Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Rice | 4579 | 99.93% | 1 | 33.33% |
Thomas Gleixner | 2 | 0.04% | 1 | 33.33% |
Raveendra Padasalagi | 1 | 0.02% | 1 | 33.33% |
Total | 4582 | 3 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2016 Broadcom */ /* * This file works with the SPU2 version of the SPU. SPU2 has different message * formats than the previous version of the SPU. All SPU message format * differences should be hidden in the spux.c,h files. */ #include <linux/kernel.h> #include <linux/string.h> #include "util.h" #include "spu.h" #include "spu2.h" #define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */ /* * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0 * register. Defaults to 2. */ #define SPU2_RX_STATUS_LEN 2 enum spu2_proto_sel { SPU2_PROTO_RESV = 0, SPU2_MACSEC_SECTAG8_ECB = 1, SPU2_MACSEC_SECTAG8_SCB = 2, SPU2_MACSEC_SECTAG16 = 3, SPU2_MACSEC_SECTAG16_8_XPN = 4, SPU2_IPSEC = 5, SPU2_IPSEC_ESN = 6, SPU2_TLS_CIPHER = 7, SPU2_TLS_AEAD = 8, SPU2_DTLS_CIPHER = 9, SPU2_DTLS_AEAD = 10 }; char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256", "DES", "3DES" }; char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB", "XTS", "CCM", "GCM" }; char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256", "Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384", "SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256", "SHA3-384", "SHA3-512" }; char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC", "Rabin", "CCM", "GCM", "Reserved" }; static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type) { if (cipher_type >= SPU2_CIPHER_TYPE_LAST) return "Reserved"; return spu2_cipher_type_names[cipher_type]; } static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode) { if (cipher_mode >= SPU2_CIPHER_MODE_LAST) return "Reserved"; return spu2_cipher_mode_names[cipher_mode]; } static char *spu2_hash_type_name(enum spu2_hash_type hash_type) { if (hash_type >= SPU2_HASH_TYPE_LAST) return "Reserved"; return spu2_hash_type_names[hash_type]; } static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode) { if (hash_mode >= SPU2_HASH_MODE_LAST) return "Reserved"; return spu2_hash_mode_names[hash_mode]; } /* * Convert from a software cipher mode value to the corresponding value * for SPU2. */ static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode, enum spu2_cipher_mode *spu2_mode) { switch (cipher_mode) { case CIPHER_MODE_ECB: *spu2_mode = SPU2_CIPHER_MODE_ECB; break; case CIPHER_MODE_CBC: *spu2_mode = SPU2_CIPHER_MODE_CBC; break; case CIPHER_MODE_OFB: *spu2_mode = SPU2_CIPHER_MODE_OFB; break; case CIPHER_MODE_CFB: *spu2_mode = SPU2_CIPHER_MODE_CFB; break; case CIPHER_MODE_CTR: *spu2_mode = SPU2_CIPHER_MODE_CTR; break; case CIPHER_MODE_CCM: *spu2_mode = SPU2_CIPHER_MODE_CCM; break; case CIPHER_MODE_GCM: *spu2_mode = SPU2_CIPHER_MODE_GCM; break; case CIPHER_MODE_XTS: *spu2_mode = SPU2_CIPHER_MODE_XTS; break; default: return -EINVAL; } return 0; } /** * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2 * cipher type and mode. * @cipher_alg: [in] cipher algorithm value from software enumeration * @cipher_mode: [in] cipher mode value from software enumeration * @cipher_type: [in] cipher type value from software enumeration * @spu2_type: [out] cipher type value used by spu2 hardware * @spu2_mode: [out] cipher mode value used by spu2 hardware * * Return: 0 if successful */ static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg, enum spu_cipher_mode cipher_mode, enum spu_cipher_type cipher_type, enum spu2_cipher_type *spu2_type, enum spu2_cipher_mode *spu2_mode) { int err; err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode); if (err) { flow_log("Invalid cipher mode %d\n", cipher_mode); return err; } switch (cipher_alg) { case CIPHER_ALG_NONE: *spu2_type = SPU2_CIPHER_TYPE_NONE; break; case CIPHER_ALG_RC4: /* SPU2 does not support RC4 */ err = -EINVAL; *spu2_type = SPU2_CIPHER_TYPE_NONE; break; case CIPHER_ALG_DES: *spu2_type = SPU2_CIPHER_TYPE_DES; break; case CIPHER_ALG_3DES: *spu2_type = SPU2_CIPHER_TYPE_3DES; break; case CIPHER_ALG_AES: switch (cipher_type) { case CIPHER_TYPE_AES128: *spu2_type = SPU2_CIPHER_TYPE_AES128; break; case CIPHER_TYPE_AES192: *spu2_type = SPU2_CIPHER_TYPE_AES192; break; case CIPHER_TYPE_AES256: *spu2_type = SPU2_CIPHER_TYPE_AES256; break; default: err = -EINVAL; } break; case CIPHER_ALG_LAST: default: err = -EINVAL; break; } if (err) flow_log("Invalid cipher alg %d or type %d\n", cipher_alg, cipher_type); return err; } /* * Convert from a software hash mode value to the corresponding value * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value. */ static int spu2_hash_mode_xlate(enum hash_mode hash_mode, enum