Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gilad Ben-Yossef | 14927 | 98.35% | 9 | 75.00% |
Herbert Xu | 147 | 0.97% | 1 | 8.33% |
Eric Biggers | 56 | 0.37% | 1 | 8.33% |
Yael Chemla | 48 | 0.32% | 1 | 8.33% |
Total | 15178 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */ #include <linux/kernel.h> #include <linux/module.h> #include <crypto/algapi.h> #include <crypto/internal/aead.h> #include <crypto/authenc.h> #include <crypto/des.h> #include <linux/rtnetlink.h> #include "cc_driver.h" #include "cc_buffer_mgr.h" #include "cc_aead.h" #include "cc_request_mgr.h" #include "cc_hash.h" #include "cc_sram_mgr.h" #define template_aead template_u.aead #define MAX_AEAD_SETKEY_SEQ 12 #define MAX_AEAD_PROCESS_SEQ 23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE) #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE) #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE struct cc_aead_handle { cc_sram_addr_t sram_workspace_addr; struct list_head aead_list; }; struct cc_hmac_s { u8 *padded_authkey; u8 *ipad_opad; /* IPAD, OPAD*/ dma_addr_t padded_authkey_dma_addr; dma_addr_t ipad_opad_dma_addr; }; struct cc_xcbc_s { u8 *xcbc_keys; /* K1,K2,K3 */ dma_addr_t xcbc_keys_dma_addr; }; struct cc_aead_ctx { struct cc_drvdata *drvdata; u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */ u8 *enckey; dma_addr_t enckey_dma_addr; union { struct cc_hmac_s hmac; struct cc_xcbc_s xcbc; } auth_state; unsigned int enc_keylen; unsigned int auth_keylen; unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */ unsigned int hash_len; enum drv_cipher_mode cipher_mode; enum cc_flow_mode flow_mode; enum drv_hash_mode auth_mode; }; static inline bool valid_assoclen(struct aead_request *req) { return ((req->assoclen == 16) || (req->assoclen == 20)); } static void cc_aead_exit(struct crypto_aead *tfm) { struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm), crypto_tfm_alg_name(&tfm->base)); /* Unmap enckey buffer */ if (ctx->enckey) { dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey, ctx->enckey_dma_addr); dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n", &ctx->enckey_dma_addr); ctx->enckey_dma_addr = 0; ctx->enckey = NULL; } if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */ struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc; if (xcbc->xcbc_keys) { dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3, xcbc->xcbc_keys, xcbc->xcbc_keys_dma_addr); } dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n", &xcbc->xcbc_keys_dma_addr); xcbc->xcbc_keys_dma_addr = 0; xcbc->xcbc_keys = NULL; } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */ struct cc_hmac_s *hmac = &ctx->auth_state.hmac; if (hmac->ipad_opad) { dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE, hmac->ipad_opad, hmac->ipad_opad_dma_addr); dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n", &hmac->ipad_opad_dma_addr); hmac->ipad_opad_dma_addr = 0; hmac->ipad_opad = NULL; } if (hmac->padded_authkey) { dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE, hmac->padded_authkey, hmac->padded_authkey_dma_addr); dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n", &hmac->padded_authkey_dma_addr); hmac->padded_authkey_dma_addr = 0; hmac->padded_authkey = NULL; } } } static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm) { struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); return cc_get_default_hash_len(ctx->drvdata); } static int cc_aead_init(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct cc_crypto_alg *cc_alg = container_of(alg, struct cc_crypto_alg, aead_alg); struct device *dev = drvdata_to_dev(cc_alg->drvdata); dev_dbg(dev, "Initializing context @%p for %s\n", ctx, crypto_tfm_alg_name(&tfm->base)); /* Initialize modes in instance */ ctx->cipher_mode = cc_alg->cipher_mode; ctx->flow_mode = cc_alg->flow_mode; ctx->auth_mode = cc_alg->auth_mode; ctx->drvdata = cc_alg->drvdata; crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx)); /* Allocate key buffer, cache line aligned */ ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE, &ctx->enckey_dma_addr, GFP_KERNEL); if (!ctx->enckey) { dev_err(dev, "Failed allocating key buffer\n"); goto init_failed; } dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n", ctx->enckey); /* Set default authlen value */ if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */ struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc; const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3; /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */ /* (and temporary for user key - up to 256b) */ xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size, &xcbc->xcbc_keys_dma_addr, GFP_KERNEL); if (!xcbc->xcbc_keys) { dev_err(dev, "Failed allocating buffer for XCBC keys\n"); goto init_failed; } } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */ struct cc_hmac_s *hmac = &ctx->auth_state.hmac; const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE; dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr; /* Allocate dma-coherent buffer for IPAD + OPAD */ hmac->ipad_opad = dma_alloc_coherent(dev, digest_size, &hmac->ipad_opad_dma_addr, GFP_KERNEL); if (!hmac->ipad_opad) { dev_err(dev, "Failed allocating IPAD/OPAD buffer\n"); goto init_failed; } dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n", hmac->ipad_opad); hmac->padded_authkey = dma_alloc_coherent(dev, MAX_HMAC_BLOCK_SIZE, pkey_dma, GFP_KERNEL); if (!hmac->padded_authkey) { dev_err(dev, "failed to allocate padded_authkey\n"); goto init_failed; } } else { ctx->auth_state.hmac.ipad_opad = NULL; ctx->auth_state.hmac.padded_authkey = NULL; } ctx->hash_len = cc_get_aead_hash_len(tfm); return 0; init_failed: cc_aead_exit(tfm); return -ENOMEM; } static void cc_aead_complete(struct device *dev, void *cc_req, int err) { struct aead_request *areq = (struct aead_request *)cc_req; struct aead_req_ctx *areq_ctx = aead_request_ctx(areq); struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); /* BACKLOG notification */ if (err == -EINPROGRESS) goto done; cc_unmap_aead_request(dev, areq); /* Restore ordinary iv pointer */ areq->iv = areq_ctx->backup_iv; if (err) goto done; if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) { if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr, ctx->authsize) != 0) { dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n", ctx->authsize, ctx->cipher_mode); /* In case of payload authentication failure, MUST NOT * revealed the decrypted message --> zero its memory. */ cc_zero_sgl(areq->dst, areq_ctx->cryptlen); err = -EBADMSG; } } else { /*ENCRYPT*/ if (areq_ctx->is_icv_fragmented) { u32 skip = areq->cryptlen + areq_ctx->dst_offset; cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl, skip, (skip + ctx->authsize), CC_SG_FROM_BUF); } /* If an IV was generated, copy it back to the user provided * buffer. */ if (areq_ctx->backup_giv) { if (ctx->cipher_mode == DRV_CIPHER_CTR) memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_IV_SIZE); else if (ctx->cipher_mode == DRV_CIPHER_CCM) memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, CCM_BLOCK_IV_SIZE); } } done: aead_request_complete(areq, err); } static unsigned int xcbc_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx) { /* Load the AES key */ hw_desc_init(&desc[0]); /* We are using for the source/user key the same buffer * as for the output keys, * because after this key loading it * is not needed anymore */ set_din_type(&desc[0], DMA_DLLI, ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen, NS_BIT); set_cipher_mode(&desc[0], DRV_CIPHER_ECB); set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT); set_key_size_aes(&desc[0], ctx->auth_keylen); set_flow_mode(&desc[0], S_DIN_to_AES); set_setup_mode(&desc[0], SETUP_LOAD_KEY0); hw_desc_init(&desc[1]); set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[1], DIN_AES_DOUT); set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr, AES_KEYSIZE_128, NS_BIT, 0); hw_desc_init(&desc[2]); set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[2], DIN_AES_DOUT); set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr + AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT, 0); hw_desc_init(&desc[3]); set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[3], DIN_AES_DOUT); set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr + 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT, 0); return 4; } static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx) { unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST }; unsigned int digest_ofs = 0; unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ? DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256; unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ? CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE; struct cc_hmac_s *hmac = &ctx->auth_state.hmac; unsigned int idx = 0; int i; /* calc derived HMAC key */ for (i = 0; i < 2; i++) { /* Load hash initial state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_din_sram(&desc[idx], cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode), digest_size); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load the hash current length*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_din_const(&desc[idx], 0, ctx->hash_len); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Prepare ipad key */ hw_desc_init(&desc[idx]); set_xor_val(&desc[idx], hmac_pad_const[i]); set_cipher_mode(&desc[idx], hash_mode); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); idx++; /* Perform HASH update */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, hmac->padded_authkey_dma_addr, SHA256_BLOCK_SIZE, NS_BIT); set_cipher_mode(&desc[idx], hash_mode); set_xor_active(&desc[idx]); set_flow_mode(&desc[idx], DIN_HASH); idx++; /* Get the digset */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_dout_dlli(&desc[idx], (hmac->ipad_opad_dma_addr + digest_ofs), digest_size, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED); idx++; digest_ofs += digest_size; } return idx; } static int validate_keys_sizes(struct cc_aead_ctx *ctx) { struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n", ctx->enc_keylen, ctx->auth_keylen); switch (ctx->auth_mode) { case DRV_HASH_SHA1: case DRV_HASH_SHA256: break; case DRV_HASH_XCBC_MAC: if (ctx->auth_keylen != AES_KEYSIZE_128 && ctx->auth_keylen != AES_KEYSIZE_192 && ctx->auth_keylen != AES_KEYSIZE_256) return -ENOTSUPP; break; case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */ if (ctx->auth_keylen > 0) return -EINVAL; break; default: dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode); return -EINVAL; } /* Check cipher key size */ if (ctx->flow_mode == S_DIN_to_DES) { if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) { dev_err(dev, "Invalid cipher(3DES) key size: %u\n", ctx->enc_keylen); return -EINVAL; } } else { /* Default assumed to be AES ciphers */ if (ctx->enc_keylen != AES_KEYSIZE_128 && ctx->enc_keylen != AES_KEYSIZE_192 && ctx->enc_keylen != AES_KEYSIZE_256) { dev_err(dev, "Invalid cipher(AES) key size: %u\n", ctx->enc_keylen); return -EINVAL; } } return 0; /* All tests of keys sizes passed */ } /* This function prepers the user key so it can pass to the hmac processing * (copy to intenral buffer or hash in case of key longer than block */ static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey, unsigned int keylen) { dma_addr_t key_dma_addr = 0; struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode); struct cc_crypto_req cc_req = {}; unsigned int blocksize; unsigned int digestsize; unsigned int hashmode; unsigned int idx = 0; int rc = 0; u8 *key = NULL; struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ]; dma_addr_t padded_authkey_dma_addr = ctx->auth_state.hmac.padded_authkey_dma_addr; switch (ctx->auth_mode) { /* auth_key required and >0 */ case DRV_HASH_SHA1: blocksize = SHA1_BLOCK_SIZE; digestsize = SHA1_DIGEST_SIZE; hashmode = DRV_HASH_HW_SHA1; break; case DRV_HASH_SHA256: default: blocksize = SHA256_BLOCK_SIZE; digestsize = SHA256_DIGEST_SIZE; hashmode = DRV_HASH_HW_SHA256; } if (keylen != 0) { key = kmemdup(authkey, keylen, GFP_KERNEL); if (!key) return -ENOMEM; key_dma_addr = dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE); if (dma_mapping_error(dev, key_dma_addr)) { dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n", key, keylen); kzfree(key); return -ENOMEM; } if (keylen > blocksize) { /* Load hash initial state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hashmode); set_din_sram(&desc[idx], larval_addr, digestsize); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load the hash current length*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hashmode); set_din_const(&desc[idx], 0, ctx->hash_len); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, key_dma_addr, keylen, NS_BIT); set_flow_mode(&desc[idx], DIN_HASH); idx++; /* Get hashed key */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hashmode); set_dout_dlli(&desc[idx], padded_authkey_dma_addr, digestsize, NS_BIT, 0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED); set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN); idx++; hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, (blocksize - digestsize)); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], (padded_authkey_dma_addr + digestsize), (blocksize - digestsize), NS_BIT, 