Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 1497 | 30.54% | 24 | 23.53% |
Venkatesh Pallipadi | 1420 | 28.97% | 10 | 9.80% |
Andreas Herrmann | 363 | 7.41% | 4 | 3.92% |
Jan Beulich | 331 | 6.75% | 6 | 5.88% |
Viresh Kumar | 290 | 5.92% | 1 | 0.98% |
Waiman Long | 231 | 4.71% | 1 | 0.98% |
Bernhard Walle | 138 | 2.82% | 2 | 1.96% |
John Stultz | 109 | 2.22% | 3 | 2.94% |
Sebastian Andrzej Siewior | 82 | 1.67% | 1 | 0.98% |
Balaji Rao | 49 | 1.00% | 1 | 0.98% |
OGAWA Hirofumi | 48 | 0.98% | 1 | 0.98% |
Jiang Liu | 45 | 0.92% | 4 | 3.92% |
Shaohua Li | 38 | 0.78% | 1 | 0.98% |
Langsdorf, Mark | 38 | 0.78% | 1 | 0.98% |
Pavel Emelyanov | 31 | 0.63% | 1 | 0.98% |
David Brownell | 29 | 0.59% | 2 | 1.96% |
Wagner Ferenc | 24 | 0.49% | 1 | 0.98% |
Yinghai Lu | 21 | 0.43% | 2 | 1.96% |
Ingo Molnar | 21 | 0.43% | 3 | 2.94% |
Magnus Damm | 16 | 0.33% | 2 | 1.96% |
Aditya Pakki | 8 | 0.16% | 1 | 0.98% |
Amol Lad | 7 | 0.14% | 1 | 0.98% |
Andrew Lutomirski | 6 | 0.12% | 2 | 1.96% |
Ralf Baechle | 6 | 0.12% | 2 | 1.96% |
Maxim Levitsky | 6 | 0.12% | 1 | 0.98% |
Borislav Petkov | 6 | 0.12% | 2 | 1.96% |
Kees Cook | 5 | 0.10% | 2 | 1.96% |
Alok N Kataria | 4 | 0.08% | 1 | 0.98% |
Suresh B. Siddha | 4 | 0.08% | 1 | 0.98% |
Tejun Heo | 3 | 0.06% | 1 | 0.98% |
Paul Gortmaker | 3 | 0.06% | 1 | 0.98% |
Nicolai Stange | 3 | 0.06% | 1 | 0.98% |
Rusty Russell | 3 | 0.06% | 2 | 1.96% |
Stefano Stabellini | 2 | 0.04% | 1 | 0.98% |
Janne Kulmala | 2 | 0.04% | 1 | 0.98% |
Joe Perches | 2 | 0.04% | 1 | 0.98% |
Stefani Seibold | 1 | 0.02% | 1 | 0.98% |
Denys Vlasenko | 1 | 0.02% | 1 | 0.98% |
Jim Cromie | 1 | 0.02% | 1 | 0.98% |
Rasmus Villemoes | 1 | 0.02% | 1 | 0.98% |
Pavel Machek | 1 | 0.02% | 1 | 0.98% |
Jeremy Fitzhardinge | 1 | 0.02% | 1 | 0.98% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.98% |
Al Viro | 1 | 0.02% | 1 | 0.98% |
Hannes Eder | 1 | 0.02% | 1 | 0.98% |
Andrew Morton | 1 | 0.02% | 1 | 0.98% |
Total | 4901 | 102 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/export.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/i8253.h> #include <linux/slab.h> #include <linux/hpet.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/pm.h> #include <linux/io.h> #include <asm/cpufeature.h> #include <asm/irqdomain.h> #include <asm/fixmap.h> #include <asm/hpet.h> #include <asm/time.h> #define HPET_MASK CLOCKSOURCE_MASK(32) #define HPET_DEV_USED_BIT 2 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT) #define HPET_DEV_VALID 0x8 #define HPET_DEV_FSB_CAP 0x1000 #define HPET_DEV_PERI_CAP 0x2000 #define HPET_MIN_CYCLES 128 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1)) /* * HPET address is set in acpi/boot.c, when an ACPI entry exists */ unsigned long hpet_address; u8 hpet_blockid; /* OS timer block num */ bool hpet_msi_disable; #ifdef CONFIG_PCI_MSI static unsigned int hpet_num_timers; #endif static void __iomem *hpet_virt_address; struct hpet_dev { struct clock_event_device evt; unsigned int num; int cpu; unsigned int irq; unsigned int flags; char name[10]; }; static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev) { return container_of(evtdev, struct hpet_dev, evt); } inline unsigned int hpet_readl(unsigned int a) { return readl(hpet_virt_address + a); } static inline void hpet_writel(unsigned int d, unsigned int a) { writel(d, hpet_virt_address + a); } #ifdef CONFIG_X86_64 #include <asm/pgtable.h> #endif static inline void hpet_set_mapping(void) { hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); } static inline void hpet_clear_mapping(void) { iounmap(hpet_virt_address); hpet_virt_address = NULL; } /* * HPET command line enable / disable */ bool boot_hpet_disable; bool hpet_force_user; static bool hpet_verbose; static int __init hpet_setup(char *str) { while (str) { char *next = strchr(str, ','); if (next) *next++ = 0; if (!strncmp("disable", str, 7)) boot_hpet_disable = true; if (!strncmp("force", str, 5)) hpet_force_user = true; if (!strncmp("verbose", str, 7)) hpet_verbose = true; str = next; } return 1; } __setup("hpet=", hpet_setup); static