Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herbert Xu | 818 | 48.95% | 3 | 21.43% |
Rik Snel | 592 | 35.43% | 1 | 7.14% |
Ondrej Mosnáček | 228 | 13.64% | 2 | 14.29% |
Stephan Mueller | 12 | 0.72% | 1 | 7.14% |
Christophe Jaillet | 8 | 0.48% | 1 | 7.14% |
Kees Cook | 5 | 0.30% | 1 | 7.14% |
Jussi Kivilinna | 3 | 0.18% | 1 | 7.14% |
Thomas Gleixner | 2 | 0.12% | 1 | 7.14% |
Lucas De Marchi | 1 | 0.06% | 1 | 7.14% |
Eric Biggers | 1 | 0.06% | 1 | 7.14% |
Sebastian Andrzej Siewior | 1 | 0.06% | 1 | 7.14% |
Total | 1671 | 14 |
// SPDX-License-Identifier: GPL-2.0-or-later /* XTS: as defined in IEEE1619/D16 * http://grouper.ieee.org/groups/1619/email/pdf00086.pdf * (sector sizes which are not a multiple of 16 bytes are, * however currently unsupported) * * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org> * * Based on ecb.c * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <crypto/xts.h> #include <crypto/b128ops.h> #include <crypto/gf128mul.h> struct priv { struct crypto_skcipher *child; struct crypto_cipher *tweak; }; struct xts_instance_ctx { struct crypto_skcipher_spawn spawn; char name[CRYPTO_MAX_ALG_NAME]; }; struct rctx { le128 t; struct skcipher_request subreq; }; static int setkey(struct crypto_skcipher *parent, const u8 *key, unsigned int keylen) { struct priv *ctx = crypto_skcipher_ctx(parent); struct crypto_skcipher *child; struct crypto_cipher *tweak; int err; err = xts_verify_key(parent, key, keylen); if (err) return err; keylen /= 2; /* we need two cipher instances: one to compute the initial 'tweak' * by encrypting the IV (usually the 'plain' iv) and the other * one to encrypt and decrypt the data */ /* tweak cipher, uses Key2 i.e. the second half of *key */ tweak = ctx->tweak; crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_cipher_setkey(tweak, key + keylen, keylen); crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) & CRYPTO_TFM_RES_MASK); if (err) return err; /* data cipher, uses Key1 i.e. the first half of *key */ child = ctx->child; crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_skcipher_setkey(child, key, keylen); crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; } /* * We compute the tweak masks twice (both before and after the ECB encryption or * decryption) to avoid having to allocate a temporary buffer and/or make * mutliple calls to the 'ecb(..)' instance, which usually would be slower than * just doing the gf128mul_x_ble() calls again. */ static int xor_tweak(struct skcipher_request *req, bool second_pass) { struct rctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const int bs = XTS_BLOCK_SIZE; struct skcipher_walk w; le128 t = rctx->t; int err; if (second_pass) { req = &rctx->subreq; /* set to our TFM to enforce correct alignment: */ skcipher_request_set_tfm(req, tfm); } err = skcipher_walk_virt(&w, req, false); while (w.nbytes) { unsigned int avail = w.nbytes; le128 *wsrc; le128 *wdst; wsrc = w.src.virt.addr; wdst = w.dst.virt.addr; do { le128_xor(wdst++, &t, wsrc++); gf128mul_x_ble(&t, &t); } while ((avail -= bs) >= bs); err = skcipher_walk_done(&w, avail); } return err; } static int xor_tweak_pre(struct skcipher_request *req) { return xor_tweak(req, false); } static int xor_tweak_post(struct skcipher_request *req) { return xor_tweak(req, true); } static void crypt_done(struct crypto_async_request *areq, int err) { struct skcipher_request *req = areq->data; if (!err) { struct rctx *rctx = skcipher_request_ctx(req); rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; err = xor_tweak_post(req); } skcipher_request_complete(req, err); } static void init_crypt(struct skcipher_request *req) { struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); struct rctx *rctx = skcipher_request_ctx(req); struct skcipher_request *subreq = &rctx->subreq; skcipher_request_set_tfm(subreq, ctx->child); skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req); skcipher_request_set_crypt(subreq, req->dst, req->dst, req->cryptlen, NULL); /* calculate first value of T */ crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv); } static int encrypt(struct skcipher_request *req) { struct rctx *rctx = skcipher_request_ctx(req); struct skcipher_request *subreq = &rctx->subreq; init_crypt(req); return xor_tweak_pre(req) ?: crypto_skcipher_encrypt(subreq) ?: xor_tweak_post(req); } static int decrypt(struct skcipher_request *req) { struct rctx *rctx = skcipher_request_ctx(req); struct skcipher_request *subreq = &rctx->subreq; init_crypt(req); return xor_tweak_pre(req) ?: crypto_skcipher_decrypt(subreq) ?: xor_tweak_post(req); } static int init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst); struct priv *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *child; struct crypto_cipher *tweak; child = crypto_spawn_skcipher(&ictx->spawn); if (IS_ERR(child)) return PTR_ERR(child); ctx->child = child; tweak = crypto_alloc_cipher(ictx->name, 0, 0); if (IS_ERR(tweak)) { crypto_free_skcipher(ctx->child); return PTR_ERR(tweak); } ctx->tweak = tweak; crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) + sizeof(struct rctx)); return 0; } static void exit_tfm(struct crypto_skcipher *tfm) { struct priv *ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(ctx->child); crypto_free_cipher(ctx->tweak); } static void free(struct skcipher_instance *inst) { crypto_drop_skcipher(skcipher_instance_ctx(inst)); kfree(inst); } static int create(struct crypto_template *tmpl, struct rtattr **tb) { struct skcipher_instance *inst; struct crypto_attr_type *algt; struct xts_instance_ctx *ctx; struct skcipher_alg *alg; const char *cipher_name; u32 mask; int err; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) return -EINVAL; cipher_name = crypto_attr_alg_name(tb[1]); if (IS_ERR(cipher_name)) return PTR_ERR(cipher_name); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = skcipher_instance_ctx(inst); crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); mask = crypto_requires_off(algt->type, algt->mask, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask); if (err == -ENOENT) { err = -ENAMETOOLONG; if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask); } if (err) goto err_free_inst; alg = crypto_skcipher_spawn_alg(&ctx->spawn); err = -EINVAL; if (alg->base.cra_blocksize != XTS_BLOCK_SIZE) goto err_drop_spawn; if (crypto_skcipher_alg_ivsize(alg)) goto err_drop_spawn; err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts", &alg->base); if (err) goto err_drop_spawn; err = -EINVAL; cipher_name = alg->base.cra_name; /* Alas we screwed up the naming so we have to mangle the * cipher name. */ if (!strncmp(cipher_name, "ecb(", 4)) { unsigned len; len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name)); if (len < 2 || len >= sizeof(ctx->name)) goto err_drop_spawn; if (ctx->name[len - 1] != ')') goto err_drop_spawn; ctx->name[len - 1] = 0; if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) { err = -ENAMETOOLONG; goto err_drop_spawn; } } else goto err_drop_spawn; inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; inst->alg.base.cra_priority = alg->base.cra_priority; inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE; inst->alg.base.cra_alignmask = alg->base.cra_alignmask | (__alignof__(u64) - 1); inst->alg.ivsize = XTS_BLOCK_SIZE; inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2; inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2; inst->alg.base.cra_ctxsize = sizeof(struct priv); inst->alg.init = init_tfm; inst->alg.exit = exit_tfm; inst->alg.setkey = setkey; inst->alg.encrypt = encrypt; inst->alg.decrypt = decrypt; inst->free = free; err = skcipher_register_instance(tmpl, inst); if (err) goto err_drop_spawn; out: return err; err_drop_spawn: crypto_drop_skcipher(&ctx->spawn); err_free_inst: kfree(inst); goto out; } static struct crypto_template crypto_tmpl = { .name = "xts", .create = create, .module = THIS_MODULE, }; static int __init crypto_module_init(void) { return crypto_register_template(&crypto_tmpl); } static void __exit crypto_module_exit(void) { crypto_unregister_template(&crypto_tmpl); } subsys_initcall(crypto_module_init); module_exit(crypto_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("XTS block cipher mode"); MODULE_ALIAS_CRYPTO("xts");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1