0); idx++; } else { hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, key_dma_addr, keylen, NS_BIT); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], padded_authkey_dma_addr, keylen, NS_BIT, 0); idx++; if ((blocksize - keylen) != 0) { hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, (blocksize - keylen)); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], (padded_authkey_dma_addr + keylen), (blocksize - keylen), NS_BIT, 0); idx++; } } } else { hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, (blocksize - keylen)); set_flow_mode(&desc[idx], BYPASS); set_dout_dlli(&desc[idx], padded_authkey_dma_addr, blocksize, NS_BIT, 0); idx++; } rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx); if (rc) dev_err(dev, "send_request() failed (rc=%d)\n", rc); if (key_dma_addr) dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE); kzfree(key); return rc; } static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct cc_crypto_req cc_req = {}; struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ]; unsigned int seq_len = 0; struct device *dev = drvdata_to_dev(ctx->drvdata); const u8 *enckey, *authkey; int rc; dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n", ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen); /* STAT_PHASE_0: Init and sanity checks */ if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */ struct crypto_authenc_keys keys; rc = crypto_authenc_extractkeys(&keys, key, keylen); if (rc) goto badkey; enckey = keys.enckey; authkey = keys.authkey; ctx->enc_keylen = keys.enckeylen; ctx->auth_keylen = keys.authkeylen; if (ctx->cipher_mode == DRV_CIPHER_CTR) { /* the nonce is stored in bytes at end of key */ rc = -EINVAL; if (ctx->enc_keylen < (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE)) goto badkey; /* Copy nonce from last 4 bytes in CTR key to * first 4 bytes in CTR IV */ memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen - CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE); /* Set CTR key size */ ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE; } } else { /* non-authenc - has just one key */ enckey = key; authkey = NULL; ctx->enc_keylen = keylen; ctx->auth_keylen = 0; } rc = validate_keys_sizes(ctx); if (rc) goto badkey; /* STAT_PHASE_1: Copy key to ctx */ /* Get key material */ memcpy(ctx->enckey, enckey, ctx->enc_keylen); if (ctx->enc_keylen == 24) memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24); if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey, ctx->auth_keylen); } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */ rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen); if (rc) goto badkey; } /* STAT_PHASE_2: Create sequence */ switch (ctx->auth_mode) { case DRV_HASH_SHA1: case DRV_HASH_SHA256: seq_len = hmac_setkey(desc, ctx); break; case DRV_HASH_XCBC_MAC: seq_len = xcbc_setkey(desc, ctx); break; case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */ break; /* No auth. key setup */ default: dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode); rc = -ENOTSUPP; goto badkey; } /* STAT_PHASE_3: Submit sequence to HW */ if (seq_len > 0) { /* For CCM there is no sequence to setup the key */ rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len); if (rc) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); goto setkey_error; } } /* Update STAT_PHASE_3 */ return rc; badkey: crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); setkey_error: return rc; } static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_authenc_keys keys; u32 flags; int err; err = crypto_authenc_extractkeys(&keys, key, keylen); if (unlikely(err)) goto badkey; err = -EINVAL; if (keys.enckeylen != DES3_EDE_KEY_SIZE) goto badkey; flags = crypto_aead_get_flags(aead); err = __des3_verify_key(&flags, keys.enckey); if (unlikely(err)) { crypto_aead_set_flags(aead, flags); goto out; } err = cc_aead_setkey(aead, key, keylen); out: memzero_explicit(&keys, sizeof(keys)); return err; badkey: crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); goto out; } static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); if (keylen < 3) return -EINVAL; keylen -= 3; memcpy(ctx->ctr_nonce, key + keylen, 3); return cc_aead_setkey(tfm, key, keylen); } static int cc_aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc); struct device *dev = drvdata_to_dev(ctx->drvdata); /* Unsupported auth. sizes */ if (authsize == 0 || authsize > crypto_aead_maxauthsize(authenc)) { return -ENOTSUPP; } ctx->authsize = authsize; dev_dbg(dev, "authlen=%d\n", ctx->authsize); return 0; } static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return cc_aead_setauthsize(authenc, authsize); } static int cc_ccm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } return cc_aead_setauthsize(authenc, authsize); } static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(areq); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *areq_ctx = aead_request_ctx(areq); enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type; unsigned int idx = *seq_size; struct device *dev = drvdata_to_dev(ctx->drvdata); switch (assoc_dma_type) { case CC_DMA_BUF_DLLI: dev_dbg(dev, "ASSOC buffer type DLLI\n"); hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src), areq_ctx->assoclen, NS_BIT); set_flow_mode(&desc[idx], flow_mode); if (ctx->auth_mode == DRV_HASH_XCBC_MAC && areq_ctx->cryptlen > 0) set_din_not_last_indication(&desc[idx]); break; case CC_DMA_BUF_MLLI: dev_dbg(dev, "ASSOC buffer type MLLI\n"); hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr, areq_ctx->assoc.mlli_nents, NS_BIT); set_flow_mode(&desc[idx], flow_mode); if (ctx->auth_mode == DRV_HASH_XCBC_MAC && areq_ctx->cryptlen > 0) set_din_not_last_indication(&desc[idx]); break; case CC_DMA_BUF_NULL: default: dev_err(dev, "Invalid ASSOC buffer type\n"); } *seq_size = (++idx); } static void cc_proc_authen_desc(struct aead_request *areq, unsigned int flow_mode, struct cc_hw_desc desc[], unsigned int *seq_size, int direct) { struct aead_req_ctx *areq_ctx = aead_request_ctx(areq); enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type; unsigned int idx = *seq_size; struct crypto_aead *tfm = crypto_aead_reqtfm(areq); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); switch (data_dma_type) { case CC_DMA_BUF_DLLI: { struct scatterlist *cipher = (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? areq_ctx->dst_sgl : areq_ctx->src_sgl; unsigned int offset = (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? areq_ctx->dst_offset : areq_ctx->src_offset; dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n"); hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (sg_dma_address(cipher) + offset), areq_ctx->cryptlen, NS_BIT); set_flow_mode(&desc[idx], flow_mode); break; } case