int __init disable_hpet(char *str) { boot_hpet_disable = true; return 1; } __setup("nohpet", disable_hpet); static inline int is_hpet_capable(void) { return !boot_hpet_disable && hpet_address; } /* * HPET timer interrupt enable / disable */ static bool hpet_legacy_int_enabled; /** * is_hpet_enabled - check whether the hpet timer interrupt is enabled */ int is_hpet_enabled(void) { return is_hpet_capable() && hpet_legacy_int_enabled; } EXPORT_SYMBOL_GPL(is_hpet_enabled); static void _hpet_print_config(const char *function, int line) { u32 i, timers, l, h; printk(KERN_INFO "hpet: %s(%d):\n", function, line); l = hpet_readl(HPET_ID); h = hpet_readl(HPET_PERIOD); timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); l = hpet_readl(HPET_CFG); h = hpet_readl(HPET_STATUS); printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); l = hpet_readl(HPET_COUNTER); h = hpet_readl(HPET_COUNTER+4); printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); for (i = 0; i < timers; i++) { l = hpet_readl(HPET_Tn_CFG(i)); h = hpet_readl(HPET_Tn_CFG(i)+4); printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h); l = hpet_readl(HPET_Tn_CMP(i)); h = hpet_readl(HPET_Tn_CMP(i)+4); printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h); l = hpet_readl(HPET_Tn_ROUTE(i)); h = hpet_readl(HPET_Tn_ROUTE(i)+4); printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h); } } #define hpet_print_config() \ do { \ if (hpet_verbose) \ _hpet_print_config(__func__, __LINE__); \ } while (0) /* * When the hpet driver (/dev/hpet) is enabled, we need to reserve * timer 0 and timer 1 in case of RTC emulation. */ #ifdef CONFIG_HPET static void hpet_reserve_msi_timers(struct hpet_data *hd); static void hpet_reserve_platform_timers(unsigned int id) { struct hpet __iomem *hpet = hpet_virt_address; struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; unsigned int nrtimers, i; struct hpet_data hd; nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; memset(&hd, 0, sizeof(hd)); hd.hd_phys_address = hpet_address; hd.hd_address = hpet; hd.hd_nirqs = nrtimers; hpet_reserve_timer(&hd, 0); #ifdef CONFIG_HPET_EMULATE_RTC hpet_reserve_timer(&hd, 1); #endif /* * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 * is wrong for i8259!) not the output IRQ. Many BIOS writers * don't bother configuring *any* comparator interrupts. */ hd.hd_irq[0] = HPET_LEGACY_8254; hd.hd_irq[1] = HPET_LEGACY_RTC; for (i = 2; i < nrtimers; timer++, i++) { hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; } hpet_reserve_msi_timers(&hd); hpet_alloc(&hd); } #else static void hpet_reserve_platform_timers(unsigned int id) { } #endif /* * Common hpet info */ static unsigned long hpet_freq; static struct clock_event_device hpet_clockevent; static void hpet_stop_counter(void) { u32 cfg = hpet_readl(HPET_CFG); cfg &= ~HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); } static void hpet_reset_counter(void) { hpet_writel(0, HPET_COUNTER); hpet_writel(0, HPET_COUNTER + 4); } static void hpet_start_counter(void) { unsigned int cfg = hpet_readl(HPET_CFG); cfg |= HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); } static void hpet_restart_counter(void) { hpet_stop_counter(); hpet_reset_counter(); hpet_start_counter(); } static void hpet_resume_device(void) { force_hpet_resume(); } static void hpet_resume_counter(struct clocksource *cs) { hpet_resume_device(); hpet_restart_counter(); } static void hpet_enable_legacy_int(void) { unsigned int cfg = hpet_readl(HPET_CFG); cfg |= HPET_CFG_LEGACY; hpet_writel(cfg, HPET_CFG); hpet_legacy_int_enabled = true; } static void hpet_legacy_clockevent_register(void) { /* Start HPET legacy interrupts */ hpet_enable_legacy_int(); /* * Start hpet with the boot cpu mask and make it * global after the IO_APIC has been initialized. */ hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index); clockevents_config_and_register(&hpet_clockevent, hpet_freq, HPET_MIN_PROG_DELTA, 0x7FFFFFFF); global_clock_event = &hpet_clockevent; printk(KERN_DEBUG "hpet clockevent registered\n"); } static