Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luis R. Rodriguez | 2694 | 98.32% | 7 | 50.00% |
Mimi Zohar | 20 | 0.73% | 1 | 7.14% |
Andres Rodriguez | 17 | 0.62% | 3 | 21.43% |
Kees Cook | 4 | 0.15% | 1 | 7.14% |
Stephen Rothwell | 3 | 0.11% | 1 | 7.14% |
Jonathan Neuschäfer | 2 | 0.07% | 1 | 7.14% |
Total | 2740 | 14 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/types.h> #include <linux/kconfig.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/security.h> #include <linux/highmem.h> #include <linux/umh.h> #include <linux/sysctl.h> #include <linux/vmalloc.h> #include "fallback.h" #include "firmware.h" /* * firmware fallback mechanism */ extern struct firmware_fallback_config fw_fallback_config; /* These getters are vetted to use int properly */ static inline int __firmware_loading_timeout(void) { return fw_fallback_config.loading_timeout; } /* These setters are vetted to use int properly */ static void __fw_fallback_set_timeout(int timeout) { fw_fallback_config.loading_timeout = timeout; } /* * use small loading timeout for caching devices' firmware because all these * firmware images have been loaded successfully at lease once, also system is * ready for completing firmware loading now. The maximum size of firmware in * current distributions is about 2M bytes, so 10 secs should be enough. */ void fw_fallback_set_cache_timeout(void) { fw_fallback_config.old_timeout = __firmware_loading_timeout(); __fw_fallback_set_timeout(10); } /* Restores the timeout to the value last configured during normal operation */ void fw_fallback_set_default_timeout(void) { __fw_fallback_set_timeout(fw_fallback_config.old_timeout); } static long firmware_loading_timeout(void) { return __firmware_loading_timeout() > 0 ? __firmware_loading_timeout() * HZ : MAX_JIFFY_OFFSET; } static inline bool fw_sysfs_done(struct fw_priv *fw_priv) { return __fw_state_check(fw_priv, FW_STATUS_DONE); } static inline bool fw_sysfs_loading(struct fw_priv *fw_priv) { return __fw_state_check(fw_priv, FW_STATUS_LOADING); } static inline int fw_sysfs_wait_timeout(struct fw_priv *fw_priv, long timeout) { return __fw_state_wait_common(fw_priv, timeout); } struct fw_sysfs { bool nowait; struct device dev; struct fw_priv *fw_priv; struct firmware *fw; }; static struct fw_sysfs *to_fw_sysfs(struct device *dev) { return container_of(dev, struct fw_sysfs, dev); } static void __fw_load_abort(struct fw_priv *fw_priv) { /* * There is a small window in which user can write to 'loading' * between loading done and disappearance of 'loading' */ if (fw_sysfs_done(fw_priv)) return; list_del_init(&fw_priv->pending_list); fw_state_aborted(fw_priv); } static void fw_load_abort(struct fw_sysfs *fw_sysfs) { struct fw_priv *fw_priv = fw_sysfs->fw_priv; __fw_load_abort(fw_priv); } static LIST_HEAD(pending_fw_head); void kill_pending_fw_fallback_reqs(bool only_kill_custom) { struct fw_priv *fw_priv; struct fw_priv *next; mutex_lock(&fw_lock); list_for_each_entry_safe(fw_priv, next, &pending_fw_head, pending_list) { if (!fw_priv->need_uevent || !only_kill_custom) __fw_load_abort(fw_priv); } mutex_unlock(&fw_lock); } static ssize_t timeout_show(struct class *class, struct class_attribute *attr, char *buf) { return sprintf(buf, "%d\n", __firmware_loading_timeout()); } /** * firmware_timeout_store() - set number of seconds to wait for firmware * @class: device class pointer * @attr: device attribute pointer * @buf: