Contributors: 50
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Linus Torvalds (pre-git) |
188 |
16.18% |
23 |
18.55% |
Ingo Molnar |
168 |
14.46% |
12 |
9.68% |
Al Viro |
104 |
8.95% |
4 |
3.23% |
Zachary Amsden |
68 |
5.85% |
5 |
4.03% |
Alan Stern |
65 |
5.59% |
1 |
0.81% |
Dave Jones |
63 |
5.42% |
4 |
3.23% |
Brian Gerst |
56 |
4.82% |
4 |
3.23% |
Pavel Emelyanov |
55 |
4.73% |
1 |
0.81% |
Kyle Huey |
31 |
2.67% |
1 |
0.81% |
Andrew Lutomirski |
28 |
2.41% |
7 |
5.65% |
Jeremy Fitzhardinge |
28 |
2.41% |
6 |
4.84% |
Andrew Morton |
25 |
2.15% |
1 |
0.81% |
Oleg Nesterov |
25 |
2.15% |
2 |
1.61% |
Andi Kleen |
20 |
1.72% |
2 |
1.61% |
Linus Torvalds |
19 |
1.64% |
8 |
6.45% |
H. Peter Anvin |
19 |
1.64% |
2 |
1.61% |
Tejun Heo |
18 |
1.55% |
2 |
1.61% |
K.Prasad |
14 |
1.20% |
1 |
0.81% |
Stéphane Eranian |
12 |
1.03% |
1 |
0.81% |
Roland McGrath |
12 |
1.03% |
1 |
0.81% |
Rik Van Riel |
11 |
0.95% |
1 |
0.81% |
Benjamin LaHaise |
9 |
0.77% |
1 |
0.81% |
Harvey Harrison |
9 |
0.77% |
1 |
0.81% |
Jaswinder Singh Rajput |
9 |
0.77% |
2 |
1.61% |
Zwane Mwaikambo |
9 |
0.77% |
1 |
0.81% |
Alexey Dobriyan |
7 |
0.60% |
1 |
0.81% |
Borislav Petkov |
7 |
0.60% |
1 |
0.81% |
Peter Zijlstra |
7 |
0.60% |
1 |
0.81% |
Pekka J Enberg |
6 |
0.52% |
2 |
1.61% |
Sebastian Andrzej Siewior |
6 |
0.52% |
2 |
1.61% |
Andrea Arcangeli |
6 |
0.52% |
2 |
1.61% |
Josh Triplett |
6 |
0.52% |
1 |
0.81% |
Jann Horn |
6 |
0.52% |
1 |
0.81% |
Fenghua Yu |
5 |
0.43% |
1 |
0.81% |
Albert D. Cahalan |
4 |
0.34% |
1 |
0.81% |
Thomas Gleixner |
4 |
0.34% |
1 |
0.81% |
Vineet Gupta |
4 |
0.34% |
1 |
0.81% |
Nadia Yvette Chambers |
4 |
0.34% |
1 |
0.81% |
David Howells |
4 |
0.34% |
2 |
1.61% |
Erik Bosman |
3 |
0.26% |
1 |
0.81% |
Frédéric Weisbecker |
3 |
0.26% |
1 |
0.81% |
Rusty Russell |
3 |
0.26% |
1 |
0.81% |
Daniel Jacobowitz |
3 |
0.26% |
1 |
0.81% |
Babu Moger |
2 |
0.17% |
2 |
1.61% |
Vincent Hanquez |
2 |
0.17% |
1 |
0.81% |
Joerg Roedel |
1 |
0.09% |
1 |
0.81% |
Josh Poimboeuf |
1 |
0.09% |
1 |
0.81% |
Steven Rostedt |
1 |
0.09% |
1 |
0.81% |
Paul Gortmaker |
1 |
0.09% |
1 |
0.81% |
Kamalesh Babulal |
1 |
0.09% |
1 |
0.81% |
Total |
1162 |
|
124 |
|
/*
* Copyright (C) 1995 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/mc146818rtc.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/personality.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <linux/ftrace.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/kdebug.h>
#include <linux/syscalls.h>
#include <asm/pgtable.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/fpu/internal.h>
#include <asm/desc.h>
#include <linux/err.h>
#include <asm/tlbflush.h>
#include <asm/cpu.h>
#include <asm/syscalls.h>
#include <asm/debugreg.h>
#include <asm/switch_to.h>
#include <asm/vm86.h>
#include <asm/resctrl_sched.h>
#include <asm/proto.h>
#include "process.h"
void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
{
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
unsigned long d0, d1, d2, d3, d6, d7;
unsigned long sp;
unsigned short ss, gs;
if (user_mode(regs)) {
sp = regs->sp;
ss = regs->ss;
gs = get_user_gs(regs);
} else {
sp = kernel_stack_pointer(regs);
savesegment(ss, ss);
savesegment(gs, gs);
}
show_ip(regs, KERN_DEFAULT);
printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
regs->ax, regs->bx, regs->cx, regs->dx);
printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
regs->si, regs->di, regs->bp, sp);
printk(KERN_DEFAULT "DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n",
(u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss, regs->flags);
if (mode != SHOW_REGS_ALL)
return;
cr0 = read_cr0();
cr2 = read_cr2();
cr3 = __read_cr3();
cr4 = __read_cr4();
printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
cr0, cr2, cr3, cr4);
get_debugreg(d0, 0);
get_debugreg(d1, 1);
get_debugreg(d2, 2);
get_debugreg(d3, 3);
get_debugreg(d6, 6);
get_debugreg(d7, 7);
/* Only print out debug registers if they are in their non-default state. */
if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
(d6 == DR6_RESERVED) && (d7 == 0x400))
return;
printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
d0, d1, d2, d3);
printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
d6, d7);
}
void release_thread(struct task_struct *dead_task)
{
BUG_ON(dead_task->mm);
release_vm86_irqs(dead_task);
}
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p, unsigned long tls)
{
struct pt_regs *childregs = task_pt_regs(p);
struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
struct inactive_task_frame *frame = &fork_frame->frame;
struct task_struct *tsk;
int err;
/*
* For a new task use the RESET flags value since there is no before.
