Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jon Mason | 3130 | 43.46% | 4 | 4.55% |
Muli Ben-Yehuda | 2617 | 36.34% | 34 | 38.64% |
Laurent Vivier | 544 | 7.55% | 1 | 1.14% |
Chandru | 275 | 3.82% | 1 | 1.14% |
FUJITA Tomonori | 183 | 2.54% | 8 | 9.09% |
Joerg Roedel | 87 | 1.21% | 2 | 2.27% |
Jens Axboe | 54 | 0.75% | 2 | 2.27% |
Alexis Bruemmer | 50 | 0.69% | 1 | 1.14% |
Konrad Rzeszutek Wilk | 36 | 0.50% | 2 | 2.27% |
Joe Perches | 30 | 0.42% | 2 | 2.27% |
Darrick J. Wong | 30 | 0.42% | 3 | 3.41% |
WANG Chao | 24 | 0.33% | 1 | 1.14% |
Ingo Molnar | 21 | 0.29% | 2 | 2.27% |
Shuah Khan | 16 | 0.22% | 1 | 1.14% |
Christoph Hellwig | 16 | 0.22% | 4 | 4.55% |
David Howells | 13 | 0.18% | 1 | 1.14% |
Krzysztof Kozlowski | 13 | 0.18% | 1 | 1.14% |
Kees Cook | 12 | 0.17% | 1 | 1.14% |
Murillo Fernandes Bernardes | 8 | 0.11% | 1 | 1.14% |
Akinobu Mita | 6 | 0.08% | 2 | 2.27% |
Andi Kleen | 6 | 0.08% | 1 | 1.14% |
Andrzej Pietrasiewicz | 6 | 0.08% | 1 | 1.14% |
Yinghai Lu | 4 | 0.06% | 1 | 1.14% |
Geliang Tang | 3 | 0.04% | 1 | 1.14% |
Randy Dunlap | 3 | 0.04% | 1 | 1.14% |
Arjan van de Ven | 3 | 0.04% | 1 | 1.14% |
Lucas De Marchi | 2 | 0.03% | 1 | 1.14% |
Julia Lawall | 2 | 0.03% | 1 | 1.14% |
Sam Ravnborg | 2 | 0.03% | 1 | 1.14% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.14% |
Bart Van Assche | 1 | 0.01% | 1 | 1.14% |
Marcin Ślusarz | 1 | 0.01% | 1 | 1.14% |
Daniel Mack | 1 | 0.01% | 1 | 1.14% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 1.14% |
Total | 7202 | 88 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Derived from arch/powerpc/kernel/iommu.c * * Copyright IBM Corporation, 2006-2007 * Copyright (C) 2006 Jon Mason <jdmason@kudzu.us> * * Author: Jon Mason <jdmason@kudzu.us> * Author: Muli Ben-Yehuda <muli@il.ibm.com> */ #define pr_fmt(fmt) "Calgary: " fmt #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/crash_dump.h> #include <linux/dma-mapping.h> #include <linux/dma-direct.h> #include <linux/bitmap.h> #include <linux/pci_ids.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/scatterlist.h> #include <linux/iommu-helper.h> #include <asm/iommu.h> #include <asm/calgary.h> #include <asm/tce.h> #include <asm/pci-direct.h> #include <asm/dma.h> #include <asm/rio.h> #include <asm/bios_ebda.h> #include <asm/x86_init.h> #include <asm/iommu_table.h> #ifdef CONFIG_CALGARY_IOMMU_ENABLED_BY_DEFAULT int use_calgary __read_mostly = 1; #else int use_calgary __read_mostly = 0; #endif /* CONFIG_CALGARY_DEFAULT_ENABLED */ #define PCI_DEVICE_ID_IBM_CALGARY 0x02a1 #define PCI_DEVICE_ID_IBM_CALIOC2 0x0308 /* register offsets inside the host bridge space */ #define CALGARY_CONFIG_REG 0x0108 #define PHB_CSR_OFFSET 0x0110 /* Channel Status */ #define PHB_PLSSR_OFFSET 0x0120 #define PHB_CONFIG_RW_OFFSET 0x0160 #define PHB_IOBASE_BAR_LOW 0x0170 #define PHB_IOBASE_BAR_HIGH 0x0180 #define PHB_MEM_1_LOW 0x0190 #define PHB_MEM_1_HIGH 0x01A0 #define PHB_IO_ADDR_SIZE 0x01B0 #define PHB_MEM_1_SIZE 0x01C0 #define PHB_MEM_ST_OFFSET 0x01D0 #define PHB_AER_OFFSET 0x0200 #define PHB_CONFIG_0_HIGH 0x0220 #define PHB_CONFIG_0_LOW 0x0230 #define PHB_CONFIG_0_END 0x0240 #define PHB_MEM_2_LOW 0x02B0 #define PHB_MEM_2_HIGH 0x02C0 #define PHB_MEM_2_SIZE_HIGH 0x02D0 #define PHB_MEM_2_SIZE_LOW 0x02E0 #define PHB_DOSHOLE_OFFSET 0x08E0 /* CalIOC2 specific */ #define PHB_SAVIOR_L2 0x0DB0 #define PHB_PAGE_MIG_CTRL 0x0DA8 #define PHB_PAGE_MIG_DEBUG 0x0DA0 #define PHB_ROOT_COMPLEX_STATUS 0x0CB0 /* PHB_CONFIG_RW */ #define PHB_TCE_ENABLE 0x20000000 #define PHB_SLOT_DISABLE 0x1C000000 #define PHB_DAC_DISABLE 0x01000000 #define PHB_MEM2_ENABLE 0x00400000 #define PHB_MCSR_ENABLE 0x00100000 /* TAR (Table Address Register) */ #define TAR_SW_BITS 0x0000ffffffff800fUL #define TAR_VALID 0x0000000000000008UL /* CSR (Channel/DMA Status Register) */ #define CSR_AGENT_MASK 0xffe0ffff /* CCR (Calgary Configuration Register) */ #define CCR_2SEC_TIMEOUT 0x000000000000000EUL /* PMCR/PMDR (Page Migration Control/Debug Registers */ #define PMR_SOFTSTOP 0x80000000 #define PMR_SOFTSTOPFAULT 0x40000000 #define PMR_HARDSTOP 0x20000000 /* * The maximum PHB bus number. * x3950M2 (rare): 8 chassis, 48 PHBs per chassis = 384 * x3950M2: 4 chassis, 48 PHBs per chassis = 192 * x3950 (PCIE): 8 chassis, 32 PHBs per chassis = 256 * x3950 (PCIX): 8 chassis, 16 PHBs per chassis = 128 */ #define MAX_PHB_BUS_NUM 256 #define PHBS_PER_CALGARY 4 /* register offsets in Calgary's internal register space */ static const unsigned long tar_offsets[] = { 0x0580 /* TAR0 */, 0x0588 /* TAR1 */, 0x0590 /* TAR2 */, 0x0598 /* TAR3 */ }; static const unsigned long split_queue_offsets[] = { 0x4870 /* SPLIT QUEUE 0 */, 0x5870 /* SPLIT QUEUE 1 */, 0x6870 /* SPLIT QUEUE 2 */, 0x7870 /* SPLIT QUEUE 3 */ }; static const unsigned long phb_offsets[] = { 0x8000 /* PHB0 */, 0x9000 /* PHB1 */, 0xA000 /* PHB2 */, 0xB000 /* PHB3 */ }; /* PHB debug registers */ static const unsigned long phb_debug_offsets[] = { 