TSC page. */ smp_rmb(); } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence); return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset; } static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg) { u64 cur_tsc; return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc); } #else static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void) { return NULL; } static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, u64 *cur_tsc) { BUG(); return U64_MAX; } #endif #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1