int hpet_set_periodic(struct clock_event_device *evt, int timer) { unsigned int cfg, cmp, now; uint64_t delta; hpet_stop_counter(); delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult; delta >>= evt->shift; now = hpet_readl(HPET_COUNTER); cmp = now + (unsigned int)delta; cfg = hpet_readl(HPET_Tn_CFG(timer)); cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | HPET_TN_32BIT; hpet_writel(cfg, HPET_Tn_CFG(timer)); hpet_writel(cmp, HPET_Tn_CMP(timer)); udelay(1); /* * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL * bit is automatically cleared after the first write. * (See AMD-8111 HyperTransport I/O Hub Data Sheet, * Publication # 24674) */ hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer)); hpet_start_counter(); hpet_print_config(); return 0; } static int hpet_set_oneshot(struct clock_event_device *evt, int timer) { unsigned int cfg; cfg = hpet_readl(HPET_Tn_CFG(timer)); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_Tn_CFG(timer)); return 0; } static int hpet_shutdown(struct clock_event_device *evt, int timer) { unsigned int cfg; cfg = hpet_readl(HPET_Tn_CFG(timer)); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_Tn_CFG(timer)); return 0; } static int hpet_resume(struct clock_event_device *evt) { hpet_enable_legacy_int(); hpet_print_config(); return 0; } static int hpet_next_event(unsigned long delta, struct clock_event_device *evt, int timer) { u32 cnt; s32 res; cnt = hpet_readl(HPET_COUNTER); cnt += (u32) delta; hpet_writel(cnt, HPET_Tn_CMP(timer)); /* * HPETs are a complete disaster. The compare register is * based on a equal comparison and neither provides a less * than or equal functionality (which would require to take * the wraparound into account) nor a simple count down event * mode. Further the write to the comparator register is * delayed internally up to two HPET clock cycles in certain * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even * longer delays. We worked around that by reading back the * compare register, but that required another workaround for * ICH9,10 chips where the first readout after write can * return the old stale value. We already had a minimum * programming delta of 5us enforced, but a NMI or SMI hitting * between the counter readout and the comparator write can * move us behind that point easily. Now instead of reading * the compare register back several times, we make the ETIME * decision based on the following: Return ETIME if the * counter value after the write is less than HPET_MIN_CYCLES * away from the event or if the counter is already ahead of * the event. The minimum programming delta for the generic * clockevents code is set to 1.5 * HPET_MIN_CYCLES. */ res = (s32)(cnt - hpet_readl(HPET_COUNTER)); return res < HPET_MIN_CYCLES ? -ETIME : 0; } static int hpet_legacy_shutdown(struct clock_event_device *evt) { return hpet_shutdown(evt, 0); } static int hpet_legacy_set_oneshot(struct clock_event_device *evt) { return hpet_set_oneshot(evt, 0); } static int hpet_legacy_set_periodic(struct clock_event_device *evt) { return hpet_set_periodic(evt, 0); } static int hpet_legacy_resume(struct clock_event_device *evt) { return hpet_resume(evt); } static int hpet_legacy_next_event(unsigned long delta, struct clock_event_device *evt) { return hpet_next_event(delta, evt, 0); } /* * The hpet clock event device */ static struct clock_event_device hpet_clockevent = { .name = "hpet", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_periodic = hpet_legacy_set_periodic, .set_state_oneshot = hpet_legacy_set_oneshot, .set_state_shutdown = hpet_legacy_shutdown, .tick_resume = hpet_legacy_resume, .set_next_event = hpet_legacy_next_event, .irq = 0, .rating = 50, }; /* * HPET MSI Support */ #ifdef CONFIG_PCI_MSI static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); static struct hpet_dev *hpet_devs; static struct irq_domain *hpet_domain; void hpet_msi_unmask(struct irq_data *data) { struct hpet_dev *hdev = irq_data_get_irq_handler_data(data); unsigned int cfg; /* unmask it */ cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); cfg |= HPET_TN_ENABLE | HPET_TN_FSB; hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); } void hpet_msi_mask(struct irq_data *data) { struct hpet_dev *hdev = irq_data_get_irq_handler_data(data); unsigned int cfg; /* mask it */ cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB); hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); } void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg) { hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); } void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg) { msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); msg->address_hi = 0; } static int hpet_msi_shutdown(struct clock_event_device *evt) { struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); return hpet_shutdown(evt, hdev->num); } static int hpet_msi_set_oneshot(struct clock_event_device *evt) { struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); return hpet_set_oneshot(evt, hdev->num); } static int hpet_msi_set_periodic(struct clock_event_device *evt) { struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); return hpet_set_periodic(evt, hdev->num); } static int hpet_msi_resume(struct clock_event_device *evt) { struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); struct irq_data *data = irq_get_irq_data(hdev->irq); struct msi_msg msg; /* Restore the MSI msg and unmask the interrupt */ irq_chip_compose_msi_msg(data, &msg); hpet_msi_write(hdev, &msg); hpet_msi_unmask(data); return 0; } static int hpet_msi_next_event(unsigned long delta, struct clock_event_device *evt) { struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); return hpet_next_event(delta, evt, hdev->num); } static irqreturn_t hpet_interrupt_handler(int irq, void *data) { struct hpet_dev *dev = (struct hpet_dev *)data; struct clock_event_device *hevt = &dev->evt; if (!hevt->event_handler) { printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", dev->num); return IRQ_HANDLED; } hevt->event_handler(hevt); return IRQ_HANDLED; } static int hpet_setup_irq(struct hpet_dev *dev) { if (request_irq(dev->irq, hpet_interrupt_handler, IRQF_TIMER | IRQF_NOBALANCING, dev->name, dev)) return -1; disable_irq(dev->irq); irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); enable_irq(dev->irq); printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", dev->name, dev->irq); return 0; } /* This should be called in specific @cpu */ static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) { struct clock_event_device *evt = &hdev->evt; WARN_ON(cpu != smp_processor_id()); if (!(hdev->flags & HPET_DEV_VALID)) return; hdev->cpu = cpu; per_cpu(cpu_hpet_dev, cpu) = hdev; evt->name = hdev->name; hpet_setup_irq(hdev); evt->irq = hdev->irq; evt->rating = 110; evt->features = CLOCK_EVT_FEAT_ONESHOT; if (hdev->flags & HPET_DEV_PERI_CAP) { evt->features |= CLOCK_EVT_FEAT_PERIODIC; evt->set_state_periodic = hpet_msi_set_periodic; } evt->set_state_shutdown = hpet_msi_shutdown; evt->set_state_oneshot = hpet_msi_set_oneshot; evt->tick_resume = hpet_msi_resume; evt->set_next_event = hpet_msi_next_event; evt->cpumask = cpumask_of(hdev->cpu); clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA, 0x7FFFFFFF); } #ifdef CONFIG_HPET /* Reserve at least one timer for userspace (/dev/hpet) */ #define RESERVE_TIMERS 1 #else #define RESERVE_TIMERS 0 #endif static void hpet_msi_capability_lookup(unsigned int start_timer) { unsigned int id; unsigned int num_timers; unsigned int num_timers_used = 0; int i, irq; if (hpet_msi_disable) return; if (boot_cpu_has(X86_FEATURE_ARAT)) return; id = hpet_readl(HPET_ID); num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); num_timers++; /* Value read out starts from 0 */ hpet_print_config(); hpet_domain = hpet_create_irq_domain(hpet_blockid); if (!hpet_domain) return; hpet_devs = kcalloc(num_timers, sizeof(struct hpet_dev), GFP_KERNEL); if (!hpet_devs) return; hpet_num_timers = num_timers; for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { struct hpet_dev *hdev = &hpet_devs[num_timers_used]; unsigned int cfg = hpet_readl(HPET_Tn_CFG(i)); /* Only consider HPET timer with MSI support */ if (!