0x4000 /* PHB 0 DEBUG */, 0x5000 /* PHB 1 DEBUG */, 0x6000 /* PHB 2 DEBUG */, 0x7000 /* PHB 3 DEBUG */ }; /* * STUFF register for each debug PHB, * byte 1 = start bus number, byte 2 = end bus number */ #define PHB_DEBUG_STUFF_OFFSET 0x0020 unsigned int specified_table_size = TCE_TABLE_SIZE_UNSPECIFIED; static int translate_empty_slots __read_mostly = 0; static int calgary_detected __read_mostly = 0; static struct rio_table_hdr *rio_table_hdr __initdata; static struct scal_detail *scal_devs[MAX_NUMNODES] __initdata; static struct rio_detail *rio_devs[MAX_NUMNODES * 4] __initdata; struct calgary_bus_info { void *tce_space; unsigned char translation_disabled; signed char phbid; void __iomem *bbar; }; static void calgary_handle_quirks(struct iommu_table *tbl, struct pci_dev *dev); static void calgary_tce_cache_blast(struct iommu_table *tbl); static void calgary_dump_error_regs(struct iommu_table *tbl); static void calioc2_handle_quirks(struct iommu_table *tbl, struct pci_dev *dev); static void calioc2_tce_cache_blast(struct iommu_table *tbl); static void calioc2_dump_error_regs(struct iommu_table *tbl); static void calgary_init_bitmap_from_tce_table(struct iommu_table *tbl); static void get_tce_space_from_tar(void); static const struct cal_chipset_ops calgary_chip_ops = { .handle_quirks = calgary_handle_quirks, .tce_cache_blast = calgary_tce_cache_blast, .dump_error_regs = calgary_dump_error_regs }; static const struct cal_chipset_ops calioc2_chip_ops = { .handle_quirks = calioc2_handle_quirks, .tce_cache_blast = calioc2_tce_cache_blast, .dump_error_regs = calioc2_dump_error_regs }; static struct calgary_bus_info bus_info[MAX_PHB_BUS_NUM] = { { NULL, 0, 0 }, }; static inline int translation_enabled(struct iommu_table *tbl) { /* only PHBs with translation enabled have an IOMMU table */ return (tbl != NULL); } static void iommu_range_reserve(struct iommu_table *tbl, unsigned long start_addr, unsigned int npages) { unsigned long index; unsigned long end; unsigned long flags; index = start_addr >> PAGE_SHIFT; /* bail out if we're asked to reserve a region we don't cover */ if (index >= tbl->it_size) return; end = index + npages; if (end > tbl->it_size) /* don't go off the table */ end = tbl->it_size; spin_lock_irqsave(&tbl->it_lock, flags); bitmap_set(tbl->it_map, index, npages); spin_unlock_irqrestore(&tbl->it_lock, flags); } static unsigned long iommu_range_alloc(struct device *dev, struct iommu_table *tbl, unsigned int npages) { unsigned long flags; unsigned long offset; unsigned long boundary_size; boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, PAGE_SIZE) >> PAGE_SHIFT; BUG_ON(npages == 0); spin_lock_irqsave(&tbl->it_lock, flags); offset = iommu_area_alloc(tbl->it_map, tbl->it_size, tbl->it_hint, npages, 0, boundary_size, 0); if (offset == ~0UL) { tbl->chip_ops->tce_cache_blast(tbl); offset = iommu_area_alloc(tbl->it_map, tbl->it_size, 0, npages, 0, boundary_size, 0); if (offset == ~0UL) { pr_warn("IOMMU full\n"); spin_unlock_irqrestore(&tbl->it_lock, flags); if (panic_on_overflow) panic("Calgary: fix the allocator.\n"); else return DMA_MAPPING_ERROR; } } tbl->it_hint = offset + npages; BUG_ON(tbl->it_hint > tbl->it_size); spin_unlock_irqrestore(&tbl->it_lock, flags); return offset; } static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl, void *vaddr, unsigned int npages, int direction) { unsigned long entry; dma_addr_t ret; entry = iommu_range_alloc(dev, tbl, npages); if (unlikely(entry == DMA_MAPPING_ERROR)) { pr_warn("failed to allocate %u pages in iommu %p\n", npages, tbl); return DMA_MAPPING_ERROR; } /* set the return dma address */ ret = (entry << PAGE_SHIFT) | ((unsigned long)vaddr & ~PAGE_MASK); /* put the TCEs in the HW table */ tce_build(tbl, entry, npages, (unsigned long)vaddr & PAGE_MASK, direction); return ret; } static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr, unsigned int npages) { unsigned long entry; unsigned long flags; /* were we called with bad_dma_address? */ if (unlikely(dma_addr == DMA_MAPPING_ERROR)) { WARN(1, KERN_ERR "Calgary: driver tried unmapping bad DMA " "address 0x%Lx\n", dma_addr); return; } entry = dma_addr >> PAGE_SHIFT; BUG_ON(entry + npages > tbl->it_size); tce_free(tbl, entry, npages); spin_lock_irqsave(&tbl->it_lock, flags); bitmap_clear(tbl->it_map, entry, npages); spin_unlock_irqrestore(&tbl->it_lock, flags); } static inline struct iommu_table *find_iommu_table(struct device *dev) { struct pci_dev *pdev; struct pci_bus *pbus; struct iommu_table *tbl; pdev = to_pci_dev(dev); /* search up the device tree for an iommu */ pbus = pdev->bus; do { tbl = pci_iommu(pbus); if (tbl && tbl->it_busno == pbus->number) break; tbl = NULL; pbus = pbus->parent; } while (pbus); BUG_ON(tbl && (tbl->it_busno != pbus->number)); return tbl; } static void calgary_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,enum dma_data_direction dir, unsigned long attrs) { struct