* All the status flags are zero; DF and all the system flags must also
* be 0, specifically IF must be 0 because we context switch to the new
* task with interrupts disabled.
*/
frame->flags = X86_EFLAGS_FIXED;
frame->bp = 0;
frame->ret_addr = (unsigned long) ret_from_fork;
p->thread.sp = (unsigned long) fork_frame;
p->thread.sp0 = (unsigned long) (childregs+1);
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
frame->bx = sp; /* function */
frame->di = arg;
p->thread.io_bitmap_ptr = NULL;
return 0;
}
frame->bx = 0;
*childregs = *current_pt_regs();
childregs->ax = 0;
if (sp)
childregs->sp = sp;
task_user_gs(p) = get_user_gs(current_pt_regs());
p->thread.io_bitmap_ptr = NULL;
tsk = current;
err = -ENOMEM;
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}
err = 0;
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS)
err = do_set_thread_area(p, -1,
(struct user_desc __user *)tls, 0);
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
void
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
{
set_user_gs(regs, 0);
regs->fs = 0;
regs->ds = __USER_DS;
regs->es = __USER_DS;
regs->ss = __USER_DS;
regs->cs = __USER_CS;
regs->ip = new_ip;
regs->sp = new_sp;
regs->flags = X86_EFLAGS_IF;
force_iret();
}
EXPORT_SYMBOL_GPL(start_thread);
/*
* switch_to(x,y) should switch tasks from x to y.
*
* We fsave/fwait so that an exception goes off at the right time
* (as a call from the fsave or fwait in effect) rather than to
* the wrong process. Lazy FP saving no longer makes any sense
* with modern CPU's, and this simplifies a lot of things (SMP
* and UP become the same).
*
* NOTE! We used to use the x86 hardware context switching. The
* reason for not using it any more becomes apparent when you
* try to recover gracefully from saved state that is no longer
* valid (stale segment register values in particular). With the
* hardware task-switch, there is no way to fix up bad state in
* a reasonable manner.
*
* The fact that Intel documents the hardware task-switching to
* be slow is a fairly red herring - this code is not noticeably
* faster. However, there _is_ some room for improvement here,
* so the performance issues may eventually be a valid point.
* More important, however, is the fact that this allows us much
* more flexibility.
*
* The return value (in %ax) will be the "prev" task after
* the task-switch, and shows up in ret_from_fork in entry.S,
* for example.
*/
__visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
struct thread_struct *prev = &prev_p->thread,
*next = &next_p->thread;
struct fpu *prev_fpu = &prev->fpu;
struct fpu *next_fpu = &next->fpu;
int cpu = smp_processor_id();
/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
if (!test_thread_flag(TIF_NEED_FPU_LOAD))
switch_fpu_prepare(prev_fpu, cpu);
/*
* Save away %gs. No need to save %fs, as it was saved on the
* stack on entry. No need to save %es and %ds, as those are
* always kernel segments while inside the kernel. Doing this
* before setting the new TLS descriptors avoids the situation
* where we temporarily have non-reloadable segments in %fs
* and %gs. This could be an issue if the NMI handler ever
* used %fs or %gs (it does not today), or if the kernel is
* running inside of a hypervisor layer.
*/
lazy_save_gs(prev->gs);
/*
* Load the per-thread Thread-Local Storage descriptor.
*/
load_TLS(next, cpu);
/*
* Restore IOPL if needed. In normal use, the flags restore
* in the switch assembly will handle this. But if the kernel
* is running virtualized at a non-zero CPL, the popf will
* not restore flags, so it must be done in a separate step.
*/
if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
set_iopl_mask(next->iopl);
switch_to_extra(prev_p, next_p);
/*
* Leave lazy mode, flushing any hypercalls made here.
* This must be done before restoring TLS segments so
* the GDT and LDT are properly updated.
*/
arch_end_context_switch(next_p);
/*
* Reload esp0 and cpu_current_top_of_stack. This changes
* current_thread_info(). Refresh the SYSENTER configuration in
* case prev or next is vm86.
*/
update_task_stack(next_p);
refresh_sysenter_cs(next);
this_cpu_write(cpu_current_top_of_stack,
(unsigned long)task_stack_page(next_p) +
THREAD_SIZE);
/*
* Restore %gs if needed (which is common)
*/
if (prev->gs | next->gs)
lazy_load_gs(next->gs);
this_cpu_write(current_task, next_p);
switch_fpu_finish(next_fpu);
/* Load the Intel cache allocation PQR MSR. */
resctrl_sched_in();
return prev_p;
}
SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
{
return do_arch_prctl_common(current, option, arg2);
}