buffer to scan for timeout value * @count: number of bytes in @buf * * Sets the number of seconds to wait for the firmware. Once * this expires an error will be returned to the driver and no * firmware will be provided. * * Note: zero means 'wait forever'. **/ static ssize_t timeout_store(struct class *class, struct class_attribute *attr, const char *buf, size_t count) { int tmp_loading_timeout = simple_strtol(buf, NULL, 10); if (tmp_loading_timeout < 0) tmp_loading_timeout = 0; __fw_fallback_set_timeout(tmp_loading_timeout); return count; } static CLASS_ATTR_RW(timeout); static struct attribute *firmware_class_attrs[] = { &class_attr_timeout.attr, NULL, }; ATTRIBUTE_GROUPS(firmware_class); static void fw_dev_release(struct device *dev) { struct fw_sysfs *fw_sysfs = to_fw_sysfs(dev); kfree(fw_sysfs); } static int do_firmware_uevent(struct fw_sysfs *fw_sysfs, struct kobj_uevent_env *env) { if (add_uevent_var(env, "FIRMWARE=%s", fw_sysfs->fw_priv->fw_name)) return -ENOMEM; if (add_uevent_var(env, "TIMEOUT=%i", __firmware_loading_timeout())) return -ENOMEM; if (add_uevent_var(env, "ASYNC=%d", fw_sysfs->nowait)) return -ENOMEM; return 0; } static int firmware_uevent(struct device *dev, struct kobj_uevent_env *env) { struct fw_sysfs *fw_sysfs = to_fw_sysfs(dev); int err = 0; mutex_lock(&fw_lock); if (fw_sysfs->fw_priv) err = do_firmware_uevent(fw_sysfs, env); mutex_unlock(&fw_lock); return err; } static struct class firmware_class = { .name = "firmware", .class_groups = firmware_class_groups, .dev_uevent = firmware_uevent, .dev_release = fw_dev_release, }; int register_sysfs_loader(void) { return class_register(&firmware_class); } void unregister_sysfs_loader(void) { class_unregister(&firmware_class); } static ssize_t firmware_loading_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fw_sysfs *fw_sysfs = to_fw_sysfs(dev); int loading = 0; mutex_lock(&fw_lock); if (fw_sysfs->fw_priv) loading = fw_sysfs_loading(fw_sysfs->fw_priv); mutex_unlock(&fw_lock); return sprintf(buf, "%d\n", loading); } /* one pages buffer should be mapped/unmapped only once */ static int map_fw_priv_pages(struct fw_priv *fw_priv) { if (!fw_priv->is_paged_buf) return 0; vunmap(fw_priv->data); fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, PAGE_KERNEL_RO); if (!fw_priv->data) return -ENOMEM; return 0; } /** * firmware_loading_store() - set value in the 'loading' control file * @dev: device pointer * @attr: device attribute pointer * @buf: buffer to scan for loading control value * @count: number of bytes in @buf * * The relevant values are: * * 1: Start a load, discarding any previous partial load. * 0: Conclude the load and hand the data to the driver code. * -1: Conclude the load with an error and discard any written data. **/ static ssize_t firmware_loading_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fw_sysfs *fw_sysfs = to_fw_sysfs(dev); struct fw_priv *fw_priv; ssize_t written = count; int loading = simple_strtol(buf, NULL, 10); int i; mutex_lock(&fw_lock); fw_priv = fw_sysfs->fw_priv; if (fw_state_is_aborted(fw_priv)) goto out; switch (loading) { case 1: /* discarding any previous partial load */ if (!fw_sysfs_done(fw_priv)) { for (i = 0; i < fw_priv->nr_pages; i++) __free_page(fw_priv->pages[i]); vfree(fw_priv->pages); fw_priv->pages = NULL; fw_priv->page_array_size = 0; fw_priv->nr_pages = 0; fw_state_start(fw_priv); } break; case 0: if (fw_sysfs_loading(fw_priv)) { int