(cfg & HPET_TN_FSB_CAP)) continue; hdev->flags = 0; if (cfg & HPET_TN_PERIODIC_CAP) hdev->flags |= HPET_DEV_PERI_CAP; sprintf(hdev->name, "hpet%d", i); hdev->num = i; irq = hpet_assign_irq(hpet_domain, hdev, hdev->num); if (irq <= 0) continue; hdev->irq = irq; hdev->flags |= HPET_DEV_FSB_CAP; hdev->flags |= HPET_DEV_VALID; num_timers_used++; if (num_timers_used == num_possible_cpus()) break; } printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", num_timers, num_timers_used); } #ifdef CONFIG_HPET static void hpet_reserve_msi_timers(struct hpet_data *hd) { int i; if (!hpet_devs) return; for (i = 0; i < hpet_num_timers; i++) { struct hpet_dev *hdev = &hpet_devs[i]; if (!(hdev->flags & HPET_DEV_VALID)) continue; hd->hd_irq[hdev->num] = hdev->irq; hpet_reserve_timer(hd, hdev->num); } } #endif static struct hpet_dev *hpet_get_unused_timer(void) { int i; if (!hpet_devs) return NULL; for (i = 0; i < hpet_num_timers; i++) { struct hpet_dev *hdev = &hpet_devs[i]; if (!(hdev->flags & HPET_DEV_VALID)) continue; if (test_and_set_bit(HPET_DEV_USED_BIT, (unsigned long *)&hdev->flags)) continue; return hdev; } return NULL; } struct hpet_work_struct { struct delayed_work work; struct completion complete; }; static void hpet_work(struct work_struct *w) { struct hpet_dev *hdev; int cpu = smp_processor_id(); struct hpet_work_struct *hpet_work; hpet_work = container_of(w, struct hpet_work_struct, work.work); hdev = hpet_get_unused_timer(); if (hdev) init_one_hpet_msi_clockevent(hdev, cpu); complete(&hpet_work->complete); } static int hpet_cpuhp_online(unsigned int cpu) { struct hpet_work_struct work; INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work); init_completion(&work.complete); /* FIXME: add schedule_work_on() */ schedule_delayed_work_on(cpu, &work.work, 0); wait_for_completion(&work.complete); destroy_delayed_work_on_stack(&work.work); return 0; } static int hpet_cpuhp_dead(unsigned int cpu) { struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); if (!hdev) return 0; free_irq(hdev->irq, hdev); hdev->flags &= ~HPET_DEV_USED; per_cpu(cpu_hpet_dev, cpu) = NULL; return 0; } #else static void hpet_msi_capability_lookup(unsigned int start_timer) { return; } #ifdef CONFIG_HPET static void hpet_reserve_msi_timers(struct hpet_data *hd) { return; } #endif #define hpet_cpuhp_online NULL #define hpet_cpuhp_dead NULL #endif /* * Clock source related code */ #if defined(CONFIG_SMP) && defined(CONFIG_64BIT) /* * Reading the HPET counter is a very slow operation. If a large number of * CPUs are trying to access the HPET counter simultaneously, it can cause * massive delay and slow down system performance dramatically. This may * happen when HPET is the default clock source instead of TSC. For a * really large system with hundreds of CPUs, the slowdown may be so * severe that it may actually crash the system because of a NMI watchdog * soft lockup, for example. * * If multiple CPUs are trying to access the HPET counter at the same time, * we don't actually need to read the counter multiple times. Instead, the * other CPUs can use the counter value read by the first CPU in the group. * * This special feature is only enabled on x86-64 systems. It is unlikely * that 32-bit x86 systems will have enough CPUs to require this feature * with its associated locking overhead. And we also need 64-bit atomic * read. * * The lock and the hpet value are stored together and can be read in a * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t * is 32 bits in size. */ union hpet_lock { struct { arch_spinlock_t lock; u32 value; }; u64 lockval; }; static union hpet_lock hpet __cacheline_aligned = { { .lock = __ARCH_SPIN_LOCK_UNLOCKED, }, }; static u64 read_hpet(struct clocksource *cs) { unsigned long flags; union hpet_lock old, new; BUILD_BUG_ON(sizeof(union hpet_lock) != 8); /* * Read HPET directly if in NMI. */ if (in_nmi()) return (u64)hpet_readl(HPET_COUNTER); /* * Read the current