iommu_table *tbl = find_iommu_table(dev); struct scatterlist *s; int i; if (!translation_enabled(tbl)) return; for_each_sg(sglist, s, nelems, i) { unsigned int npages; dma_addr_t dma = s->dma_address; unsigned int dmalen = s->dma_length; if (dmalen == 0) break; npages = iommu_num_pages(dma, dmalen, PAGE_SIZE); iommu_free(tbl, dma, npages); } } static int calgary_map_sg(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir, unsigned long attrs) { struct iommu_table *tbl = find_iommu_table(dev); struct scatterlist *s; unsigned long vaddr; unsigned int npages; unsigned long entry; int i; for_each_sg(sg, s, nelems, i) { BUG_ON(!sg_page(s)); vaddr = (unsigned long) sg_virt(s); npages = iommu_num_pages(vaddr, s->length, PAGE_SIZE); entry = iommu_range_alloc(dev, tbl, npages); if (entry == DMA_MAPPING_ERROR) { /* makes sure unmap knows to stop */ s->dma_length = 0; goto error; } s->dma_address = (entry << PAGE_SHIFT) | s->offset; /* insert into HW table */ tce_build(tbl, entry, npages, vaddr & PAGE_MASK, dir); s->dma_length = s->length; } return nelems; error: calgary_unmap_sg(dev, sg, nelems, dir, 0); for_each_sg(sg, s, nelems, i) { sg->dma_address = DMA_MAPPING_ERROR; sg->dma_length = 0; } return 0; } static dma_addr_t calgary_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { void *vaddr = page_address(page) + offset; unsigned long uaddr; unsigned int npages; struct iommu_table *tbl = find_iommu_table(dev); uaddr = (unsigned long)vaddr; npages = iommu_num_pages(uaddr, size, PAGE_SIZE); return iommu_alloc(dev, tbl, vaddr, npages, dir); } static void calgary_unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct iommu_table *tbl = find_iommu_table(dev); unsigned int npages; npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); iommu_free(tbl, dma_addr, npages); } static void* calgary_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) { void *ret = NULL; dma_addr_t mapping; unsigned int npages, order; struct iommu_table *tbl = find_iommu_table(dev); size = PAGE_ALIGN(size); /* size rounded up to full pages */ npages = size >> PAGE_SHIFT; order = get_order(size); /* alloc enough pages (and possibly more) */ ret = (void *)__get_free_pages(flag, order); if (!ret) goto error; memset(ret, 0, size); /* set up tces to cover the allocated range */ mapping = iommu_alloc(dev, tbl, ret, npages, DMA_BIDIRECTIONAL); if (mapping == DMA_MAPPING_ERROR) goto free; *dma_handle = mapping; return ret; free: free_pages((unsigned long)ret, get_order(size)); ret = NULL; error: return ret; } static void calgary_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { unsigned int npages; struct iommu_table *tbl = find_iommu_table(dev); size = PAGE_ALIGN(size); npages = size >> PAGE_SHIFT; iommu_free(tbl, dma_handle, npages); free_pages((unsigned long)vaddr, get_order(size)); } static const struct dma_map_ops calgary_dma_ops = { .alloc = calgary_alloc_coherent, .free = calgary_free_coherent, .map_sg = calgary_map_sg, .unmap_sg = calgary_unmap_sg, .map_page = calgary_map_page, .unmap_page = calgary_unmap_page, .dma_supported = dma_direct_supported, }; static inline void __iomem * busno_to_bbar(unsigned char num) { return bus_info[num].bbar; } static inline int busno_to_phbid(unsigned char num) { return bus_info[num].phbid; } static inline unsigned long split_queue_offset(unsigned char num) { size_t idx = busno_to_phbid(num); return split_queue_offsets[idx]; } static inline unsigned long tar_offset(unsigned char num) { size_t idx = busno_to_phbid(num); return tar_offsets[idx]; } static inline unsigned long phb_offset(unsigned char num) { size_t idx = busno_to_phbid(num); return phb_offsets[idx]; } static inline void __iomem* calgary_reg(void __iomem *bar, unsigned long offset) { unsigned long target = ((unsigned long)bar) | offset; return (void __iomem*)target; } static inline int is_calioc2(unsigned short device) { return (device == PCI_DEVICE_ID_IBM_CALIOC2); } static inline int is_calgary(unsigned short device) { return (device == PCI_DEVICE_ID_IBM_CALGARY); } static inline int is_cal_pci_dev(unsigned short device) { return (is_calgary(device) || is_calioc2(device)); } static void calgary_tce_cache_blast(struct iommu_table *tbl) { u64 val; u32 aer; int i = 0; void __iomem *bbar = tbl->bbar; void __iomem *target; /* disable arbitration on the bus */ target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_AER_OFFSET); aer = readl(target); writel(0, target); /* read plssr to ensure it got there */ target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_PLSSR_OFFSET); val = readl(target); /* poll split queues until all DMA activity is done */ target = calgary_reg(bbar, split_queue_offset(tbl->it_busno)); do { val = readq(target); i++; } while ((val & 0xff) != 0xff && i < 100); if (i == 100) pr_warn("PCI bus not quiesced, continuing anyway\n"); /* invalidate TCE cache */ target = calgary_reg(bbar, tar_offset(tbl->it_busno)); writeq(tbl->tar_val, target); /* enable