rc; /* * Several loading requests may be pending on * one same firmware buf, so let all requests * see the mapped 'buf->data' once the loading * is completed. * */ rc = map_fw_priv_pages(fw_priv); if (rc) dev_err(dev, "%s: map pages failed\n", __func__); else rc = security_kernel_post_read_file(NULL, fw_priv->data, fw_priv->size, READING_FIRMWARE); /* * Same logic as fw_load_abort, only the DONE bit * is ignored and we set ABORT only on failure. */ list_del_init(&fw_priv->pending_list); if (rc) { fw_state_aborted(fw_priv); written = rc; } else { fw_state_done(fw_priv); } break; } /* fallthrough */ default: dev_err(dev, "%s: unexpected value (%d)\n", __func__, loading); /* fallthrough */ case -1: fw_load_abort(fw_sysfs); break; } out: mutex_unlock(&fw_lock); return written; } static DEVICE_ATTR(loading, 0644, firmware_loading_show, firmware_loading_store); static void firmware_rw_data(struct fw_priv *fw_priv, char *buffer, loff_t offset, size_t count, bool read) { if (read) memcpy(buffer, fw_priv->data + offset, count); else memcpy(fw_priv->data + offset, buffer, count); } static void firmware_rw(struct fw_priv *fw_priv, char *buffer, loff_t offset, size_t count, bool read) { while (count) { void *page_data; int page_nr = offset >> PAGE_SHIFT; int page_ofs = offset & (PAGE_SIZE-1); int page_cnt = min_t(size_t, PAGE_SIZE - page_ofs, count); page_data = kmap(fw_priv->pages[page_nr]); if (read) memcpy(buffer, page_data + page_ofs, page_cnt); else memcpy(page_data + page_ofs, buffer, page_cnt); kunmap(fw_priv->pages[page_nr]); buffer += page_cnt; offset += page_cnt; count -= page_cnt; } } static ssize_t firmware_data_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buffer, loff_t offset, size_t count) { struct device *dev = kobj_to_dev(kobj); struct fw_sysfs *fw_sysfs = to_fw_sysfs(dev); struct fw_priv *fw_priv; ssize_t ret_count; mutex_lock(&fw_lock); fw_priv = fw_sysfs->fw_priv; if (!fw_priv || fw_sysfs_done(fw_priv)) { ret_count = -ENODEV; goto out; } if (offset > fw_priv->size) { ret_count = 0; goto out; } if (count > fw_priv->size - offset) count = fw_priv->size - offset; ret_count = count; if (fw_priv->data) firmware_rw_data(fw_priv, buffer, offset, count, true); else firmware_rw(fw_priv, buffer, offset, count, true); out: mutex_unlock(&fw_lock); return ret_count; } static int fw_realloc_pages(struct fw_sysfs *fw_sysfs, int min_size) { struct fw_priv *fw_priv= fw_sysfs->fw_priv; int pages_needed = PAGE_ALIGN(min_size) >> PAGE_SHIFT; /* If the array of pages is too small, grow it... */ if (fw_priv->page_array_size < pages_needed) { int new_array_size = max(pages_needed, fw_priv->page_array_size * 2); struct page **new_pages; new_pages = vmalloc(array_size(new_array_size, sizeof(void *))); if (!new_pages) { fw_load_abort(fw_sysfs); return -ENOMEM; } memcpy(new_pages, fw_priv->pages, fw_priv->page_array_size * sizeof(void *)); memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * (new_array_size - fw_priv->page_array_size)); vfree(fw_priv->pages); fw_priv->pages = new_pages; fw_priv->page_array_size = new_array_size; } while (fw_priv->nr_pages < pages_needed) { fw_priv->pages[fw_priv->nr_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); if (!fw_priv->pages[fw_priv->nr_pages]) { fw_load_abort(fw_sysfs); return -ENOMEM; } fw_priv->nr_pages++; } return 0; } /** * firmware_data_write() - write method for firmware * @filp: open sysfs file * @kobj: kobject for the device * @bin_attr: bin_attr structure * @buffer: buffer being written * @offset: buffer offset for write in total data store area * @count: buffer size * * Data written to the 'data' attribute will be later handed to * the driver as a firmware image. **/ static ssize_t firmware_data_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buffer, loff_t offset, size_t count) { struct device *dev = kobj_to_dev(kobj); struct fw_sysfs *fw_sysfs = to_fw_sysfs(dev); struct fw_priv *fw_priv; ssize_t retval; if (!capable(CAP_SYS_RAWIO)) return -EPERM; mutex_lock(&fw_lock); fw_priv = fw_sysfs->fw_priv; if (!fw_priv || fw_sysfs_done(fw_priv)) { retval = -ENODEV; goto out; } if (fw_priv->data) { if (offset + count > fw_priv->allocated_size) { retval = -ENOMEM; goto out; } firmware_rw_data(fw_priv, buffer, offset, count, false); retval = count; } else { retval = fw_realloc_pages(fw_sysfs, offset + count); if (retval) goto out; retval = count; firmware_rw(fw_priv, buffer, offset, count, false); } fw_priv->size = max_t(size_t, offset + count, fw_priv->size); out: mutex_unlock(&fw_lock); return retval; } static struct bin_attribute firmware_attr_data = { .attr = { .name = "data", .mode = 0644 }, .size = 0, .read = firmware_data_read, .write = firmware_data_write, }; static struct attribute *fw_dev_attrs[] = { &dev_attr_loading.attr, NULL }; static struct bin_attribute *fw_dev_bin_attrs[] = { &firmware_attr_data, NULL }; static const struct attribute_group fw_dev_attr_group = { .attrs = fw_dev_attrs, .bin_attrs = fw_dev_bin_attrs, }; static const struct attribute_group *fw_dev_attr_groups[] = { &fw_dev_attr_group, NULL }; static struct fw_sysfs * fw_create_instance(struct firmware *firmware, const char *fw_name, struct device *device, enum fw_opt opt_flags) { struct fw_sysfs *fw_sysfs; struct device *f_dev; fw_sysfs = kzalloc(sizeof(*fw_sysfs), GFP_KERNEL); if (!fw_sysfs) { fw_sysfs = ERR_PTR(-ENOMEM); goto exit; } fw_sysfs->nowait = !!(opt_flags & FW_OPT_NOWAIT); fw_sysfs->fw = firmware; f_dev = &fw_sysfs->dev; device_initialize(f_dev); dev_set_name(f_dev, "%s", fw_name); f_dev->parent = device; f_dev->class = &firmware_class; f_dev->groups = fw_dev_attr_groups; exit: return fw_sysfs; } /** * fw_load_sysfs_fallback() - load a firmware via the sysfs fallback mechanism * @fw_sysfs: firmware sysfs information for the firmware to load * @opt_flags: flags of options, FW_OPT_* * @timeout: timeout to wait for the load * * In charge of constructing a sysfs fallback interface for firmware loading. **/ static int fw_load_sysfs_fallback(struct fw_sysfs *fw_sysfs, enum fw_opt opt_flags, long timeout) { int retval = 0; struct device *f_dev = &fw_sysfs->dev; struct fw_priv *fw_priv = fw_sysfs->fw_priv; /* fall back on userspace loading */ if (!fw_priv->data) fw_priv->is_paged_buf = true; dev_set_uevent_suppress(f_dev, true); retval = device_add(f_dev); if (retval) { dev_err(f_dev, "%s: device_register failed\n", __func__); goto err_put_dev; } mutex_lock(&fw_lock); list_add(&fw_priv->pending_list, &pending_fw_head); mutex_unlock(&fw_lock); if (opt_flags & FW_OPT_UEVENT) { fw_priv->need_uevent = true; dev_set_uevent_suppress(f_dev, false); dev_dbg(f_dev, "firmware: requesting %s\n", fw_priv->fw_name); kobject_uevent(&fw_sysfs->dev.kobj, KOBJ_ADD); } else { timeout = MAX_JIFFY_OFFSET; } retval = fw_sysfs_wait_timeout(fw_priv, timeout); if (retval < 