spu2_hash_mode *spu2_mode) { switch (hash_mode) { case HASH_MODE_XCBC: *spu2_mode = SPU2_HASH_MODE_XCBC_MAC; break; case HASH_MODE_CMAC: *spu2_mode = SPU2_HASH_MODE_CMAC; break; case HASH_MODE_HMAC: *spu2_mode = SPU2_HASH_MODE_HMAC; break; case HASH_MODE_CCM: *spu2_mode = SPU2_HASH_MODE_CCM; break; case HASH_MODE_GCM: *spu2_mode = SPU2_HASH_MODE_GCM; break; default: return -EINVAL; } return 0; } /** * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type * and mode. * @hash_alg: [in] hash algorithm value from software enumeration * @hash_mode: [in] hash mode value from software enumeration * @hash_type: [in] hash type value from software enumeration * @ciph_type: [in] cipher type value from software enumeration * @spu2_type: [out] hash type value used by SPU2 hardware * @spu2_mode: [out] hash mode value used by SPU2 hardware * * Return: 0 if successful */ static int spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode, enum hash_type hash_type, enum spu_cipher_type ciph_type, enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode) { int err; err = spu2_hash_mode_xlate(hash_mode, spu2_mode); if (err) { flow_log("Invalid hash mode %d\n", hash_mode); return err; } switch (hash_alg) { case HASH_ALG_NONE: *spu2_type = SPU2_HASH_TYPE_NONE; break; case HASH_ALG_MD5: *spu2_type = SPU2_HASH_TYPE_MD5; break; case HASH_ALG_SHA1: *spu2_type = SPU2_HASH_TYPE_SHA1; break; case HASH_ALG_SHA224: *spu2_type = SPU2_HASH_TYPE_SHA224; break; case HASH_ALG_SHA256: *spu2_type = SPU2_HASH_TYPE_SHA256; break; case HASH_ALG_SHA384: *spu2_type = SPU2_HASH_TYPE_SHA384; break; case HASH_ALG_SHA512: *spu2_type = SPU2_HASH_TYPE_SHA512; break; case HASH_ALG_AES: switch (ciph_type) { case CIPHER_TYPE_AES128: *spu2_type = SPU2_HASH_TYPE_AES128; break; case CIPHER_TYPE_AES192: *spu2_type = SPU2_HASH_TYPE_AES192; break; case CIPHER_TYPE_AES256: *spu2_type = SPU2_HASH_TYPE_AES256; break; default: err = -EINVAL; } break; case HASH_ALG_SHA3_224: *spu2_type = SPU2_HASH_TYPE_SHA3_224; break; case HASH_ALG_SHA3_256: *spu2_type = SPU2_HASH_TYPE_SHA3_256; break; case HASH_ALG_SHA3_384: *spu2_type = SPU2_HASH_TYPE_SHA3_384; break; case HASH_ALG_SHA3_512: *spu2_type = SPU2_HASH_TYPE_SHA3_512; break; case HASH_ALG_LAST: default: err = -EINVAL; break; } if (err) flow_log("Invalid hash alg %d or type %d\n", hash_alg, hash_type); return err; } /* Dump FMD ctrl0. The ctrl0 input is in host byte order */ static void spu2_dump_fmd_ctrl0(u64 ctrl0) { enum spu2_cipher_type ciph_type; enum spu2_cipher_mode ciph_mode; enum spu2_hash_type hash_type; enum spu2_hash_mode hash_mode; char *ciph_name; char *ciph_mode_name; char *hash_name; char *hash_mode_name; u8 cfb; u8 proto; packet_log(" FMD CTRL0 %#16llx\n", ctrl0); if (ctrl0 & SPU2_CIPH_ENCRYPT_EN) packet_log(" encrypt\n"); else packet_log(" decrypt\n"); ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT; ciph_name = spu2_ciph_type_name(ciph_type); packet_log(" Cipher type: %s\n", ciph_name); if (ciph_type != SPU2_CIPHER_TYPE_NONE) { ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT; ciph_mode_name = spu2_ciph_mode_name(ciph_mode); packet_log(" Cipher mode: %s\n", ciph_mode_name); } cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT; packet_log(" CFB %#x\n", cfb); proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT; packet_log(" protocol %#x\n", proto); if (ctrl0 & SPU2_HASH_FIRST) packet_log(" hash first\n"); else packet_log(" cipher first\n"); if (ctrl0 & SPU2_CHK_TAG) packet_log(" check tag\n"); hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT; hash_name = spu2_hash_type_name(hash_type); packet_log(" Hash type: %s\n", hash_name); if (hash_type != SPU2_HASH_TYPE_NONE) { hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT; hash_mode_name = spu2_hash_mode_name(hash_mode); packet_log(" Hash mode: %s\n", hash_mode_name); } if (ctrl0 & SPU2_CIPH_PAD_EN) { packet_log(" Cipher pad: %#2llx\n", (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT); } } /* Dump FMD ctrl1. The ctrl1 input is in host byte order */ static void spu2_dump_fmd_ctrl1(u64 ctrl1) { u8 hash_key_len; u8 ciph_key_len; u8 ret_iv_len; u8 iv_offset; u8 iv_len; u8 hash_tag_len; u8 ret_md; packet_log(" FMD CTRL1 %#16llx\n", ctrl1); if (ctrl1 & SPU2_TAG_LOC) packet_log(" Tag after payload\n"); packet_log(" Msg includes "); if (ctrl1 & SPU2_HAS_FR_DATA) packet_log("FD "); if (ctrl1 & SPU2_HAS_AAD1) packet_log("AAD1 "); if (ctrl1 & SPU2_HAS_NAAD) packet_log("NAAD "); if (ctrl1 & SPU2_HAS_AAD2) packet_log("AAD2 "); if (ctrl1 & SPU2_HAS_ESN) packet_log("ESN "); packet_log("\n"); hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT; packet_log(" Hash key len %u\n", hash_key_len); ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT; packet_log(" Cipher key len %u\n", ciph_key_len); if (ctrl1 & SPU2_GENIV) packet_log(" Generate IV\n"); if (ctrl1 & SPU2_HASH_IV) packet_log(" IV included in hash\n"); if (ctrl1 & SPU2_RET_IV) packet_log(" Return IV in output before payload\n"); ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT; packet_log(" Length of returned IV %u bytes\n", ret_iv_len ? ret_iv_len : 16); iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT; packet_log(" IV offset %u\n", iv_offset); iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT; packet_log(" Input IV len %u bytes\n", iv_len); hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT; packet_log(" Hash tag length %u bytes\n", hash_tag_len); packet_log(" Return "); ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT; if (ret_md) packet_log("FMD "); if (ret_md == SPU2_RET_FMD_OMD) packet_log("OMD "); else if (ret_md == SPU2_RET_FMD_OMD_IV) packet_log("OMD IV "); if (ctrl1 & SPU2_RETURN_FD) packet_log("FD "); if (ctrl1 & SPU2_RETURN_AAD1) packet_log("AAD1 "); if (ctrl1 & SPU2_RETURN_NAAD) packet_log("NAAD "); if (ctrl1 & SPU2_RETURN_AAD2) packet_log("AAD2 "); if (ctrl1 & SPU2_RETURN_PAY) packet_log("Payload"); packet_log("\n"); } /* Dump FMD ctrl2. The ctrl2 input is in host byte order */ static void spu2_dump_fmd_ctrl2(u64 ctrl2) { packet_log(" FMD CTRL2 %#16llx\n", ctrl2); packet_log(" AAD1 offset %llu length %llu bytes\n", ctrl2 & SPU2_AAD1_OFFSET, (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT); packet_log(" AAD2 offset %llu\n", (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT); packet_log(" Payload offset %llu\n", (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT); } /* Dump FMD ctrl3. The ctrl3 input is in host byte order */ static void spu2_dump_fmd_ctrl3(u64 ctrl3) { packet_log(" FMD CTRL3 %#16llx\n", ctrl3); packet_log(" Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN); packet_log(" TLS length %llu bytes\n", (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT); } static void spu2_dump_fmd(struct SPU2_FMD *fmd) { spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0)); spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1)); spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2)); spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3)); } static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len, u16 hash_iv_len, u16 ciph_iv_len) { u8 *ptr = omd; packet_log(" OMD:\n"); if (hash_key_len) { packet_log(" Hash Key Length %u bytes\n", hash_key_len); packet_dump(" KEY: ", ptr, hash_key_len); ptr += hash_key_len; } if (ciph_key_len) { packet_log(" Cipher Key Length %u bytes\n", ciph_key_len); packet_dump(" KEY: ", ptr, ciph_key_len); ptr += ciph_key_len; } if (hash_iv_len) { packet_log(" Hash IV Length %u bytes\n", hash_iv_len); packet_dump(" hash IV: ", ptr, hash_iv_len); ptr += ciph_key_len; } if (ciph_iv_len) { packet_log(" Cipher IV Length %u bytes\n", ciph_iv_len); packet_dump(" cipher IV: ", ptr, ciph_iv_len); } } /* Dump a SPU2 header for debug */ void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len) { struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf; u8 *omd; u64 ctrl1; u16 hash_key_len; u16 ciph_key_len; u16 hash_iv_len; u16 ciph_iv_len; u16 omd_len; packet_log("\n"); packet_log("SPU2 message header %p len: %u\n", buf, buf_len); spu2_dump_fmd(fmd); omd = (u8 *)(fmd + 1); ctrl1 = le64_to_cpu(fmd->ctrl1); hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT; ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT; hash_iv_len = 0; ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT; spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len, ciph_iv_len); /* Double check sanity */ omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len; if (FMD_SIZE + omd_len != buf_len) { packet_log (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n", buf_len, FMD_SIZE + omd_len); } packet_log("\n"); } /** * spu2_fmd_init() - At setkey time, initialize the fixed meta data for * subsequent ablkcipher requests for this context. * @spu2_cipher_type: Cipher algorithm * @spu2_mode: Cipher mode * @cipher_key_len: Length of cipher key, in bytes * @cipher_iv_len: Length of cipher initialization vector, in bytes * * Return: 0 (success) */ static int spu2_fmd_init(struct SPU2_FMD *fmd, enum spu2_cipher_type spu2_type, enum spu2_cipher_mode spu2_mode, u32 cipher_key_len, u32 cipher_iv_len) { u64 ctrl0; u64 ctrl1; u64 ctrl2; u64 ctrl3; u32 aad1_offset; u32 aad2_offset; u16 aad1_len = 0; u64 payload_offset; ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) | (spu2_mode << SPU2_CIPH_MODE_SHIFT); ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) | ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) | ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY; /* * AAD1 offset is from start of FD. FD length is always 0 for this * driver. So AAD1_offset is always 0. */ aad1_offset = 0; aad2_offset = aad1_offset; payload_offset = 0; ctrl2 = aad1_offset | (aad1_len << SPU2_AAD1_LEN_SHIFT) | (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) | (payload_offset << SPU2_PL_OFFSET_SHIFT); ctrl3 = 0; fmd->ctrl0 = cpu_to_le64(ctrl0); fmd->ctrl1 = cpu_to_le64(ctrl1); fmd->ctrl2 = cpu_to_le64(ctrl2); fmd->ctrl3 = cpu_to_le64(ctrl3); return 0; } /** * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of * SPU request packet. * @fmd: Start of FMD field to be written * @is_inbound: true if decrypting. false if encrypting. * @authFirst: true if alg authenticates before encrypting * @protocol: protocol selector * @cipher_type: cipher algorithm * @cipher_mode: cipher mode * @auth_type: authentication type * @auth_mode: authentication mode */ static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd, bool is_inbound, bool auth_first, enum spu2_proto_sel protocol, enum spu2_cipher_type cipher_type, enum spu2_cipher_mode cipher_mode, enum spu2_hash_type auth_type, enum spu2_hash_mode auth_mode) { u64 ctrl0 = 0; if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound) ctrl0 |= SPU2_CIPH_ENCRYPT_EN; ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) | ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT); if (protocol) ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT; if (auth_first) ctrl0 |= SPU2_HASH_FIRST; if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE)) ctrl0 |= SPU2_CHK_TAG; ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) | ((u64)auth_mode << SPU2_HASH_MODE_SHIFT)); fmd->ctrl0 = cpu_to_le64(ctrl0); } /** * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of * SPU request packet. * @fmd: Start of FMD field to be written * @assoc_size: Length of additional associated data, in bytes * @auth_key_len: Length of authentication key, in bytes * @cipher_key_len: Length of cipher key, in bytes * @gen_iv: If true, hw generates IV and returns in response * @hash_iv: IV participates in hash. Used for IPSEC and TLS. * @return_iv: Return IV in output packet before payload * @ret_iv_len: Length of IV returned from SPU, in bytes * @ret_iv_offset: Offset into full IV of start of returned IV * @cipher_iv_len: Length of input cipher IV, in bytes * @digest_size: Length of digest (aka, hash tag or ICV), in bytes * @return_payload: Return payload in SPU response * @return_md : return metadata in SPU response * * Packet can have AAD2 w/o AAD1. For algorithms currently supported, * associated data goes in AAD2. */ static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound, u64 assoc_size, u64 auth_key_len, u64 cipher_key_len, bool gen_iv, bool hash_iv, bool return_iv, u64 ret_iv_len, u64 ret_iv_offset, u64 cipher_iv_len, u64 digest_size, bool return_payload, bool return_md) { u64 ctrl1 = 0; if (is_inbound && digest_size) ctrl1 |= SPU2_TAG_LOC; if (assoc_size) { ctrl1 |= SPU2_HAS_AAD2; ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */ } if (auth_key_len) ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) & SPU2_HASH_KEY_LEN); if (cipher_key_len) ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) & SPU2_CIPH_KEY_LEN); if (gen_iv) ctrl1 |= SPU2_GENIV; if (hash_iv) ctrl1 |= SPU2_HASH_IV; if (return_iv) { ctrl1 |= SPU2_RET_IV; ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT; ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT; } ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN); if (digest_size) ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) & SPU2_HASH_TAG_LEN); /* Let's ask for the output pkt to include FMD, but don't need to * get keys and IVs back in OMD. */ if (return_md) ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT); else ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT); /* Crypto API does not get assoc data back. So no need for AAD2. */ if (return_payload) ctrl1 |= SPU2_RETURN_PAY; fmd->ctrl1 = cpu_to_le64(ctrl1); } /** * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of * SPU2 header. * @fmd: Start of FMD field to be written * @cipher_offset: Number of bytes from Start of Packet (end of FD field) where * data to be encrypted or decrypted begins * @auth_key_len: Length of authentication key, in bytes * @auth_iv_len: Length of authentication initialization vector, in bytes * @cipher_key_len: Length of cipher key, in bytes * @cipher_iv_len: Length of cipher IV, in bytes */ static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset, u64 auth_key_len, u64 auth_iv_len, u64 cipher_key_len, u64 