arbitration */ target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_AER_OFFSET); writel(aer, target); (void)readl(target); /* flush */ } static void calioc2_tce_cache_blast(struct iommu_table *tbl) { void __iomem *bbar = tbl->bbar; void __iomem *target; u64 val64; u32 val; int i = 0; int count = 1; unsigned char bus = tbl->it_busno; begin: printk(KERN_DEBUG "Calgary: CalIOC2 bus 0x%x entering tce cache blast " "sequence - count %d\n", bus, count); /* 1. using the Page Migration Control reg set SoftStop */ target = calgary_reg(bbar, phb_offset(bus) | PHB_PAGE_MIG_CTRL); val = be32_to_cpu(readl(target)); printk(KERN_DEBUG "1a. read 0x%x [LE] from %p\n", val, target); val |= PMR_SOFTSTOP; printk(KERN_DEBUG "1b. writing 0x%x [LE] to %p\n", val, target); writel(cpu_to_be32(val), target); /* 2. poll split queues until all DMA activity is done */ printk(KERN_DEBUG "2a. starting to poll split queues\n"); target = calgary_reg(bbar, split_queue_offset(bus)); do { val64 = readq(target); i++; } while ((val64 & 0xff) != 0xff && i < 100); if (i == 100) pr_warn("CalIOC2: PCI bus not quiesced, continuing anyway\n"); /* 3. poll Page Migration DEBUG for SoftStopFault */ target = calgary_reg(bbar, phb_offset(bus) | PHB_PAGE_MIG_DEBUG); val = be32_to_cpu(readl(target)); printk(KERN_DEBUG "3. read 0x%x [LE] from %p\n", val, target); /* 4. if SoftStopFault - goto (1) */ if (val & PMR_SOFTSTOPFAULT) { if (++count < 100) goto begin; else { pr_warn("CalIOC2: too many SoftStopFaults, aborting TCE cache flush sequence!\n"); return; /* pray for the best */ } } /* 5. Slam into HardStop by reading PHB_PAGE_MIG_CTRL */ target = calgary_reg(bbar, phb_offset(bus) | PHB_PAGE_MIG_CTRL); printk(KERN_DEBUG "5a. slamming into HardStop by reading %p\n", target); val = be32_to_cpu(readl(target)); printk(KERN_DEBUG "5b. read 0x%x [LE] from %p\n", val, target); target = calgary_reg(bbar, phb_offset(bus) | PHB_PAGE_MIG_DEBUG); val = be32_to_cpu(readl(target)); printk(KERN_DEBUG "5c. read 0x%x [LE] from %p (debug)\n", val, target); /* 6. invalidate TCE cache */ printk(KERN_DEBUG "6. invalidating TCE cache\n"); target = calgary_reg(bbar, tar_offset(bus)); writeq(tbl->tar_val, target); /* 7. Re-read PMCR */ printk(KERN_DEBUG "7a. Re-reading PMCR\n"); target = calgary_reg(bbar, phb_offset(bus) | PHB_PAGE_MIG_CTRL); val = be32_to_cpu(readl(target)); printk(KERN_DEBUG "7b. read 0x%x [LE] from %p\n", val, target); /* 8. Remove HardStop */ printk(KERN_DEBUG "8a. removing HardStop from PMCR\n"); target = calgary_reg(bbar, phb_offset(bus) | PHB_PAGE_MIG_CTRL); val = 0; printk(KERN_DEBUG "8b. writing 0x%x [LE] to %p\n", val, target); writel(cpu_to_be32(val), target); val = be32_to_cpu(readl(target)); printk(KERN_DEBUG "8c. read 0x%x [LE] from %p\n", val, target); } static void __init calgary_reserve_mem_region(struct pci_dev *dev, u64 start, u64 limit) { unsigned int numpages; limit = limit | 0xfffff; limit++; numpages = ((limit - start) >> PAGE_SHIFT); iommu_range_reserve(pci_iommu(dev->bus), start, numpages); } static void __init calgary_reserve_peripheral_mem_1(struct pci_dev *dev) { void __iomem *target; u64 low, high, sizelow; u64 start, limit; struct iommu_table *tbl = pci_iommu(dev->bus); unsigned char busnum = dev->bus->number; void __iomem *bbar = tbl->bbar; /* peripheral MEM_1 region */ target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_1_LOW); low = be32_to_cpu(readl(target)); target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_1_HIGH); high = be32_to_cpu(readl(target)); target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_1_SIZE); sizelow = be32_to_cpu(readl(target)); start = (high << 32) | low; limit = sizelow; calgary_reserve_mem_region(dev, start, limit); } static void __init calgary_reserve_peripheral_mem_2(struct pci_dev *dev) { void __iomem *target; u32 val32; u64 low, high, sizelow, sizehigh; u64 start, limit; struct iommu_table *tbl = pci_iommu(dev->bus); unsigned char busnum = dev->bus->number; void __iomem *bbar = tbl->bbar; /* is it enabled? */ target = calgary_reg(bbar, phb_offset(busnum) | PHB_CONFIG_RW_OFFSET); val32 = be32_to_cpu(readl(target)); if (!(val32 & PHB_MEM2_ENABLE)) return; target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_LOW); low = be32_to_cpu(readl(target)); target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_HIGH); high = be32_to_cpu(readl(target)); target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_SIZE_LOW); sizelow = be32_to_cpu(readl(target)); target = calgary_reg(bbar, phb_offset(busnum) | PHB_MEM_2_SIZE_HIGH); sizehigh = be32_to_cpu(readl(target)); start = (high << 32) | low; limit = (sizehigh << 32) | sizelow; calgary_reserve_mem_region(dev, start, limit); } /* * some regions of the IO address space do not get translated, so we * must not give devices IO addresses in those regions. The regions * are the 640KB-1MB region and the two PCI