Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maxime Ripard | 1043 | 69.21% | 4 | 21.05% |
Chen-Yu Tsai | 245 | 16.26% | 5 | 26.32% |
Hans de Goede | 202 | 13.40% | 2 | 10.53% |
Stephen Boyd | 10 | 0.66% | 3 | 15.79% |
Rob Herring | 2 | 0.13% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.13% | 1 | 5.26% |
Julia Lawall | 1 | 0.07% | 1 | 5.26% |
Paul Gortmaker | 1 | 0.07% | 1 | 5.26% |
Ricardo Ribalda Delgado | 1 | 0.07% | 1 | 5.26% |
Total | 1507 | 19 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2013 Emilio López * * Emilio López <emilio@elopez.com.ar> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "clk-factors.h" /** * sun4i_a10_get_mod0_factors() - calculates m, n factors for MOD0-style clocks * MOD0 rate is calculated as follows * rate = (parent_rate >> p) / (m + 1); */ static void sun4i_a10_get_mod0_factors(struct factors_request *req) { u8 div, calcm, calcp; /* These clocks can only divide, so we will never be able to achieve * frequencies higher than the parent frequency */ if (req->rate > req->parent_rate) req->rate = req->parent_rate; div = DIV_ROUND_UP(req->parent_rate, req->rate); if (div < 16) calcp = 0; else if (div / 2 < 16) calcp = 1; else if (div / 4 < 16) calcp = 2; else calcp = 3; calcm = DIV_ROUND_UP(div, 1 << calcp); req->rate = (req->parent_rate >> calcp) / calcm; req->m = calcm - 1; req->p = calcp; } /* user manual says "n" but it's really "p" */ static const struct clk_factors_config sun4i_a10_mod0_config = { .mshift = 0, .mwidth = 4, .pshift = 16, .pwidth = 2, }; static const struct factors_data sun4i_a10_mod0_data = { .enable = 31, .mux = 24, .muxmask = BIT(1) | BIT(0), .table = &sun4i_a10_mod0_config, .getter = sun4i_a10_get_mod0_factors, }; static DEFINE_SPINLOCK(sun4i_a10_mod0_lock); static void __init sun4i_a10_mod0_setup(struct device_node *node) { void __iomem *reg; reg = of_iomap(node, 0); if (!reg) { /* * This happens with mod0 clk nodes instantiated through * mfd, as those do not have their resources assigned at * CLK_OF_DECLARE time yet, so do not print an error. */ return; } sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun4i_a10_mod0_lock, reg); } CLK_OF_DECLARE_DRIVER(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup); static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct resource *r; void __iomem *reg; if (!np) return -ENODEV; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); reg = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(reg)) return PTR_ERR(reg); sunxi_factors_register(np, &sun4i_a10_mod0_data, &sun4i_a10_mod0_lock, reg); return 0; } static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = { { .compatible = "allwinner,sun4i-a10-mod0-clk" }, { /* sentinel */ } }; static struct platform_driver sun4i_a10_mod0_clk_driver = { .driver = { .name = "sun4i-a10-mod0-clk", .of_match_table = sun4i_a10_mod0_clk_dt_ids, }, .probe = sun4i_a10_mod0_clk_probe, }; builtin_platform_driver(sun4i_a10_mod0_clk_driver); static const struct factors_data sun9i_a80_mod0_data __initconst = { .enable = 31, .mux = 24, .muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0), .table = &sun4i_a10_mod0_config, .getter = sun4i_a10_get_mod0_factors, }; static void __init sun9i_a80_mod0_setup(struct device_node *node) { void __iomem *reg; reg = of_io_request_and_map(node, 0, of_node_full_name(node)); if (IS_ERR(reg)) { pr_err("Could not get registers for mod0-clk: %pOFn\n", node); return; } sunxi_factors_register(node, &sun9i_a80_mod0_data, &sun4i_a10_mod0_lock, reg); } CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup); static DEFINE_SPINLOCK(sun5i_a13_mbus_lock); static void __init sun5i_a13_mbus_setup(struct device_node *node) { void __iomem *reg; reg = of_iomap(node, 0); if (!reg) { pr_err("Could not get registers for a13-mbus-clk\n"); return; } /* The MBUS clocks needs to be always enabled */ sunxi_factors_register_critical(node, &sun4i_a10_mod0_data, &sun5i_a13_mbus_lock, reg); } CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup); struct mmc_phase { struct clk_hw hw; u8 offset; void __iomem *reg; spinlock_t *lock; }; #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw) static int mmc_get_phase(struct clk_hw *hw) { struct clk *mmc, *mmc_parent, *clk = hw->clk; struct mmc_phase *phase = to_mmc_phase(hw); unsigned int mmc_rate, mmc_parent_rate; u16 