cipher_iv_len) { u64 ctrl2; u64 aad1_offset; u64 aad2_offset; u16 aad1_len = 0; u64 payload_offset; /* AAD1 offset is from start of FD. FD length always 0. */ aad1_offset = 0; aad2_offset = aad1_offset; payload_offset = cipher_offset; ctrl2 = aad1_offset | (aad1_len << SPU2_AAD1_LEN_SHIFT) | (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) | (payload_offset << SPU2_PL_OFFSET_SHIFT); fmd->ctrl2 = cpu_to_le64(ctrl2); } /** * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD * @fmd: Fixed meta data. First field in SPU2 msg header. * @payload_len: Length of payload, in bytes */ static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len) { u64 ctrl3; ctrl3 = payload_len & SPU2_PL_LEN; fmd->ctrl3 = cpu_to_le64(ctrl3); } /** * spu2_ctx_max_payload() - Determine the maximum length of the payload for a * SPU message for a given cipher and hash alg context. * @cipher_alg: The cipher algorithm * @cipher_mode: The cipher mode * @blocksize: The size of a block of data for this algo * * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of * FMD and just keeps computing until it receives a DMA descriptor with the EOF * flag set. So we consider the max payload to be infinite. AES CCM is an * exception. * * Return: Max payload length in bytes */ u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg, enum spu_cipher_mode cipher_mode, unsigned int blocksize) { if ((cipher_alg == CIPHER_ALG_AES) && (cipher_mode == CIPHER_MODE_CCM)) { u32 excess = SPU2_MAX_PAYLOAD % blocksize; return SPU2_MAX_PAYLOAD - excess; } else { return SPU_MAX_PAYLOAD_INF; } } /** * spu_payload_length() - Given a SPU2 message header, extract the payload * length. * @spu_hdr: Start of SPU message header (FMD) * * Return: payload length, in bytes */ u32 spu2_payload_length(u8 *spu_hdr) { struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr; u32 pl_len; u64 ctrl3; ctrl3 = le64_to_cpu(fmd->ctrl3); pl_len = ctrl3 & SPU2_PL_LEN; return pl_len; } /** * spu_response_hdr_len() - Determine the expected length of a SPU response * header. * @auth_key_len: Length of authentication key, in bytes * @enc_key_len: Length of encryption key, in bytes * * For SPU2, includes just FMD. OMD is never requested. * * Return: Length of FMD, in bytes */ u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash) { return FMD_SIZE; } /** * spu_hash_pad_len() - Calculate the length of hash padding required to extend * data to a full block size. * @hash_alg: hash algorithm * @hash_mode: hash mode * @chunksize: length of data, in bytes * @hash_block_size: size of a hash block, in bytes * * SPU2 hardware does all hash padding * * Return: length of hash pad in bytes */ u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode, u32 chunksize, u16 hash_block_size) { return 0; } /** * spu2_gcm_ccm_padlen() - Determine the length of GCM/CCM padding for either * the AAD field or the data. * * Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required. */ u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode, unsigned int data_size) { return 0; } /** * spu_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch * associated data in a SPU2 output packet. * @cipher_mode: cipher mode * @assoc_len: length of additional associated data, in bytes * @iv_len: length of initialization vector, in bytes * @is_encrypt: true if encrypting. false if decrypt. * * Return: Length of buffer to catch associated data in response */ u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode, unsigned int assoc_len, unsigned int iv_len, bool is_encrypt) { u32 resp_len = assoc_len; if (is_encrypt) /* gcm aes esp has to write 8-byte IV in response */ resp_len += iv_len; return resp_len; } /* * spu_aead_ivlen() - Calculate the length of the AEAD IV to be included * in a SPU request after the AAD and before the payload. * @cipher_mode: cipher mode * @iv_ctr_len: initialization vector length in bytes * * For SPU2, AEAD IV is included in OMD and does not need to be repeated * prior to the payload. * * Return: Length of AEAD IV in bytes */ u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len) { return 0; } /** * spu2_hash_type() - Determine the type of hash operation. * @src_sent: The number of bytes in the current request that have already * been sent to the SPU to be hashed. * * SPU2 always does a FULL hash operation */ enum hash_type spu2_hash_type(u32 src_sent) { return HASH_TYPE_FULL; } /** * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to * return. * alg_digest_size: Number of bytes in the final digest for the given algo * alg: The hash algorithm * htype: Type of hash operation (init, update, full, etc) * */ u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg, enum hash_type htype) { return alg_digest_size; } /** * spu_create_request() - Build a SPU2 request message header, includint FMD and * OMD. * @spu_hdr: Start of buffer where SPU request header is to be written * @req_opts: SPU request message options * @cipher_parms: Parameters related to cipher algorithm * @hash_parms: Parameters related to hash algorithm * @aead_parms: Parameters related to AEAD operation * @data_size: Length of data to be encrypted or authenticated. If AEAD, does * not include length of AAD. * * Construct the message starting at spu_hdr. Caller should allocate this buffer * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long. * * Return: the length of the SPU header in bytes. 