peripheral memory holes. * Reserve all of them in the IOMMU bitmap to avoid giving them out * later. */ static void __init calgary_reserve_regions(struct pci_dev *dev) { unsigned int npages; u64 start; struct iommu_table *tbl = pci_iommu(dev->bus); /* avoid the BIOS/VGA first 640KB-1MB region */ /* for CalIOC2 - avoid the entire first MB */ if (is_calgary(dev->device)) { start = (640 * 1024); npages = ((1024 - 640) * 1024) >> PAGE_SHIFT; } else { /* calioc2 */ start = 0; npages = (1 * 1024 * 1024) >> PAGE_SHIFT; } iommu_range_reserve(tbl, start, npages); /* reserve the two PCI peripheral memory regions in IO space */ calgary_reserve_peripheral_mem_1(dev); calgary_reserve_peripheral_mem_2(dev); } static int __init calgary_setup_tar(struct pci_dev *dev, void __iomem *bbar) { u64 val64; u64 table_phys; void __iomem *target; int ret; struct iommu_table *tbl; /* build TCE tables for each PHB */ ret = build_tce_table(dev, bbar); if (ret) return ret; tbl = pci_iommu(dev->bus); tbl->it_base = (unsigned long)bus_info[dev->bus->number].tce_space; if (is_kdump_kernel()) calgary_init_bitmap_from_tce_table(tbl); else tce_free(tbl, 0, tbl->it_size); if (is_calgary(dev->device)) tbl->chip_ops = &calgary_chip_ops; else if (is_calioc2(dev->device)) tbl->chip_ops = &calioc2_chip_ops; else BUG(); calgary_reserve_regions(dev); /* set TARs for each PHB */ target = calgary_reg(bbar, tar_offset(dev->bus->number)); val64 = be64_to_cpu(readq(target)); /* zero out all TAR bits under sw control */ val64 &= ~TAR_SW_BITS; table_phys = (u64)__pa(tbl->it_base); val64 |= table_phys; BUG_ON(specified_table_size > TCE_TABLE_SIZE_8M); val64 |= (u64) specified_table_size; tbl->tar_val = cpu_to_be64(val64); writeq(tbl->tar_val, target); readq(target); /* flush */ return 0; } static void __init calgary_free_bus(struct pci_dev *dev) { u64 val64; struct iommu_table *tbl = pci_iommu(dev->bus); void __iomem *target; unsigned int bitmapsz; target = calgary_reg(tbl->bbar, tar_offset(dev->bus->number)); val64 = be64_to_cpu(readq(target)); val64 &= ~TAR_SW_BITS; writeq(cpu_to_be64(val64), target); readq(target); /* flush */ bitmapsz = tbl->it_size / BITS_PER_BYTE; free_pages((unsigned long)tbl->it_map, get_order(bitmapsz)); tbl->it_map = NULL; kfree(tbl); set_pci_iommu(dev->bus, NULL); /* Can't free bootmem allocated memory after system is up :-( */ bus_info[dev->bus->number].tce_space = NULL; } static void calgary_dump_error_regs(struct iommu_table *tbl) { void __iomem *bbar = tbl->bbar; void __iomem *target; u32 csr, plssr; target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_CSR_OFFSET); csr = be32_to_cpu(readl(target)); target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_PLSSR_OFFSET); plssr = be32_to_cpu(readl(target)); /* If no error, the agent ID in the CSR is not valid */ pr_emerg("DMA error on Calgary PHB 0x%x, 0x%08x@CSR 0x%08x@PLSSR\n", tbl->it_busno, csr, plssr); } static void calioc2_dump_error_regs(struct iommu_table *tbl) { void __iomem *bbar = tbl->bbar; u32 csr, csmr, plssr, mck, rcstat; void __iomem *target; unsigned long phboff = phb_offset(tbl->it_busno); unsigned long erroff; u32 errregs[7]; int i; /* dump CSR */ target = calgary_reg(bbar, phboff | PHB_CSR_OFFSET); csr = be32_to_cpu(readl(target)); /* dump PLSSR */ target = calgary_reg(bbar, phboff | PHB_PLSSR_OFFSET); plssr = be32_to_cpu(readl(target)); /* dump CSMR */ target = calgary_reg(bbar, phboff | 0x290); csmr = be32_to_cpu(readl(target)); /* dump mck */ target = calgary_reg(bbar, phboff | 0x800); mck = be32_to_cpu(readl(target)); pr_emerg("DMA error on CalIOC2 PHB 0x%x\n", tbl->it_busno); pr_emerg("0x%08x@CSR 0x%08x@PLSSR 0x%08x@CSMR 0x%08x@MCK\n", csr, plssr, csmr, mck); /* dump rest of error regs */ pr_emerg(""); for (i = 0; i < ARRAY_SIZE(errregs); i++) { /* err regs are at 0x810 - 0x870 */ erroff = (0x810 + (i * 0x10)); target = calgary_reg(bbar, phboff | erroff); errregs[i] = be32_to_cpu(readl(target)); pr_cont("0x%08x@0x%lx ", errregs[i], erroff); } pr_cont("\n"); /* root complex status */ target = calgary_reg(bbar, phboff | PHB_ROOT_COMPLEX_STATUS); rcstat = be32_to_cpu(readl(target)); printk(KERN_EMERG "Calgary: 0x%08x@0x%x\n", rcstat, PHB_ROOT_COMPLEX_STATUS); } static void calgary_watchdog(struct timer_list *t) { struct iommu_table *tbl = from_timer(tbl, t, watchdog_timer); void __iomem *bbar = tbl->bbar; u32 val32; void __iomem *target; target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_CSR_OFFSET); val32 = be32_to_cpu(readl(target)); /* If no error, the agent ID in the CSR is not valid */ if (val32 & CSR_AGENT_MASK) { tbl->chip_ops->dump_error_regs(tbl); /* reset error */ writel(0, target); /* Disable bus that caused the error */ target = calgary_reg(bbar, phb_offset(tbl->it_busno) | PHB_CONFIG_RW_OFFSET); val32 = be32_to_cpu(readl(target)); val32 |= PHB_SLOT_DISABLE; writel(cpu_to_be32(val32), target); readl(target); /* flush */ } else { /* Reset the timer */ mod_timer(&tbl->watchdog_timer, jiffies + 2 * HZ); } } static void __init calgary_set_split_completion_timeout(void __iomem *bbar, unsigned char busnum, unsigned long timeout) { u64 val64; void __iomem *target; unsigned int phb_shift = ~0; /* silence gcc */ u64 mask; switch (busno_to_phbid(busnum)) { case 0: phb_shift = (63 - 19); break; case 1: phb_shift = (63 - 23); break; case 2: phb_shift = (63 - 27); break; case 3: phb_shift = (63 - 35); break; default: BUG_ON(busno_to_phbid(busnum)); } target = calgary_reg(bbar, CALGARY_CONFIG_REG); val64 = be64_to_cpu(readq(target)); /* zero out this PHB's timer bits */ mask = ~(0xFUL << phb_shift); val64 &= mask; val64 |= (timeout << phb_shift); writeq(cpu_to_be64(val64), target); readq(target); /* flush */ } static void __init calioc2_handle_quirks(struct iommu_table *tbl, struct pci_dev *dev) { unsigned char busnum = dev->bus->number; void __iomem *bbar = tbl->bbar; void __iomem *target; u32 val; /* * CalIOC2 designers recommend setting bit 8 in 0xnDB0 to 1 */ target = calgary_reg(bbar, phb_offset(busnum) | PHB_SAVIOR_L2); val = cpu_to_be32(readl(target)); val |= 0x00800000; writel(cpu_to_be32(val), target); } static void __init calgary_handle_quirks(struct iommu_table *tbl, struct pci_dev *dev) { unsigned char busnum = dev->bus->number; /* * Give split completion a longer timeout on bus 1 for aic94xx * http://bugzilla.kernel.org/show_bug.cgi?id=7180 */ if (is_calgary(dev->device) && (busnum == 1)) calgary_set_split_completion_timeout(tbl->bbar, busnum, CCR_2SEC_TIMEOUT); } static void __init calgary_enable_translation(struct pci_dev *dev) { u32 val32; unsigned char busnum; void __iomem *target; void __iomem *bbar; struct iommu_table *tbl; busnum = dev->bus->number; tbl = pci_iommu(dev->bus); bbar = tbl->bbar; /* enable TCE in PHB Config Register */ target = calgary_reg(bbar, phb_offset(busnum) | PHB_CONFIG_RW_OFFSET); val32 = be32_to_cpu(readl(target)); val32 |= PHB_TCE_ENABLE | PHB_DAC_DISABLE | PHB_MCSR_ENABLE; printk(KERN_INFO "Calgary: enabling translation on %s PHB %#x\n", (dev->device == PCI_DEVICE_ID_IBM_CALGARY) ? "Calgary" : "CalIOC2", busnum); printk(KERN_INFO "Calgary: errant DMAs will now be prevented on this " "bus.\n"); writel(cpu_to_be32(val32), target); readl(target); /* flush */ timer_setup(&tbl->watchdog_timer, calgary_watchdog, 0); mod_timer(&tbl->watchdog_timer, jiffies); } static void __init calgary_disable_translation(struct pci_dev *dev) { u32 val32; unsigned char busnum; void __iomem *target; void __iomem *bbar; struct iommu_table *tbl; busnum = dev->bus->number; tbl = pci_iommu(dev->bus); bbar = tbl->bbar; /* disable TCE in PHB Config Register */ target = calgary_reg(bbar, phb_offset(busnum) | PHB_CONFIG_RW_OFFSET); val32 = be32_to_cpu(readl(target)); val32 &= ~(PHB_TCE_ENABLE | PHB_DAC_DISABLE | PHB_MCSR_ENABLE); printk(KERN_INFO "Calgary: disabling translation on PHB %#x!\n", busnum); writel(cpu_to_be32(val32), target); readl(target); /* flush */ del_timer_sync(&tbl->watchdog_timer); } static void __init calgary_init_one_nontraslated(struct pci_dev *dev) { pci_dev_get(dev); set_pci_iommu(dev->bus, NULL); /* is the device behind a bridge? */ if (dev->bus->parent) dev->bus->parent->self = dev; else dev->bus->self = dev; } static int __init calgary_init_one(struct pci_dev *dev) { void __iomem *bbar; struct iommu_table *tbl; int ret; bbar = busno_to_bbar(dev->bus->number); ret = calgary_setup_tar(dev, bbar); if (ret) goto done; pci_dev_get(dev); if (dev->bus->parent) { if (dev->bus->parent->self) printk(KERN_WARNING "Calgary: IEEEE, dev %p has " "bus->parent->self!\n", dev); dev->bus->parent->self = dev; } else dev->bus->self = dev; tbl = pci_iommu(dev->bus); tbl->chip_ops->handle_quirks(tbl, dev); calgary_enable_translation(dev); return 0; done: return ret; } static int __init calgary_locate_bbars(void) { int ret; int rioidx, phb, bus; void __iomem *bbar; void __iomem *target; unsigned long offset; u8 start_bus, end_bus; u32 val; ret = -ENODATA; for (rioidx = 0; rioidx < rio_table_hdr->num_rio_dev; rioidx++) { struct rio_detail *rio = rio_devs[rioidx]; if ((rio->type != COMPAT_CALGARY) && (rio->type != ALT_CALGARY)) continue; /* map entire 1MB of Calgary config space */ bbar = ioremap_nocache(rio->BBAR, 1024 * 1024); if (!bbar) goto error; for (phb = 0; phb < PHBS_PER_CALGARY; phb++) { offset = phb_debug_offsets[phb] | PHB_DEBUG_STUFF_OFFSET; target = calgary_reg(bbar, offset); val = be32_to_cpu(readl(target)); start_bus = (u8)((val & 0x00FF0000) >> 16); end_bus = (u8)((val & 0x0000FF00) >> 8); if (end_bus) { for (bus = start_bus; bus <= end_bus; bus++) { bus_info[bus].bbar = bbar; bus_info[bus].phbid = phb; } } else { bus_info[start_bus].bbar = bbar; bus_info[start_bus].phbid = phb; } } } return 0; error: /* scan bus_info and iounmap any bbars we previously ioremap'd */ for (bus = 0; bus < ARRAY_SIZE(bus_info); bus++) if (bus_info[bus].bbar) iounmap(bus_info[bus].bbar); return