step, mmc_div; u32 value; u8 delay; value = readl(phase->reg); delay = (value >> phase->offset) & 0x3; if (!delay) return 180; /* Get the main MMC clock */ mmc = clk_get_parent(clk); if (!mmc) return -EINVAL; /* And its rate */ mmc_rate = clk_get_rate(mmc); if (!mmc_rate) return -EINVAL; /* Now, get the MMC parent (most likely some PLL) */ mmc_parent = clk_get_parent(mmc); if (!mmc_parent) return -EINVAL; /* And its rate */ mmc_parent_rate = clk_get_rate(mmc_parent); if (!mmc_parent_rate) return -EINVAL; /* Get MMC clock divider */ mmc_div = mmc_parent_rate / mmc_rate; step = DIV_ROUND_CLOSEST(360, mmc_div); return delay * step; } static int mmc_set_phase(struct clk_hw *hw, int degrees) { struct clk *mmc, *mmc_parent, *clk = hw->clk; struct mmc_phase *phase = to_mmc_phase(hw); unsigned int mmc_rate, mmc_parent_rate; unsigned long flags; u32 value; u8 delay; /* Get the main MMC clock */ mmc = clk_get_parent(clk); if (!mmc) return -EINVAL; /* And its rate */ mmc_rate = clk_get_rate(mmc); if (!mmc_rate) return -EINVAL; /* Now, get the MMC parent (most likely some PLL) */ mmc_parent = clk_get_parent(mmc); if (!mmc_parent) return -EINVAL; /* And its rate */ mmc_parent_rate = clk_get_rate(mmc_parent); if (!mmc_parent_rate) return -EINVAL; if (degrees != 180) { u16 step, mmc_div; /* Get MMC clock divider */ mmc_div = mmc_parent_rate / mmc_rate; /* * We can only outphase the clocks by multiple of the * PLL's period. * * Since the MMC clock in only a divider, and the * formula to get the outphasing in degrees is deg = * 360 * delta / period * * If we simplify this formula, we can see that the * only thing that we're concerned about is the number * of period we want to outphase our clock from, and * the divider set by the MMC clock. */ step = DIV_ROUND_CLOSEST(360, mmc_div); delay = DIV_ROUND_CLOSEST(degrees, step); } else { delay = 0; } spin_lock_irqsave(phase->lock, flags); value = readl(phase->reg); value &= ~GENMASK(phase->offset + 3, phase->offset); value |= delay << phase->offset; writel(value, phase->reg); spin_unlock_irqrestore(phase->lock, flags); return 0; } static const struct clk_ops mmc_clk_ops = { .get_phase = mmc_get_phase, .set_phase = mmc_set_phase, }; /* * sunxi_mmc_setup - Common setup function for mmc module clocks * * The only difference between module clocks on different platforms is the * width of the mux register bits and the valid values, which are passed in * through struct factors_data. The phase clocks parts are identical. */ static void __init sunxi_mmc_setup(struct device_node *node, const struct factors_data *data, spinlock_t *lock) { struct clk_onecell_data *clk_data; const char *parent; void __iomem *reg; int i; reg = of_io_request_and_map(node, 0, of_node_full_name(node)); if (IS_ERR(reg)) { pr_err("Couldn't map the %pOFn clock registers\n", node); return; } clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL); if (!clk_data) return; clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL); if (!clk_data->clks) goto err_free_data; clk_data->clk_num = 3; clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg); if (!clk_data->clks[0]) goto err_free_clks; parent = __clk_get_name(clk_data->clks[0]); for (i = 1; i < 3; i++) { struct clk_init_data init = { .num_parents = 1, .parent_names = &parent, .ops = &mmc_clk_ops, }; struct mmc_phase *phase; phase = kmalloc(sizeof(*phase), GFP_KERNEL); if (!phase) continue; phase->hw.init = &init; phase->reg = reg; phase->lock = lock; if (i == 1) phase->offset = 8; else phase->offset = 20; if (of_property_read_string_index(node, "clock-output-names", i, &init.name)) init.name = node->name; clk_data->clks[i] = clk_register(NULL, &phase->hw); if (IS_ERR(clk_data->clks[i])) { kfree(phase); continue; } } of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); return; err_free_clks: kfree(clk_data->clks); err_free_data: kfree(clk_data); } static DEFINE_SPINLOCK(sun4i_a10_mmc_lock); static void __init sun4i_a10_mmc_setup(struct device_node *node) { sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock); } CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup); static DEFINE_SPINLOCK(sun9i_a80_mmc_lock); static void __init sun9i_a80_mmc_setup(struct device_node *node) { sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock); } CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1