0 if an error occurs. */ u32 spu2_create_request(u8 *spu_hdr, struct spu_request_opts *req_opts, struct spu_cipher_parms *cipher_parms, struct spu_hash_parms *hash_parms, struct spu_aead_parms *aead_parms, unsigned int data_size) { struct SPU2_FMD *fmd; u8 *ptr; unsigned int buf_len; int err; enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE; enum spu2_cipher_mode spu2_ciph_mode; enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE; enum spu2_hash_mode spu2_auth_mode; bool return_md = true; enum spu2_proto_sel proto = SPU2_PROTO_RESV; /* size of the payload */ unsigned int payload_len = hash_parms->prebuf_len + data_size + hash_parms->pad_len - ((req_opts->is_aead && req_opts->is_inbound) ? hash_parms->digestsize : 0); /* offset of prebuf or data from start of AAD2 */ unsigned int cipher_offset = aead_parms->assoc_size + aead_parms->aad_pad_len + aead_parms->iv_len; #ifdef DEBUG /* total size of the data following OMD (without STAT word padding) */ unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size, aead_parms->iv_len, hash_parms->prebuf_len, data_size, aead_parms->aad_pad_len, aead_parms->data_pad_len, hash_parms->pad_len); #endif unsigned int assoc_size = aead_parms->assoc_size; if (req_opts->is_aead && (cipher_parms->alg == CIPHER_ALG_AES) && (cipher_parms->mode == CIPHER_MODE_GCM)) /* * On SPU 2, aes gcm cipher first on encrypt, auth first on * decrypt */ req_opts->auth_first = req_opts->is_inbound; /* and do opposite for ccm (auth 1st on encrypt) */ if (req_opts->is_aead && (cipher_parms->alg == CIPHER_ALG_AES) && (cipher_parms->mode == CIPHER_MODE_CCM)) req_opts->auth_first = !req_opts->is_inbound; flow_log("%s()\n", __func__); flow_log(" in:%u authFirst:%u\n", req_opts->is_inbound, req_opts->auth_first); flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, cipher_parms->mode, cipher_parms->type); flow_log(" is_esp: %s\n", req_opts->is_esp ? "yes" : "no"); flow_log(" key: %d\n", cipher_parms->key_len); flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); flow_log(" iv: %d\n", cipher_parms->iv_len); flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); flow_log(" auth alg:%u mode:%u type %u\n", hash_parms->alg, hash_parms->mode, hash_parms->type); flow_log(" digestsize: %u\n", hash_parms->digestsize); flow_log(" authkey: %d\n", hash_parms->key_len); flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len); flow_log(" assoc_size:%u\n", assoc_size); flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len); flow_log(" data_size:%u\n", data_size); flow_log(" hash_pad_len:%u\n", hash_parms->pad_len); flow_log(" real_db_size:%u\n", real_db_size); flow_log(" cipher_offset:%u payload_len:%u\n", cipher_offset, payload_len); flow_log(" aead_iv: %u\n", aead_parms->iv_len); /* Convert to spu2 values for cipher alg, hash alg */ err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode, cipher_parms->type, &spu2_ciph_type, &spu2_ciph_mode); /* If we are doing GCM hashing only - either via rfc4543 transform * or because we happen to do GCM with AAD only and no payload - we * need to configure hardware to use hash key rather than cipher key * and put data into payload. This is because unlike SPU-M, running * GCM cipher with 0 size payload is not permitted. */ if ((req_opts->is_rfc4543) || ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) && (payload_len == 0))) { /* Use hashing (only) and set up hash key */ spu2_ciph_type = SPU2_CIPHER_TYPE_NONE; hash_parms->key_len = cipher_parms->key_len; memcpy(hash_parms->key_buf, cipher_parms->key_buf, cipher_parms->key_len); cipher_parms->key_len = 0; if (req_opts->is_rfc4543) payload_len += assoc_size; else payload_len = assoc_size; cipher_offset = 0; assoc_size = 0; } if (err) return 0; flow_log("spu2 cipher type %s, cipher mode %s\n", spu2_ciph_type_name(spu2_ciph_type), spu2_ciph_mode_name(spu2_ciph_mode)); err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode, hash_parms->type, cipher_parms->type, &spu2_auth_type, &spu2_auth_mode); if (err) return 