Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Walmsley | 785 | 70.59% | 5 | 22.73% |
Tero Kristo | 140 | 12.59% | 9 | 40.91% |
Michael Turquette | 93 | 8.36% | 2 | 9.09% |
Jon Hunter | 52 | 4.68% | 1 | 4.55% |
Rajendra Nayak | 28 | 2.52% | 1 | 4.55% |
Stephen Boyd | 7 | 0.63% | 1 | 4.55% |
Tomi Valkeinen | 3 | 0.27% | 1 | 4.55% |
Nico Pitre | 2 | 0.18% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.18% | 1 | 4.55% |
Total | 1112 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * OMAP2/3/4 DPLL clock functions * * Copyright (C) 2005-2008 Texas Instruments, Inc. * Copyright (C) 2004-2010 Nokia Corporation * * Contacts: * Richard Woodruff <r-woodruff2@ti.com> * Paul Walmsley */ #undef DEBUG #include <linux/kernel.h> #include <linux/errno.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/clk/ti.h> #include <asm/div64.h> #include "clock.h" /* DPLL rate rounding: minimum DPLL multiplier, divider values */ #define DPLL_MIN_MULTIPLIER 2 #define DPLL_MIN_DIVIDER 1 /* Possible error results from _dpll_test_mult */ #define DPLL_MULT_UNDERFLOW -1 /* * Scale factor to mitigate roundoff errors in DPLL rate rounding. * The higher the scale factor, the greater the risk of arithmetic overflow, * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR * must be a power of DPLL_SCALE_BASE. */ #define DPLL_SCALE_FACTOR 64 #define DPLL_SCALE_BASE 2 #define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) /* * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx. * From device data manual section 4.3 "DPLL and DLL Specifications". */ #define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000 #define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000 /* _dpll_test_fint() return codes */ #define DPLL_FINT_UNDERFLOW -1 #define DPLL_FINT_INVALID -2 /* Private functions */ /* * _dpll_test_fint - test whether an Fint value is valid for the DPLL * @clk: DPLL struct clk to test * @n: divider value (N) to test * * Tests whether a particular divider @n will result in a valid DPLL * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter * Correction". Returns 0 if OK, -1 if the enclosing loop can terminate * (assuming that it is counting N upwards), or -2 if the enclosing loop * should skip to the next iteration (again assuming N is increasing). */ static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n) { struct dpll_data *dd; long fint, fint_min, fint_max; int ret = 0; dd = clk->dpll_data; /* DPLL divider must result in a valid jitter correction val */ fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n; if (dd->flags & DPLL_J_TYPE) { fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN; fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX; } else { fint_min = ti_clk_get_features()->fint_min; fint_max = ti_clk_get_features()->fint_max; } if (!fint_min || !fint_max) { WARN(1, "No fint limits available!\n"); return DPLL_FINT_INVALID; } if (fint < ti_clk_get_features()->fint_min) { pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n", n); dd->max_divider = n; ret = DPLL_FINT_UNDERFLOW; } else if (fint > ti_clk_get_features()->fint_max) { pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n", n); dd->min_divider = n; ret = DPLL_FINT_INVALID; } else if (fint > ti_clk_get_features()->fint_band1_max && fint < ti_clk_get_features()->fint_band2_min) { pr_debug("rejecting n=%d due to Fint failure\n", n); ret = DPLL_FINT_INVALID; } return ret; } static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, unsigned int m, unsigned int n) { unsigned long long num; num = (unsigned long long)parent_rate * m; do_div(num, n); return num; } /* * _dpll_test_mult - test a DPLL multiplier value * @m: pointer to the DPLL m (multiplier) value under test * @n: current DPLL n (divider) value under test * @new_rate: pointer to storage for the resulting rounded rate * @target_rate: the desired DPLL rate * @parent_rate: the DPLL's parent clock rate * * This code tests a DPLL multiplier value, ensuring that the * resulting rate will not be higher than the target_rate, and that * the multiplier value itself is valid for the DPLL. Initially, the * integer pointed to by the m argument should be prescaled by * multiplying by DPLL_SCALE_FACTOR. The code will replace this with * a non-scaled m upon return. This non-scaled m will result in a * new_rate as close as possible to target_rate (but not greater than * target_rate) given the current (parent_rate, n, prescaled m) * triple. Returns DPLL_MULT_UNDERFLOW in the event that the * non-scaled m attempted to underflow, which can allow the calling * function to bail out early; or 0 upon success. */ static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, unsigned long target_rate, unsigned long parent_rate) { int r = 0, carry = 0; /* Unscale m and round if necessary */ if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) carry = 1; *m = (*m / DPLL_SCALE_FACTOR) + carry; /* * The new rate must be <= the target rate to avoid programming * a rate that is impossible for the hardware to handle */ *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); if (*new_rate > target_rate) { (*m)--; *new_rate = 0; } /* Guard against m underflow */ if (*m < DPLL_MIN_MULTIPLIER) { *m = DPLL_MIN_MULTIPLIER; *new_rate = 0; r = DPLL_MULT_UNDERFLOW; } if (*new_rate == 0) *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); return r; } /** * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not * @v: bitfield value of the DPLL enable * * Checks given DPLL enable bitfield to see whether the DPLL is in bypass * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise. */ static int _omap2_dpll_is_in_bypass(u32 v) { u8 mask, val; mask = ti_clk_get_features()->dpll_bypass_vals; /* * Each set bit in the mask corresponds to a bypass value equal * to the bitshift. Go through each set-bit in the mask and * compare against the given register value. */ while (mask) { val = __ffs(mask); mask ^= (1 << val); if (v == val) return 1; } return 0; } /* Public functions */ u8 omap2_init_dpll_parent(struct clk_hw *hw) { struct clk_hw_omap *clk = to_clk_hw_omap(hw); u32 v; struct dpll_data *dd; dd = clk->dpll_data; if (!dd) return -EINVAL; v = ti_clk_ll_ops->clk_readl(&dd->control_reg); v &= dd->enable_mask; v >>= __ffs(dd->enable_mask); /* Reparent the struct clk in case the dpll is in bypass */ if (_omap2_dpll_is_in_bypass(v)) return 1; return 0; } /** * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate * @clk: struct clk * of a DPLL * * DPLLs can be locked or bypassed - basically, enabled or disabled. * When locked, the DPLL output depends on the M and N values. When * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 * if the clock @clk is not a DPLL. */ unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk) { u64 dpll_clk; u32 dpll_mult, dpll_div, v; struct dpll_data *dd; dd = clk->dpll_data; if (!dd) return 0; /* Return bypass rate if DPLL is bypassed */ v = ti_clk_ll_ops->clk_readl(&dd->control_reg); v &= dd->enable_mask; v >>= __ffs(dd->enable_mask); if (_omap2_dpll_is_in_bypass(v)) return clk_hw_get_rate(dd->clk_bypass); v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg); dpll_mult = v & dd->mult_mask; dpll_mult >>= __ffs(dd->mult_mask); dpll_div = v & dd->div1_mask; dpll_div >>= __ffs(dd->div1_mask); dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult; do_div(dpll_clk, dpll_div + 1); return dpll_clk; } /* DPLL rate rounding code */ /** * omap2_dpll_round_rate - round a target rate for an OMAP DPLL * @clk: struct clk * for a DPLL * @target_rate: desired DPLL clock rate * * Given a DPLL and a desired target rate, round the target rate to a * possible, programmable rate for this DPLL. Attempts to select the * minimum possible n. Stores the computed (m, n) in the DPLL's * dpll_data structure so set_rate() will not need to call this * (expensive) function again. Returns ~0 if the target rate cannot * be rounded, or the rounded rate upon success. */ long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate, unsigned long *parent_rate) { struct clk_hw_omap *clk = to_clk_hw_omap(hw); int m, n, r, scaled_max_m; int min_delta_m = INT_MAX, min_delta_n = INT_MAX; unsigned long scaled_rt_rp; unsigned long new_rate = 0; struct dpll_data *dd; unsigned long ref_rate; long delta; long prev_min_delta = LONG_MAX; const char *clk_name; if (!clk || !clk->dpll_data) return ~0; dd = clk->dpll_data; if (dd->max_rate && target_rate > dd->max_rate) target_rate = dd->max_rate; ref_rate = clk_hw_get_rate(dd->clk_ref); clk_name = clk_hw_get_name(hw); pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n", clk_name, target_rate); scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR); scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR; dd->last_rounded_rate = 0; for (n = dd->min_divider; n <= dd->max_divider; n++) { /* Is the (input clk, divider) pair valid for the DPLL? */ r = _dpll_test_fint(clk, n); if (r == DPLL_FINT_UNDERFLOW) break; else if (r == DPLL_FINT_INVALID) continue; /* Compute the scaled DPLL multiplier, based on the divider */ m = scaled_rt_rp * n; /* * Since we're counting n up, a m overflow means we * can bail out completely (since as n increases in * the next iteration, there's no way that m can * increase beyond the current m) */ if (m > scaled_max_m) break; r = _dpll_test_mult(&m, n, &new_rate, target_rate, ref_rate); /* m can't be set low enough for this n - try with a larger n */ if (r == DPLL_MULT_UNDERFLOW) continue; /* skip rates above our target rate */ delta = target_rate - new_rate; if (delta < 0) continue; if (delta < prev_min_delta) { prev_min_delta = delta; min_delta_m = m; min_delta_n = n; } pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n", clk_name, m, n, new_rate); if (delta == 0) break; } if (prev_min_delta == LONG_MAX) { pr_debug("clock: %s: cannot round to rate %lu\n", clk_name, target_rate); return ~0; } dd->last_rounded_m = min_delta_m; dd->last_rounded_n = min_delta_n; dd->last_rounded_rate = target_rate - prev_min_delta; return dd->last_rounded_rate; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1