state of the lock and HPET value atomically. */ old.lockval = READ_ONCE(hpet.lockval); if (arch_spin_is_locked(&old.lock)) goto contended; local_irq_save(flags); if (arch_spin_trylock(&hpet.lock)) { new.value = hpet_readl(HPET_COUNTER); /* * Use WRITE_ONCE() to prevent store tearing. */ WRITE_ONCE(hpet.value, new.value); arch_spin_unlock(&hpet.lock); local_irq_restore(flags); return (u64)new.value; } local_irq_restore(flags); contended: /* * Contended case * -------------- * Wait until the HPET value change or the lock is free to indicate * its value is up-to-date. * * It is possible that old.value has already contained the latest * HPET value while the lock holder was in the process of releasing * the lock. Checking for lock state change will enable us to return * the value immediately instead of waiting for the next HPET reader * to come along. */ do { cpu_relax(); new.lockval = READ_ONCE(hpet.lockval); } while ((new.value == old.value) && arch_spin_is_locked(&new.lock)); return (u64)new.value; } #else /* * For UP or 32-bit. */ static u64 read_hpet(struct clocksource *cs) { return (u64)hpet_readl(HPET_COUNTER); } #endif static struct clocksource clocksource_hpet = { .name = "hpet", .rating = 250, .read = read_hpet, .mask = HPET_MASK, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = hpet_resume_counter, }; static int hpet_clocksource_register(void) { u64 start, now; u64 t1; /* Start the counter */ hpet_restart_counter(); /* Verify whether hpet counter works */ t1 = hpet_readl(HPET_COUNTER); start = rdtsc(); /* * We don't know the TSC frequency yet, but waiting for * 200000 TSC cycles is safe: * 4 GHz == 50us * 1 GHz == 200us */ do { rep_nop(); now = rdtsc(); } while ((now - start) < 200000UL); if (t1 == hpet_readl(HPET_COUNTER)) { printk(KERN_WARNING "HPET counter not counting. HPET disabled\n"); return -ENODEV; } clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); return 0; } static u32 *hpet_boot_cfg; /** * hpet_enable - Try to setup the HPET timer. Returns 1 on success. */ int __init hpet_enable(void) { u32 hpet_period, cfg, id; u64 freq; unsigned int i, last; if (!is_hpet_capable()) return 0; hpet_set_mapping(); if (!hpet_virt_address) return 0; /* * Read the period and check for a sane value: */ hpet_period = hpet_readl(HPET_PERIOD); /* * AMD SB700 based systems with spread spectrum enabled use a * SMM based HPET emulation to provide proper frequency * setting. The SMM code is initialized with the first HPET * register access and takes some time to complete. During * this time the config register reads 0xffffffff. We check * for max. 1000 loops whether the config register reads a non * 0xffffffff value to make sure that HPET is up and running * before we go further. A counting loop is safe, as the HPET * access takes thousands of CPU cycles. On non SB700 based * machines this check is only done once and has no side * effects. */ for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { if (i == 1000) { printk(KERN_WARNING "HPET config register value = 0xFFFFFFFF. " "Disabling HPET\n"); goto out_nohpet; } } if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) goto out_nohpet; /* * The period is a femto seconds value. Convert it to a * frequency. */ freq = FSEC_PER_SEC; do_div(freq, hpet_period); hpet_freq = freq; /* * Read the HPET ID register to retrieve the IRQ routing * information and the number of channels */ id = hpet_readl(HPET_ID); hpet_print_config(); last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; #ifdef CONFIG_HPET_EMULATE_RTC /* * The legacy routing mode needs at least two channels, tick timer * and the rtc emulation channel. */ if (!last) goto out_nohpet; #endif cfg = hpet_readl(HPET_CFG); hpet_boot_cfg = kmalloc_array(last + 2, sizeof(*hpet_boot_cfg), GFP_KERNEL); if (hpet_boot_cfg) *hpet_boot_cfg = cfg; else pr_warn("HPET initial state will not be saved\n"); cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY); hpet_writel(cfg, HPET_CFG); if (cfg) pr_warn("Unrecognized bits %#x set in global cfg\n", cfg); for (i = 0; i <= last; ++i) { cfg = hpet_readl(HPET_Tn_CFG(i)); if (hpet_boot_cfg) hpet_boot_cfg[i + 1] = cfg; cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB); hpet_writel(cfg, HPET_Tn_CFG(i)); cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE | HPET_TN_FSB | HPET_TN_FSB_CAP); if (cfg) pr_warn("Unrecognized bits %#x set in cfg#%u\n", cfg, i); } hpet_print_config(); if (hpet_clocksource_register()) goto out_nohpet; if (id & HPET_ID_LEGSUP) { hpet_legacy_clockevent_register(); return 1; } return 0; out_nohpet: hpet_clear_mapping(); hpet_address = 0; return 0; } /* * Needs to be late, as the reserve_timer code calls kalloc ! * * Not a problem on i386 as hpet_enable is called from late_time_init, * but on x86_64 it is necessary ! */ static __init int hpet_late_init(void) { int ret; if (boot_hpet_disable) return -ENODEV; if (!hpet_address) { if (!force_hpet_address) return -ENODEV; hpet_address = force_hpet_address; hpet_enable(); } if (!hpet_virt_address) return -ENODEV; if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP) hpet_msi_capability_lookup(2); else hpet_msi_capability_lookup(0); hpet_reserve_platform_timers(hpet_readl(HPET_ID)); hpet_print_config(); if (hpet_msi_disable) return 0; if (boot_cpu_has(X86_FEATURE_ARAT)) return 0; /* This notifier should be called after workqueue is ready */ ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online", hpet_cpuhp_online, NULL); if (ret) return ret; ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL, hpet_cpuhp_dead); if (ret) goto err_cpuhp; return 0; err_cpuhp: cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE); return ret; } fs_initcall(hpet_late_init); void hpet_disable(void) { if (is_hpet_capable() && hpet_virt_address) { unsigned int cfg = hpet_readl(HPET_CFG), id, last; if (hpet_boot_cfg) cfg = *hpet_boot_cfg; else if (hpet_legacy_int_enabled) { cfg &= ~HPET_CFG_LEGACY; hpet_legacy_int_enabled = false; } cfg &= ~HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); if (!hpet_boot_cfg) return; id = hpet_readl(HPET_ID); last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); for (id = 0; id <= last; ++id) hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id)); if (*hpet_boot_cfg & HPET_CFG_ENABLE) hpet_writel(*hpet_boot_cfg, HPET_CFG); } } #ifdef CONFIG_HPET_EMULATE_RTC /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET * is enabled, we support RTC interrupt functionality in software. * RTC has 3 kinds of interrupts: * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock * is updated * 2) Alarm Interrupt - generate an interrupt at a specific time of day * 3) Periodic Interrupt - generate periodic interrupt, with frequencies * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) * (1) and (2) above are implemented using polling at a frequency of * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt * overhead. (DEFAULT_RTC_INT_FREQ) * For (3), we use interrupts at 64Hz or user specified periodic * frequency, whichever is higher. */ #include <linux/mc146818rtc.h> #include <linux/rtc.h> #define DEFAULT_RTC_INT_FREQ 64 #define DEFAULT_RTC_SHIFT 6 #define RTC_NUM_INTS 1 static unsigned long hpet_rtc_flags; static int hpet_prev_update_sec; static struct rtc_time hpet_alarm_time; static unsigned long hpet_pie_count; static u32 hpet_t1_cmp; static u32 hpet_default_delta; static u32 hpet_pie_delta; static unsigned long hpet_pie_limit; static rtc_irq_handler irq_handler; /* * Check that the hpet counter c1 is ahead of the c2 */ static inline int hpet_cnt_ahead(u32 c1, u32 c2) { return (s32)(c2 - c1) < 0; } /* * Registers a IRQ handler. */ int hpet_register_irq_handler(rtc_irq_handler handler) { if (!is_hpet_enabled()) return -ENODEV; if (irq_handler) return -EBUSY; irq_handler = handler; return 0; } EXPORT_SYMBOL_GPL(hpet_register_irq_handler); /* * Deregisters the IRQ handler registered with hpet_register_irq_handler() * and does cleanup. */ void hpet_unregister_irq_handler(rtc_irq_handler handler) { if (!is_hpet_enabled()) return; irq_handler = NULL; hpet_rtc_flags = 0; } EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); /* * Timer 1 for RTC emulation. We use one shot mode, as periodic mode * is not supported by all HPET implementations for timer 1. * * hpet_rtc_timer_init() is called when the rtc is initialized. */ int hpet_rtc_timer_init(void) { unsigned int cfg, cnt, delta; unsigned long flags; if (!is_hpet_enabled()) return 0; if (!hpet_default_delta) { uint64_t clc; clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; hpet_default_delta = clc; } if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) delta = hpet_default_delta; else delta = hpet_pie_delta; local_irq_save(flags); cnt = delta + hpet_readl(HPET_COUNTER); hpet_writel(cnt, HPET_T1_CMP); hpet_t1_cmp = cnt; cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_T1_CFG); local_irq_restore(flags); return 1; } EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); static void hpet_disable_rtc_channel(void) { u32 cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_T1_CFG); } /* * The functions below are called from rtc driver. * Return 0 if HPET is not being used. * Otherwise do the necessary changes and return 1. */ int hpet_mask_rtc_irq_bit(unsigned long bit_mask) { if (!is_hpet_enabled()) return 0; hpet_rtc_flags &= ~bit_mask; if (unlikely(!hpet_rtc_flags)) hpet_disable_rtc_channel(); return 1; } EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); int hpet_set_rtc_irq_bit(unsigned long bit_mask) { unsigned long oldbits = hpet_rtc_flags; if (!is_hpet_enabled()) return 0; hpet_rtc_flags |= bit_mask; if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) hpet_prev_update_sec = -1; if (!oldbits) hpet_rtc_timer_init(); return 1; } EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) { if (!is_hpet_enabled()) return 0; hpet_alarm_time.tm_hour = hrs; hpet_alarm_time.tm_min = min; hpet_alarm_time.tm_sec = sec; return 1; } EXPORT_SYMBOL_GPL(hpet_set_alarm_time); int hpet_set_periodic_freq(unsigned long freq) { uint64_t clc; if (!is_hpet_enabled()) return 0; if (freq <= DEFAULT_RTC_INT_FREQ) hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; else { clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; do_div(clc, freq); clc >>= hpet_clockevent.shift; hpet_pie_delta = clc; hpet_pie_limit = 0; } return 1; } EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); int hpet_rtc_dropped_irq(void) { return is_hpet_enabled(); } EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); static void hpet_rtc_timer_reinit(void) { unsigned int delta; int lost_ints = -1; if (unlikely(!hpet_rtc_flags)) hpet_disable_rtc_channel(); if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) delta = hpet_default_delta; else delta = hpet_pie_delta; /* * Increment the comparator value until we are ahead of the * current count. */ do { hpet_t1_cmp += delta; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); lost_ints++; } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); if (lost_ints) { if (hpet_rtc_flags & RTC_PIE) hpet_pie_count += lost_ints; if (printk_ratelimit()) printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", lost_ints); } } irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) { struct rtc_time curr_time; unsigned long rtc_int_flag = 0; hpet_rtc_timer_reinit(); memset(&curr_time, 0, sizeof(struct rtc_time)); if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) mc146818_get_time(&curr_time); if (hpet_rtc_flags & RTC_UIE && curr_time.tm_sec != hpet_prev_update_sec) { if (hpet_prev_update_sec >= 0) rtc_int_flag = RTC_UF; hpet_prev_update_sec = curr_time.tm_sec; } if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) { rtc_int_flag |= RTC_PF; hpet_pie_count = 0; } if (hpet_rtc_flags & RTC_AIE && (curr_time.tm_sec == hpet_alarm_time.tm_sec) && (curr_time.tm_min == hpet_alarm_time.tm_min) && (curr_time.tm_hour == hpet_alarm_time.tm_hour)) rtc_int_flag |= RTC_AF; if (rtc_int_flag) { rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); if (irq_handler) irq_handler(rtc_int_flag, dev_id); } return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1