0; flow_log("spu2 hash type %s, hash mode %s\n", spu2_hash_type_name(spu2_auth_type), spu2_hash_mode_name(spu2_auth_mode)); fmd = (struct SPU2_FMD *)spu_hdr; spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first, proto, spu2_ciph_type, spu2_ciph_mode, spu2_auth_type, spu2_auth_mode); spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size, hash_parms->key_len, cipher_parms->key_len, false, false, aead_parms->return_iv, aead_parms->ret_iv_len, aead_parms->ret_iv_off, cipher_parms->iv_len, hash_parms->digestsize, !req_opts->bd_suppress, return_md); spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0, cipher_parms->key_len, cipher_parms->iv_len); spu2_fmd_ctrl3_write(fmd, payload_len); ptr = (u8 *)(fmd + 1); buf_len = sizeof(struct SPU2_FMD); /* Write OMD */ if (hash_parms->key_len) { memcpy(ptr, hash_parms->key_buf, hash_parms->key_len); ptr += hash_parms->key_len; buf_len += hash_parms->key_len; } if (cipher_parms->key_len) { memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len); ptr += cipher_parms->key_len; buf_len += cipher_parms->key_len; } if (cipher_parms->iv_len) { memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len); ptr += cipher_parms->iv_len; buf_len += cipher_parms->iv_len; } packet_dump(" SPU request header: ", spu_hdr, buf_len); return buf_len; } /** * spu_cipher_req_init() - Build an ablkcipher SPU2 request message header, * including FMD and OMD. * @spu_hdr: Location of start of SPU request (FMD field) * @cipher_parms: Parameters describing cipher request * * Called at setkey time to initialize a msg header that can be reused for all * subsequent ablkcipher requests. Construct the message starting at spu_hdr. * Caller should allocate this buffer in DMA-able memory at least * SPU_HEADER_ALLOC_LEN bytes long. * * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an * error occurs. */ u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms) { struct SPU2_FMD *fmd; u8 *omd; enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE; enum spu2_cipher_mode spu2_mode; int err; flow_log("%s()\n", __func__); flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, cipher_parms->mode, cipher_parms->type); flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len); flow_log(" key: %d\n", cipher_parms->key_len); flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); /* Convert to spu2 values */ err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode, cipher_parms->type, &spu2_type, &spu2_mode); if (err) return 0; flow_log("spu2 cipher type %s, cipher mode %s\n", spu2_ciph_type_name(spu2_type), spu2_ciph_mode_name(spu2_mode)); /* Construct the FMD header */ fmd = (struct SPU2_FMD *)spu_hdr; err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len, cipher_parms->iv_len); if (err) return 0; /* Write cipher key to OMD */ omd = (u8 *)(fmd + 1); if (cipher_parms->key_buf && cipher_parms->key_len) memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len); packet_dump(" SPU request header: ", spu_hdr, FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len); return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len; } /** * spu_cipher_req_finish() - Finish building a SPU request message header for a * block cipher request. * @spu_hdr: Start of the request message header (MH field) * @spu_req_hdr_len: Length in bytes of the SPU request header * @isInbound: 0 encrypt, 1 decrypt * @cipher_parms: Parameters describing cipher operation to be performed * @update_key: If true, rewrite the cipher key in SCTX * @data_size: Length of the data in the BD field * * Assumes much of the header was already filled in at setkey() time in * spu_cipher_req_init(). * spu_cipher_req_init() fills in the encryption key. For RC4, when submitting a * request for a non-first chunk, we use the 260-byte SUPDT field from the * previous response as the key. update_key is true for this case. Unused in all * other cases. */ void spu2_cipher_req_finish(u8 *spu_hdr, u16 spu_req_hdr_len, unsigned int is_inbound, struct spu_cipher_parms *cipher_parms, bool update_key, unsigned int data_size) { struct SPU2_FMD *fmd; u8 *omd; /* start of optional metadata */ u64 ctrl0; u64 ctrl3; flow_log("%s()\n", __func__); flow_log(" in: %u\n", is_inbound); flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg, cipher_parms->type); if (update_key) { flow_log(" cipher key len: %u\n", cipher_parms->key_len); flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); } flow_log(" iv len: %d\n", cipher_parms->iv_len); flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); flow_log(" data_size: %u\n", data_size); fmd = (struct SPU2_FMD *)spu_hdr; omd = (u8 *)(fmd + 1); /* * FMD ctrl0 was initialized at setkey