CC_DMA_BUF_MLLI: { /* DOUBLE-PASS flow (as default) * assoc. + iv + data -compact in one table * if assoclen is ZERO only IV perform */ cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr; u32 mlli_nents = areq_ctx->assoc.mlli_nents; if (areq_ctx->is_single_pass) { if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) { mlli_addr = areq_ctx->dst.sram_addr; mlli_nents = areq_ctx->dst.mlli_nents; } else { mlli_addr = areq_ctx->src.sram_addr; mlli_nents = areq_ctx->src.mlli_nents; } } dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n"); hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents, NS_BIT); set_flow_mode(&desc[idx], flow_mode); break; } case CC_DMA_BUF_NULL: default: dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n"); } *seq_size = (++idx); } static void cc_proc_cipher_desc(struct aead_request *areq, unsigned int flow_mode, struct cc_hw_desc desc[], unsigned int *seq_size) { unsigned int idx = *seq_size; struct aead_req_ctx *areq_ctx = aead_request_ctx(areq); enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type; struct crypto_aead *tfm = crypto_aead_reqtfm(areq); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); if (areq_ctx->cryptlen == 0) return; /*null processing*/ switch (data_dma_type) { case CC_DMA_BUF_DLLI: dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n"); hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (sg_dma_address(areq_ctx->src_sgl) + areq_ctx->src_offset), areq_ctx->cryptlen, NS_BIT); set_dout_dlli(&desc[idx], (sg_dma_address(areq_ctx->dst_sgl) + areq_ctx->dst_offset), areq_ctx->cryptlen, NS_BIT, 0); set_flow_mode(&desc[idx], flow_mode); break; case CC_DMA_BUF_MLLI: dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n"); hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr, areq_ctx->src.mlli_nents, NS_BIT); set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr, areq_ctx->dst.mlli_nents, NS_BIT, 0); set_flow_mode(&desc[idx], flow_mode); break; case CC_DMA_BUF_NULL: default: dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n"); } *seq_size = (++idx); } static void cc_proc_digest_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); unsigned int idx = *seq_size; unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ? DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256; int direct = req_ctx->gen_ctx.op_type; /* Get final ICV result */ if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) { hw_desc_init(&desc[idx]); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { set_aes_not_hash_mode(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); } else { set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN); set_cipher_mode(&desc[idx], hash_mode); } } else { /*Decrypt*/ /* Get ICV out from hardware */ hw_desc_init(&desc[idx]); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN); set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED); if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_aes_not_hash_mode(&desc[idx]); } else { set_cipher_mode(&desc[idx], hash_mode); } } *seq_size = (++idx); } static void cc_set_cipher_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); unsigned int hw_iv_size = req_ctx->hw_iv_size; unsigned int idx = *seq_size; int direct = req_ctx->gen_ctx.op_type; /* Setup cipher state */ hw_desc_init(&desc[idx]); set_cipher_config0(&desc[idx], direct); set_flow_mode(&desc[idx], ctx->flow_mode); set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr, hw_iv_size, NS_BIT); if (ctx->cipher_mode == DRV_CIPHER_CTR) set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); else set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); set_cipher_mode(&desc[idx], ctx->cipher_mode); idx++; /* Setup enc. key */ hw_desc_init(&desc[idx]); set_cipher_config0(&desc[idx], direct); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_flow_mode(&desc[idx], ctx->flow_mode); if (ctx->flow_mode == S_DIN_to_AES) { set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr, ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX : ctx->enc_keylen), NS_BIT); set_key_size_aes(&desc[idx], ctx->enc_keylen); } else { set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr, ctx->enc_keylen, NS_BIT); set_key_size_des(&desc[idx], ctx->enc_keylen); } set_cipher_mode(&desc[idx], ctx->cipher_mode); idx++; *seq_size = idx; } static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size, unsigned int data_flow_mode) { struct aead_req_ctx *req_ctx = aead_request_ctx(req); int direct = req_ctx->gen_ctx.op_type; unsigned int idx = *seq_size; if (req_ctx->cryptlen == 0) return; /*null processing*/ cc_set_cipher_desc(req, desc, &idx); cc_proc_cipher_desc(req, data_flow_mode, desc, &idx); if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) { /* We must wait for DMA to write all cipher */ hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); idx++; } *seq_size = idx; } static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ? DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256; unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ? CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE; unsigned int idx = *seq_size; /* Loading hash ipad xor key state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_din_type(&desc[idx], DMA_DLLI, ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size, NS_BIT); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load init. digest len (64 bytes) */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode), ctx->hash_len); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; *seq_size = idx; } static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); unsigned int idx = *seq_size; /* Loading MAC state */ hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); idx++; /* Setup XCBC MAC K1 */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, ctx->auth_state.xcbc.xcbc_keys_dma_addr, AES_KEYSIZE_128, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); idx++; /* Setup XCBC MAC K2 */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (ctx->auth_state.xcbc.xcbc_keys_dma_addr + AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); idx++; /* Setup XCBC MAC K3 */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, (ctx->auth_state.xcbc.xcbc_keys_dma_addr + 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE2); set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); idx++; *seq_size = idx; } static void cc_proc_header_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct aead_req_ctx *areq_ctx = aead_request_ctx(req); unsigned int idx = *seq_size; /* Hash associated data */ if (areq_ctx->assoclen > 0) cc_set_assoc_desc(req, DIN_HASH, desc, &idx); /* Hash IV */ *seq_size = idx; } static void cc_proc_scheme_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle; unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ? DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256; unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ? CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE; unsigned int idx = *seq_size; hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr, ctx->hash_len); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE1); set_cipher_do(&desc[idx], DO_PAD); idx++; /* Get final ICV result */ hw_desc_init(&desc[idx]); set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr, digest_size); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN); set_cipher_mode(&desc[idx], hash_mode); idx++; /* Loading hash opad xor key state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_din_type(&desc[idx], DMA_DLLI, (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size), digest_size, NS_BIT); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; /* Load init. digest len (64 bytes) */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], hash_mode); set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode), ctx->hash_len); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Perform HASH update */ hw_desc_init(&desc[idx]); set_din_sram(&desc[idx], aead_handle->sram_workspace_addr, digest_size); set_flow_mode(&desc[idx], DIN_HASH); idx++; *seq_size = idx; } static void cc_mlli_to_sram(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct aead_req_ctx *req_ctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI || req_ctx->data_buff_type == CC_DMA_BUF_MLLI || !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) { dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n", (unsigned int)ctx->drvdata->mlli_sram_addr, req_ctx->mlli_params.mlli_len); /* Copy MLLI table host-to-sram */ hw_desc_init(&desc[*seq_size]); set_din_type(&desc[*seq_size], DMA_DLLI, req_ctx->mlli_params.mlli_dma_addr, req_ctx->mlli_params.mlli_len, NS_BIT); set_dout_sram(&desc[*seq_size], ctx->drvdata->mlli_sram_addr, req_ctx->mlli_params.mlli_len); set_flow_mode(&desc[*seq_size], BYPASS); (*seq_size)++; } } static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct, enum cc_flow_mode setup_flow_mode, bool is_single_pass) { enum cc_flow_mode data_flow_mode; if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) { if (setup_flow_mode == S_DIN_to_AES) data_flow_mode = is_single_pass ? AES_to_HASH_and_DOUT : DIN_AES_DOUT; else data_flow_mode = is_single_pass ? DES_to_HASH_and_DOUT : DIN_DES_DOUT; } else { /* Decrypt */ if (setup_flow_mode == S_DIN_to_AES) data_flow_mode = is_single_pass ? AES_and_HASH : DIN_AES_DOUT; else data_flow_mode = is_single_pass ? DES_and_HASH : DIN_DES_DOUT; } return data_flow_mode; } static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); int direct = req_ctx->gen_ctx.op_type; unsigned int data_flow_mode = cc_get_data_flow(direct, ctx->flow_mode, req_ctx->is_single_pass); if (req_ctx->is_single_pass) { /** * Single-pass flow */ cc_set_hmac_desc(req, desc, seq_size); cc_set_cipher_desc(req, desc, seq_size); cc_proc_header_desc(req, desc, seq_size); cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size); cc_proc_scheme_desc(req, desc, seq_size); cc_proc_digest_desc(req, desc, seq_size); return; } /** * Double-pass flow * Fallback for unsupported single-pass modes, * i.e. using assoc. data of non-word-multiple */ if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) { /* encrypt first.. */ cc_proc_cipher(req, desc, seq_size, data_flow_mode); /* authenc after..*/ cc_set_hmac_desc(req, desc, seq_size); cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct); cc_proc_scheme_desc(req, desc, seq_size); cc_proc_digest_desc(req, desc, seq_size); } else { /*DECRYPT*/ /* authenc first..*/ cc_set_hmac_desc(req, desc, seq_size); cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct); cc_proc_scheme_desc(req, desc, seq_size); /* decrypt after.. */ cc_proc_cipher(req, desc, seq_size, data_flow_mode); /* read the digest result with setting the completion bit * must be after the cipher operation */ cc_proc_digest_desc(req, desc, seq_size); } } static void cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); int direct = req_ctx->gen_ctx.op_type; unsigned int data_flow_mode = cc_get_data_flow(direct, ctx->flow_mode, req_ctx->is_single_pass); if (req_ctx->is_single_pass) { /** * Single-pass flow */ cc_set_xcbc_desc(req, desc, seq_size); cc_set_cipher_desc(req, desc, seq_size); cc_proc_header_desc(req, desc, seq_size); cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size); cc_proc_digest_desc(req, desc, seq_size); return; } /** * Double-pass flow * Fallback for unsupported single-pass modes, * i.e. using assoc. data of non-word-multiple */ if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) { /* encrypt first.. */ cc_proc_cipher(req, desc, seq_size, data_flow_mode); /* authenc after.. */ cc_set_xcbc_desc(req, desc, seq_size); cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct); cc_proc_digest_desc(req, desc, seq_size); } else { /*DECRYPT*/ /* authenc first.. */ cc_set_xcbc_desc(req, desc, seq_size); cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct); /* decrypt after..*/ cc_proc_cipher(req, desc, seq_size, data_flow_mode); /* read the digest result with setting the completion bit * must be after the cipher operation */ cc_proc_digest_desc(req, desc, seq_size); } } static int validate_data_size(struct cc_aead_ctx *ctx, enum drv_crypto_direction direct, struct aead_request *req) { struct aead_req_ctx *areq_ctx = aead_request_ctx(req); struct device *dev = drvdata_to_dev(ctx->drvdata); unsigned int assoclen = areq_ctx->assoclen; unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ? (req->cryptlen - ctx->authsize) : req->cryptlen; if (direct == DRV_CRYPTO_DIRECTION_DECRYPT && req->cryptlen < ctx->authsize) goto data_size_err; areq_ctx->is_single_pass = true; /*defaulted to fast flow*/ switch (ctx->flow_mode) { case S_DIN_to_AES: if (ctx->cipher_mode == DRV_CIPHER_CBC && !