0) { mutex_lock(&fw_lock); fw_load_abort(fw_sysfs); mutex_unlock(&fw_lock); } if (fw_state_is_aborted(fw_priv)) { if (retval == -ERESTARTSYS) retval = -EINTR; else retval = -EAGAIN; } else if (fw_priv->is_paged_buf && !fw_priv->data) retval = -ENOMEM; device_del(f_dev); err_put_dev: put_device(f_dev); return retval; } static int fw_load_from_user_helper(struct firmware *firmware, const char *name, struct device *device, enum fw_opt opt_flags) { struct fw_sysfs *fw_sysfs; long timeout; int ret; timeout = firmware_loading_timeout(); if (opt_flags & FW_OPT_NOWAIT) { timeout = usermodehelper_read_lock_wait(timeout); if (!timeout) { dev_dbg(device, "firmware: %s loading timed out\n", name); return -EBUSY; } } else { ret = usermodehelper_read_trylock(); if (WARN_ON(ret)) { dev_err(device, "firmware: %s will not be loaded\n", name); return ret; } } fw_sysfs = fw_create_instance(firmware, name, device, opt_flags); if (IS_ERR(fw_sysfs)) { ret = PTR_ERR(fw_sysfs); goto out_unlock; } fw_sysfs->fw_priv = firmware->priv; ret = fw_load_sysfs_fallback(fw_sysfs, opt_flags, timeout); if (!ret) ret = assign_fw(firmware, device, opt_flags); out_unlock: usermodehelper_read_unlock(); return ret; } static bool fw_force_sysfs_fallback(enum fw_opt opt_flags) { if (fw_fallback_config.force_sysfs_fallback) return true; if (!(opt_flags & FW_OPT_USERHELPER)) return false; return true; } static bool fw_run_sysfs_fallback(enum fw_opt opt_flags) { int ret; if (fw_fallback_config.ignore_sysfs_fallback) { pr_info_once("Ignoring firmware sysfs fallback due to sysctl knob\n"); return false; } if ((opt_flags & FW_OPT_NOFALLBACK)) return false; /* Also permit LSMs and IMA to fail firmware sysfs fallback */ ret = security_kernel_load_data(LOADING_FIRMWARE); if (ret < 0) return ret; return fw_force_sysfs_fallback(opt_flags); } /** * firmware_fallback_sysfs() - use the fallback mechanism to find firmware * @fw: pointer to firmware image * @name: name of firmware file to look for * @device: device for which firmware is being loaded * @opt_flags: options to control firmware loading behaviour * @ret: return value from direct lookup which triggered the fallback mechanism * * This function is called if direct lookup for the firmware failed, it enables * a fallback mechanism through userspace by exposing a sysfs loading * interface. Userspace is in charge of loading the firmware through the sysfs * loading interface. This sysfs fallback mechanism may be disabled completely * on a system by setting the proc sysctl value ignore_sysfs_fallback to true. * If this false we check if the internal API caller set the @FW_OPT_NOFALLBACK * flag, if so it would also disable the fallback mechanism. A system may want * to enfoce the sysfs fallback mechanism at all times, it can do this by * setting ignore_sysfs_fallback to false and force_sysfs_fallback to true. * Enabling force_sysfs_fallback is functionally equivalent to build a kernel * with CONFIG_FW_LOADER_USER_HELPER_FALLBACK. **/ int firmware_fallback_sysfs(struct firmware *fw, const char *name, struct device *device, enum fw_opt opt_flags, int ret) { if (!fw_run_sysfs_fallback(opt_flags)) return ret; if (!(opt_flags & FW_OPT_NO_WARN)) dev_warn(device, "Falling back to sysfs fallback for: %s\n", name); else dev_dbg(device, "Falling back to sysfs fallback for: %s\n", name); return fw_load_from_user_helper(fw, name, device, opt_flags); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1