time. update it to indicate * whether we are encrypting or decrypting. */ ctrl0 = le64_to_cpu(fmd->ctrl0); if (is_inbound) ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */ else ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */ fmd->ctrl0 = cpu_to_le64(ctrl0); if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) { /* cipher iv provided so put it in here */ memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf, cipher_parms->iv_len); } ctrl3 = le64_to_cpu(fmd->ctrl3); data_size &= SPU2_PL_LEN; ctrl3 |= data_size; fmd->ctrl3 = cpu_to_le64(ctrl3); packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len); } /** * spu_request_pad() - Create pad bytes at the end of the data. * @pad_start: Start of buffer where pad bytes are to be written * @gcm_padding: Length of GCM padding, in bytes * @hash_pad_len: Number of bytes of padding extend data to full block * @auth_alg: Authentication algorithm * @auth_mode: Authentication mode * @total_sent: Length inserted at end of hash pad * @status_padding: Number of bytes of padding to align STATUS word * * There may be three forms of pad: * 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment * 2. hash pad - pad to a block length, with 0x80 data terminator and * size at the end * 3. STAT pad - to ensure the STAT field is 4-byte aligned */ void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len, enum hash_alg auth_alg, enum hash_mode auth_mode, unsigned int total_sent, u32 status_padding) { u8 *ptr = pad_start; /* fix data alignent for GCM */ if (gcm_padding > 0) { flow_log(" GCM: padding to 16 byte alignment: %u bytes\n", gcm_padding); memset(ptr, 0, gcm_padding); ptr += gcm_padding; } if (hash_pad_len > 0) { /* clear the padding section */ memset(ptr, 0, hash_pad_len); /* terminate the data */ *ptr = 0x80; ptr += (hash_pad_len - sizeof(u64)); /* add the size at the end as required per alg */ if (auth_alg == HASH_ALG_MD5) *(u64 *)ptr = cpu_to_le64((u64)total_sent * 8); else /* SHA1, SHA2-224, SHA2-256 */ *(u64 *)ptr = cpu_to_be64((u64)total_sent * 8); ptr += sizeof(u64); } /* pad to a 4byte alignment for STAT */ if (status_padding > 0) { flow_log(" STAT: padding to 4 byte alignment: %u bytes\n", status_padding); memset(ptr, 0, status_padding); ptr += status_padding; } } /** * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS * tweak field in the packet payload (it uses IV instead) * * Return: 0 */ u8 spu2_xts_tweak_in_payload(void) { return 0; } /** * spu2_tx_status_len() - Return the length of the STATUS field in a SPU * response message. * * Return: Length of STATUS field in bytes. */ u8 spu2_tx_status_len(void) { return SPU2_TX_STATUS_LEN; } /** * spu2_rx_status_len() - Return the length of the STATUS field in a SPU * response message. * * Return: Length of STATUS field in bytes. */ u8 spu2_rx_status_len(void) { return SPU2_RX_STATUS_LEN; } /** * spu_status_process() - Process the status from a SPU response message. * @statp: start of STATUS word * * Return: 0 - if status is good and response should be processed * !0 - status indicates an error and response is invalid */ int spu2_status_process(u8 *statp) { /* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */ u16 status = le16_to_cpu(*(__le16 *)statp); if (status == 0) return 0; flow_log("rx status is %#x\n", status); if (status == SPU2_INVALID_ICV) return SPU_INVALID_ICV; return -EBADMSG; } /** * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode. * * @digestsize: Digest size of this request * @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len * @assoclen: Length of AAD data * @chunksize: length of input data to be sent in this req * @is_encrypt: true if this is an output/encrypt operation * @is_esp: true if this is an ESP / RFC4309 operation * */ void spu2_ccm_update_iv(unsigned int digestsize, struct spu_cipher_parms *cipher_parms, unsigned int assoclen, unsigned int chunksize, bool is_encrypt, bool is_esp) { int L; /* size of length field, in bytes */ /* * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from * testmgr contains (L-1) in bottom 3 bits of first byte, * per RFC 3610. */ if (is_esp) L = CCM_ESP_L_VALUE; else L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >> CCM_B0_L_PRIME_SHIFT) + 1; /* SPU2 doesn't want these length bytes nor the first byte... */ cipher_parms->iv_len -= (1 + L); memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1], cipher_parms->iv_len); } /** * spu2_wordalign_padlen() - SPU2 does not require padding. * @data_size: length of data field in bytes * * Return: length of status field padding, in bytes (always 0 on SPU2) */ u32 spu2_wordalign_padlen(u32 data_size) { return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1