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE)) goto data_size_err; if (ctx->cipher_mode == DRV_CIPHER_CCM) break; if (ctx->cipher_mode == DRV_CIPHER_GCTR) { if (areq_ctx->plaintext_authenticate_only) areq_ctx->is_single_pass = false; break; } if (!IS_ALIGNED(assoclen, sizeof(u32))) areq_ctx->is_single_pass = false; if (ctx->cipher_mode == DRV_CIPHER_CTR && !IS_ALIGNED(cipherlen, sizeof(u32))) areq_ctx->is_single_pass = false; break; case S_DIN_to_DES: if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE)) goto data_size_err; if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE)) areq_ctx->is_single_pass = false; break; default: dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode); goto data_size_err; } return 0; data_size_err: return -EINVAL; } static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size) { unsigned int len = 0; if (header_size == 0) return 0; if (header_size < ((1UL << 16) - (1UL << 8))) { len = 2; pa0_buff[0] = (header_size >> 8) & 0xFF; pa0_buff[1] = header_size & 0xFF; } else { len = 6; pa0_buff[0] = 0xFF; pa0_buff[1] = 0xFE; pa0_buff[2] = (header_size >> 24) & 0xFF; pa0_buff[3] = (header_size >> 16) & 0xFF; pa0_buff[4] = (header_size >> 8) & 0xFF; pa0_buff[5] = header_size & 0xFF; } return len; } static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); unsigned int idx = *seq_size; unsigned int cipher_flow_mode; dma_addr_t mac_result; if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) { cipher_flow_mode = AES_to_HASH_and_DOUT; mac_result = req_ctx->mac_buf_dma_addr; } else { /* Encrypt */ cipher_flow_mode = AES_and_HASH; mac_result = req_ctx->icv_dma_addr; } /* load key */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_CTR); set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr, ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX : ctx->enc_keylen), NS_BIT); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* load ctr state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_CTR); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* load MAC key */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC); set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr, ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX : ctx->enc_keylen), NS_BIT); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); idx++; /* load MAC state */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); idx++; /* process assoc data */ if (req_ctx->assoclen > 0) { cc_set_assoc_desc(req, DIN_HASH, desc, &idx); } else { hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(&req_ctx->ccm_adata_sg), AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT); set_flow_mode(&desc[idx], DIN_HASH); idx++; } /* process the cipher */ if (req_ctx->cryptlen) cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx); /* Read temporal MAC */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC); set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize, NS_BIT, 0); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_aes_not_hash_mode(&desc[idx]); idx++; /* load AES-CTR state (for last MAC calculation)*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_CTR); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); idx++; /* encrypt the "T" value and store MAC in mac_state */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr, ctx->authsize, NS_BIT); set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], DIN_AES_DOUT); idx++; *seq_size = idx; return 0; } static int config_ccm_adata(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); struct aead_req_ctx *req_ctx = aead_request_ctx(req); //unsigned int size_of_a = 0, rem_a_size = 0; unsigned int lp = req->iv[0]; /* Note: The code assume that req->iv[0] already contains the value * of L' of RFC3610 */ unsigned int l = lp + 1; /* This is L' of RFC 3610. */ unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */ u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET; u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET; u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET; unsigned int cryptlen = (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT) ? req->cryptlen : (req->cryptlen - ctx->authsize); int rc; memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE); memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3); /* taken from crypto/ccm.c */ /* 2 <= L <= 8, so 1 <= L' <= 7. */ if (l < 2 || l > 8) { dev_err(dev, "illegal iv value %X\n", req->iv[0]); return -EINVAL; } memcpy(b0, req->iv, AES_BLOCK_SIZE); /* format control info per RFC 3610 and * NIST Special Publication 800-38C */ *b0 |= (8 * ((m - 2) / 2)); if (req_ctx->assoclen > 0) *b0 |= 64; /* Enable bit 6 if Adata exists. */ rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */ if (rc) { dev_err(dev, "message len overflow detected"); return rc; } /* END of "taken from crypto/ccm.c" */ /* l(a) - size of associated data. */ req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen); memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1); req->iv[15] = 1; memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE); ctr_count_0[15] = 0; return 0; } static void cc_proc_rfc4309_ccm(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *areq_ctx = aead_request_ctx(req); /* L' */ memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE); /* For RFC 4309, always use 4 bytes for message length * (at most 2^32-1 bytes). */ areq_ctx->ctr_iv[0] = 3; /* In RFC 4309 there is an 11-bytes nonce+IV part, * that we build here. */ memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce, CCM_BLOCK_NONCE_SIZE); memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv, CCM_BLOCK_IV_SIZE); req->iv = areq_ctx->ctr_iv; areq_ctx->assoclen -= CCM_BLOCK_IV_SIZE; } static void cc_set_ghash_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); unsigned int idx = *seq_size; /* load key to AES*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_ECB); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr, ctx->enc_keylen, NS_BIT); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* process one zero block to generate hkey */ hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE); set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE, NS_BIT, 0); set_flow_mode(&desc[idx], DIN_AES_DOUT); idx++; /* Memory Barrier */ hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); idx++; /* Load GHASH subkey */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_dout_no_dma(&desc[idx], 0, 0, 1); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Configure Hash Engine to work with GHASH. * Since it was not possible to extend HASH submodes to add GHASH, * The following command is necessary in order to * select GHASH (according to HW designers) */ hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH); set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); idx++; /* Load GHASH initial STATE (which is 0). (for any hash there is an * initial state) */ hw_desc_init(&desc[idx]); set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE); set_dout_no_dma(&desc[idx], 0, 0, 