ret; } static int __init calgary_init(void) { int ret; struct pci_dev *dev = NULL; struct calgary_bus_info *info; ret = calgary_locate_bbars(); if (ret) return ret; /* Purely for kdump kernel case */ if (is_kdump_kernel()) get_tce_space_from_tar(); do { dev = pci_get_device(PCI_VENDOR_ID_IBM, PCI_ANY_ID, dev); if (!dev) break; if (!is_cal_pci_dev(dev->device)) continue; info = &bus_info[dev->bus->number]; if (info->translation_disabled) { calgary_init_one_nontraslated(dev); continue; } if (!info->tce_space && !translate_empty_slots) continue; ret = calgary_init_one(dev); if (ret) goto error; } while (1); dev = NULL; for_each_pci_dev(dev) { struct iommu_table *tbl; tbl = find_iommu_table(&dev->dev); if (translation_enabled(tbl)) dev->dev.dma_ops = &calgary_dma_ops; } return ret; error: do { dev = pci_get_device(PCI_VENDOR_ID_IBM, PCI_ANY_ID, dev); if (!dev) break; if (!is_cal_pci_dev(dev->device)) continue; info = &bus_info[dev->bus->number]; if (info->translation_disabled) { pci_dev_put(dev); continue; } if (!info->tce_space && !translate_empty_slots) continue; calgary_disable_translation(dev); calgary_free_bus(dev); pci_dev_put(dev); /* Undo calgary_init_one()'s pci_dev_get() */ dev->dev.dma_ops = NULL; } while (1); return ret; } static inline int __init determine_tce_table_size(void) { int ret; if (specified_table_size != TCE_TABLE_SIZE_UNSPECIFIED) return specified_table_size; if (is_kdump_kernel() && saved_max_pfn) { /* * Table sizes are from 0 to 7 (TCE_TABLE_SIZE_64K to * TCE_TABLE_SIZE_8M). Table size 0 has 8K entries and each * larger table size has twice as many entries, so shift the * max ram address by 13 to divide by 8K and then look at the * order of the result to choose between 0-7. */ ret = get_order((saved_max_pfn * PAGE_SIZE) >> 13); if (ret > TCE_TABLE_SIZE_8M) ret = TCE_TABLE_SIZE_8M; } else { /* * Use 8M by default (suggested by Muli) if it's not * kdump kernel and saved_max_pfn isn't set. */ ret = TCE_TABLE_SIZE_8M; } return ret; } static int __init build_detail_arrays(void) { unsigned long ptr; unsigned numnodes, i; int scal_detail_size, rio_detail_size; numnodes = rio_table_hdr->num_scal_dev; if (numnodes > MAX_NUMNODES){ printk(KERN_WARNING "Calgary: MAX_NUMNODES too low! Defined as %d, " "but system has %d nodes.\n", MAX_NUMNODES, numnodes); return -ENODEV; } switch (rio_table_hdr->version){ case 2: scal_detail_size = 11; rio_detail_size = 13; break; case 3: scal_detail_size = 12; rio_detail_size = 15; break; default: printk(KERN_WARNING "Calgary: Invalid Rio Grande Table Version: %d\n", rio_table_hdr->version); return -EPROTO; } ptr = ((unsigned long)rio_table_hdr) + 3; for (i = 0; i < numnodes; i++, ptr += scal_detail_size) scal_devs[i] = (struct scal_detail *)ptr; for (i = 0; i < rio_table_hdr->num_rio_dev; i++, ptr += rio_detail_size) rio_devs[i] = (struct rio_detail *)ptr; return 0; } static int __init calgary_bus_has_devices(int bus, unsigned short pci_dev) { int dev; u32 val; if (pci_dev == PCI_DEVICE_ID_IBM_CALIOC2) { /* * FIXME: properly scan for devices across the * PCI-to-PCI bridge on every CalIOC2 port. */ return 1; } for (dev = 1; dev < 8; dev++) { val = read_pci_config(bus, dev, 0, 0); if (val != 0xffffffff) break; } return (val != 0xffffffff); } /* * calgary_init_bitmap_from_tce_table(): * Function for kdump case. In the second/kdump kernel initialize * the bitmap based on the tce table entries obtained from first kernel */ static void calgary_init_bitmap_from_tce_table(struct iommu_table *tbl) { u64 *tp; unsigned int index; tp = ((u64 *)tbl->it_base); for (index = 0 ; index < tbl->it_size; index++) { if (*tp != 0x0) set_bit(index, tbl->it_map); tp++; } } /* * get_tce_space_from_tar(): * Function for kdump case. Get the tce tables from first kernel * by reading the contents of the base address register of calgary iommu */ static void __init get_tce_space_from_tar(void) { int bus; void __iomem *target; unsigned long tce_space; for (bus = 0; bus < MAX_PHB_BUS_NUM; bus++) { struct calgary_bus_info *info = &bus_info[bus]; unsigned short pci_device; u32 val; val = read_pci_config(bus, 0, 0, 0); pci_device = (val & 0xFFFF0000) >> 16; if (!is_cal_pci_dev(pci_device)) continue; if (info->translation_disabled) continue; if (calgary_bus_has_devices(bus, pci_device) || translate_empty_slots) { target = calgary_reg(bus_info[bus].bbar, tar_offset(bus)); tce_space = be64_to_cpu(readq(target)); tce_space = tce_space & TAR_SW_BITS; tce_space = tce_space & (~specified_table_size); info->tce_space = (u64 *)__va(tce_space); } } return; } static int __init calgary_iommu_init(void) { int ret; /* ok, we're trying to use Calgary - let's roll */ printk(KERN_INFO "PCI-DMA: Using Calgary IOMMU\n"); ret = calgary_init(); if (ret) { printk(KERN_ERR "PCI-DMA: Calgary init failed %d, " "falling back to no_iommu\n", ret); return ret; } return 0; } int __init detect_calgary(void) { int bus; void *tbl; int calgary_found = 0; unsigned long ptr; unsigned int offset, prev_offset; int ret; /* * if the user specified iommu=off or iommu=soft or we found * another HW IOMMU already, bail out. */ if (no_iommu || iommu_detected) return -ENODEV; if (!use_calgary) return -ENODEV; if (!early_pci_allowed()) return -ENODEV; printk(KERN_DEBUG "Calgary: detecting Calgary via BIOS EBDA area\n"); ptr = (unsigned long)phys_to_virt(get_bios_ebda()); rio_table_hdr = NULL; prev_offset = 0; offset = 0x180; /* * The next offset is stored in the 1st word. * Only parse up until the offset increases: */ while (offset > prev_offset) { /* The block id is stored in the 2nd word */ if (*((unsigned short *)(ptr + offset + 2)) == 0x4752){ /* set the pointer past the offset & block id */ rio_table_hdr = (struct rio_table_hdr *)(ptr + offset + 4); break; } prev_offset = offset; offset = *((unsigned short *)(ptr + offset)); } if (!rio_table_hdr) { printk(KERN_DEBUG "Calgary: Unable to locate Rio Grande table " "in EBDA - bailing!\n"); return -ENODEV; } ret = build_detail_arrays(); if (ret) { printk(KERN_DEBUG "Calgary: build_detail_arrays ret %d\n", ret); return -ENOMEM; } specified_table_size = determine_tce_table_size(); for (bus = 0; bus < MAX_PHB_BUS_NUM; bus++) { struct calgary_bus_info *info = &bus_info[bus]; unsigned short pci_device; u32 val; val = read_pci_config(bus, 0, 0, 0); pci_device = (val & 0xFFFF0000) >> 16; if (!is_cal_pci_dev(pci_device)) continue; if (info->translation_disabled) continue; if (calgary_bus_has_devices(bus, pci_device) || translate_empty_slots) { /* * If it is kdump kernel, find and use tce tables * from first kernel, else allocate tce tables here */ if (!is_kdump_kernel()) { tbl = alloc_tce_table(); if (!tbl) goto cleanup; info->tce_space = tbl; } calgary_found = 1; } } printk(KERN_DEBUG "Calgary: finished detection, Calgary %s\n", calgary_found ? "found" : "not found"); if (calgary_found) { iommu_detected = 1; calgary_detected = 1; printk(KERN_INFO "PCI-DMA: Calgary IOMMU detected.\n"); printk(KERN_INFO "PCI-DMA: Calgary TCE table spec is %d\n", specified_table_size); x86_init.iommu.iommu_init = calgary_iommu_init; } return calgary_found; cleanup: for (--bus; bus >= 0; --bus) { struct calgary_bus_info *info = &bus_info[bus]; if (info->tce_space) free_tce_table(info->tce_space); } return -ENOMEM; } static int __init calgary_parse_options(char *p) { unsigned int bridge; unsigned long val; size_t len; ssize_t ret; while (*p) { if (!strncmp(p, "64k", 3)) specified_table_size = TCE_TABLE_SIZE_64K; else if (!strncmp(p, "128k", 4)) specified_table_size = TCE_TABLE_SIZE_128K; else if (!strncmp(p, "256k", 4)) specified_table_size = TCE_TABLE_SIZE_256K; else if (!strncmp(p, "512k", 4)) specified_table_size = TCE_TABLE_SIZE_512K; else if (!strncmp(p, "1M", 2)) specified_table_size = TCE_TABLE_SIZE_1M; else if (!strncmp(p, "2M", 2)) specified_table_size = TCE_TABLE_SIZE_2M; else if (!strncmp(p, "4M", 2)) specified_table_size = TCE_TABLE_SIZE_4M; else if (!strncmp(p, "8M", 2)) specified_table_size = TCE_TABLE_SIZE_8M; len = strlen("translate_empty_slots"); if (!strncmp(p, "translate_empty_slots", len)) translate_empty_slots = 1; len = strlen("disable"); if (!strncmp(p, "disable", len)) { p += len; if (*p == '=') ++p; if (*p == '\0') break; ret = kstrtoul(p, 0, &val); if (ret) break; bridge = val; if (bridge < MAX_PHB_BUS_NUM) { printk(KERN_INFO "Calgary: disabling " "translation for PHB %#x\n", bridge); bus_info[bridge].translation_disabled = 1; } } p = strpbrk(p, ","); if (!p) break; p++; /* skip ',' */ } return 1; } __setup("calgary=", calgary_parse_options); static void __init calgary_fixup_one_tce_space(struct pci_dev *dev) { struct iommu_table *tbl; unsigned int npages; int i; tbl = pci_iommu(dev->bus); for (i = 0; i < 4; i++) { struct resource *r = &dev->resource[PCI_BRIDGE_RESOURCES + i]; /* Don't give out TCEs that map MEM resources */ if (!(r->flags & IORESOURCE_MEM)) continue; /* 0-based? we reserve the whole 1st MB anyway */ if (!r->start) continue; /* cover the whole region */ npages = resource_size(r) >> PAGE_SHIFT; npages++; iommu_range_reserve(tbl, r->start, npages); } } static int __init calgary_fixup_tce_spaces(void) { struct pci_dev *dev = NULL; struct calgary_bus_info *info; if (no_iommu || swiotlb || !calgary_detected) return -ENODEV; printk(KERN_DEBUG "Calgary: fixing up tce spaces\n"); do { dev = pci_get_device(PCI_VENDOR_ID_IBM, PCI_ANY_ID, dev); if (!dev) break; if (!is_cal_pci_dev(dev->device)) continue; info = &bus_info[dev->bus->number]; if (info->translation_disabled) continue; if (!info->tce_space) continue; calgary_fixup_one_tce_space(dev); } while (1); return 0; } /* * We need to be call after pcibios_assign_resources (fs_initcall level) * and before device_initcall. */ rootfs_initcall(calgary_fixup_tce_spaces); IOMMU_INIT_POST(detect_calgary);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1