1); set_flow_mode(&desc[idx], S_DIN_to_HASH); set_aes_not_hash_mode(&desc[idx]); set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH); set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED); set_setup_mode(&desc[idx], SETUP_LOAD_STATE0); idx++; *seq_size = idx; } static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); unsigned int idx = *seq_size; /* load key to AES*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr, ctx->enc_keylen, NS_BIT); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_setup_mode(&desc[idx], SETUP_LOAD_KEY0); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) { /* load AES/CTR initial CTR value inc by 2*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; } *seq_size = idx; } static void cc_proc_gcm_result(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); dma_addr_t mac_result; unsigned int idx = *seq_size; if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) { mac_result = req_ctx->mac_buf_dma_addr; } else { /* Encrypt */ mac_result = req_ctx->icv_dma_addr; } /* process(ghash) gcm_block_len */ hw_desc_init(&desc[idx]); set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_flow_mode(&desc[idx], DIN_HASH); idx++; /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE, NS_BIT, 0); set_setup_mode(&desc[idx], SETUP_WRITE_STATE0); set_flow_mode(&desc[idx], S_HASH_to_DOUT); set_aes_not_hash_mode(&desc[idx]); idx++; /* load AES/CTR initial CTR value inc by 1*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR); set_key_size_aes(&desc[idx], ctx->enc_keylen); set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT); set_setup_mode(&desc[idx], SETUP_LOAD_STATE1); set_flow_mode(&desc[idx], S_DIN_to_AES); idx++; /* Memory Barrier */ hw_desc_init(&desc[idx]); set_din_no_dma(&desc[idx], 0, 0xfffff0); set_dout_no_dma(&desc[idx], 0, 0, 1); idx++; /* process GCTR on stored GHASH and store MAC in mac_state*/ hw_desc_init(&desc[idx]); set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR); set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE, NS_BIT); set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1); set_queue_last_ind(ctx->drvdata, &desc[idx]); set_flow_mode(&desc[idx], DIN_AES_DOUT); idx++; *seq_size = idx; } static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[], unsigned int *seq_size) { struct aead_req_ctx *req_ctx = aead_request_ctx(req); unsigned int cipher_flow_mode; if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) { cipher_flow_mode = AES_and_HASH; } else { /* Encrypt */ cipher_flow_mode = AES_to_HASH_and_DOUT; } //in RFC4543 no data to encrypt. just copy data from src to dest. if (req_ctx->plaintext_authenticate_only) { cc_proc_cipher_desc(req, BYPASS, desc, seq_size); cc_set_ghash_desc(req, desc, seq_size); /* process(ghash) assoc data */ cc_set_assoc_desc(req, DIN_HASH, desc, seq_size); cc_set_gctr_desc(req, desc, seq_size); cc_proc_gcm_result(req, desc, seq_size); return 0; } // for gcm and rfc4106. cc_set_ghash_desc(req, desc, seq_size); /* process(ghash) assoc data */ if (req_ctx->assoclen > 0) cc_set_assoc_desc(req, DIN_HASH, desc, seq_size); cc_set_gctr_desc(req, desc, seq_size); /* process(gctr+ghash) */ if (req_ctx->cryptlen) cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size); cc_proc_gcm_result(req, desc, seq_size); return 0; } static int config_gcm_context(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *req_ctx = aead_request_ctx(req); struct device *dev = drvdata_to_dev(ctx->drvdata); unsigned int cryptlen = (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT) ? req->cryptlen : (req->cryptlen - ctx->authsize); __be32 counter = cpu_to_be32(2); dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n", __func__, cryptlen, req_ctx->assoclen, ctx->authsize); memset(req_ctx->hkey, 0, AES_BLOCK_SIZE); memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE); memcpy(req->iv + 12, &counter, 4); memcpy(req_ctx->gcm_iv_inc2, req->iv, 16); counter = cpu_to_be32(1); memcpy(req->iv + 12, &counter, 4); memcpy(req_ctx->gcm_iv_inc1, req->iv, 16); if (!req_ctx->plaintext_authenticate_only) { __be64 temp64; temp64 = cpu_to_be64(req_ctx->assoclen * 8); memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64)); temp64 = cpu_to_be64(cryptlen * 8); memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8); } else { /* rfc4543=> all data(AAD,IV,Plain) are considered additional * data that is nothing is encrypted. */ __be64 temp64; temp64 = cpu_to_be64((req_ctx->assoclen + GCM_BLOCK_RFC4_IV_SIZE + cryptlen) * 8); memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64)); temp64 = 0; memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8); } return 0; } static void cc_proc_rfc4_gcm(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *areq_ctx = aead_request_ctx(req); memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET, ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE); memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv, GCM_BLOCK_RFC4_IV_SIZE); req->iv = areq_ctx->ctr_iv; areq_ctx->assoclen -= GCM_BLOCK_RFC4_IV_SIZE; } static int cc_proc_aead(struct aead_request *req, enum drv_crypto_direction direct) { int rc = 0; int seq_len = 0; struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ]; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_req_ctx *areq_ctx = aead_request_ctx(req); struct device *dev = drvdata_to_dev(ctx->drvdata); struct cc_crypto_req cc_req = {}; dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n", ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"), ctx, req, req->iv, sg_virt(req->src), req->src->offset, sg_virt(req->dst), req->dst->offset, req->cryptlen); /* STAT_PHASE_0: Init and sanity checks */ /* Check data length according to mode */ if (validate_data_size(ctx, direct, req)) { dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n", req->cryptlen, areq_ctx->assoclen); crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN); return -EINVAL; } /* Setup request structure */ cc_req.user_cb = (void *)cc_aead_complete; cc_req.user_arg = (void *)req; /* Setup request context */ areq_ctx->gen_ctx.op_type = direct; areq_ctx->req_authsize = ctx->authsize; areq_ctx->cipher_mode = ctx->cipher_mode; /* STAT_PHASE_1: Map buffers */ if (ctx->cipher_mode == DRV_CIPHER_CTR) { /* Build CTR IV - Copy nonce from last 4 bytes in * CTR key to first 4 bytes in CTR IV */ memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce, CTR_RFC3686_NONCE_SIZE); if (!areq_ctx->backup_giv) /*User none-generated IV*/ memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv, CTR_RFC3686_IV_SIZE); /* Initialize counter portion of counter block */ *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32(1); /* Replace with counter iv */ req->iv = areq_ctx->ctr_iv; areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE; } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) || (ctx->cipher_mode == DRV_CIPHER_GCTR)) { areq_ctx->hw_iv_size = AES_BLOCK_SIZE; if (areq_ctx->ctr_iv != req->iv) { memcpy(areq_ctx->ctr_iv, req->iv, crypto_aead_ivsize(tfm)); req->iv = areq_ctx->ctr_iv; } } else { areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm); } if (ctx->cipher_mode == DRV_CIPHER_CCM) { rc = config_ccm_adata(req); if (rc) { dev_dbg(dev, "config_ccm_adata() returned with a failure %d!", rc); goto exit; } } else { areq_ctx->ccm_hdr_size = ccm_header_size_null; } if (ctx->cipher_mode == DRV_CIPHER_GCTR) { rc = config_gcm_context(req); if (rc) { dev_dbg(dev, "config_gcm_context() returned with a failure %d!", rc); goto exit; } } rc = cc_map_aead_request(ctx->drvdata, req); if (rc) { dev_err(dev, "map_request() failed\n"); goto exit; } /* do we need to generate IV? */ if (areq_ctx->backup_giv) { /* set the DMA mapped IV address*/ if (ctx->cipher_mode == DRV_CIPHER_CTR) { cc_req.ivgen_dma_addr[0] = areq_ctx->gen_ctx.iv_dma_addr + CTR_RFC3686_NONCE_SIZE; cc_req.ivgen_dma_addr_len = 1; } else if (ctx->cipher_mode == DRV_CIPHER_CCM) { /* In ccm, the IV needs to exist both inside B0 and * inside the counter.It is also copied to iv_dma_addr * for other reasons (like returning it to the user). * So, using 3 (identical) IV outputs. */ cc_req.ivgen_dma_addr[0] = areq_ctx->gen_ctx.iv_dma_addr + CCM_BLOCK_IV_OFFSET; cc_req.ivgen_dma_addr[1] = sg_dma_address(&areq_ctx->ccm_adata_sg) + CCM_B0_OFFSET + CCM_BLOCK_IV_OFFSET; cc_req.ivgen_dma_addr[2] = sg_dma_address(&areq_ctx->ccm_adata_sg) + CCM_CTR_COUNT_0_OFFSET + CCM_BLOCK_IV_OFFSET; cc_req.ivgen_dma_addr_len = 3; } else { cc_req.ivgen_dma_addr[0] = areq_ctx->gen_ctx.iv_dma_addr; cc_req.ivgen_dma_addr_len = 1; } /* set the IV size (8/16 B long)*/ cc_req.ivgen_size = crypto_aead_ivsize(tfm); } /* STAT_PHASE_2: Create sequence */ /* Load MLLI tables to SRAM if necessary */ cc_mlli_to_sram(req, desc, &seq_len); /*TODO: move seq len by reference */ switch (ctx->auth_mode) { case DRV_HASH_SHA1: case DRV_HASH_SHA256: cc_hmac_authenc(req, desc, &seq_len); break; case DRV_HASH_XCBC_MAC: cc_xcbc_authenc(req, desc, &seq_len); break; case DRV_HASH_NULL: if (ctx->cipher_mode == DRV_CIPHER_CCM) cc_ccm(req, desc, &seq_len); if (ctx->cipher_mode == DRV_CIPHER_GCTR) cc_gcm(req, desc, &seq_len); break; default: dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode); cc_unmap_aead_request(dev, req); rc = -ENOTSUPP; goto exit; } /* STAT_PHASE_3: Lock HW and push sequence */ rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base); if (rc != -EINPROGRESS && rc != -EBUSY) { dev_err(dev, "send_request() failed (rc=%d)\n", rc); cc_unmap_aead_request(dev, req); } exit: return rc; } static int cc_aead_encrypt(struct aead_request *req) { struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc; memset(areq_ctx, 0, sizeof(*areq_ctx)); /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; areq_ctx->is_gcm4543 = false; areq_ctx->plaintext_authenticate_only = false; rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; return rc; } static int cc_rfc4309_ccm_encrypt(struct aead_request *req) { /* Very similar to cc_aead_encrypt() above. */ struct aead_req_ctx *areq_ctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); int rc = -EINVAL; if (!valid_assoclen(req)) { dev_err(dev, "invalid Assoclen:%u\n", req->assoclen); goto out; } memset(areq_ctx, 0, sizeof(*areq_ctx)); /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; areq_ctx->is_gcm4543 = true; cc_proc_rfc4309_ccm(req); rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; out: return rc; } static int cc_aead_decrypt(struct aead_request *req) { struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc; memset(areq_ctx, 0, sizeof(*areq_ctx)); /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; areq_ctx->is_gcm4543 = false; areq_ctx->plaintext_authenticate_only = false; rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; return rc; } static int cc_rfc4309_ccm_decrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc = -EINVAL; if (!valid_assoclen(req)) { dev_err(dev, "invalid Assoclen:%u\n", req->assoclen); goto out; } memset(areq_ctx, 0, sizeof(*areq_ctx)); /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; areq_ctx->is_gcm4543 = true; cc_proc_rfc4309_ccm(req); rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; out: return rc; } static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key); if (keylen < 4) return -EINVAL; keylen -= 4; memcpy(ctx->ctr_nonce, key + keylen, 4); return cc_aead_setkey(tfm, key, keylen); } static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key); if (keylen < 4) return -EINVAL; keylen -= 4; memcpy(ctx->ctr_nonce, key + keylen, 4); return cc_aead_setkey(tfm, key, keylen); } static int cc_gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return cc_aead_setauthsize(authenc, authsize); } static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "authsize %d\n", authsize); switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return cc_aead_setauthsize(authenc, authsize); } static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc); struct device *dev = drvdata_to_dev(ctx->drvdata); dev_dbg(dev, "authsize %d\n", authsize); if (authsize != 16) return -EINVAL; return cc_aead_setauthsize(authenc, authsize); } static int cc_rfc4106_gcm_encrypt(struct aead_request *req) { /* Very similar to cc_aead_encrypt() above. */ struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc = -EINVAL; if (!valid_assoclen(req)) { dev_err(dev, "invalid Assoclen:%u\n", req->assoclen); goto out; } memset(areq_ctx, 0, sizeof(*areq_ctx)); /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; areq_ctx->plaintext_authenticate_only = false; cc_proc_rfc4_gcm(req); areq_ctx->is_gcm4543 = true; rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; out: return rc; } static int cc_rfc4543_gcm_encrypt(struct aead_request *req) { /* Very similar to cc_aead_encrypt() above. */ struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc; memset(areq_ctx, 0, sizeof(*areq_ctx)); //plaintext is not encryped with rfc4543 areq_ctx->plaintext_authenticate_only = true; /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; cc_proc_rfc4_gcm(req); areq_ctx->is_gcm4543 = true; rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; return rc; } static int cc_rfc4106_gcm_decrypt(struct aead_request *req) { /* Very similar to cc_aead_decrypt() above. */ struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct device *dev = drvdata_to_dev(ctx->drvdata); struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc = -EINVAL; if (!valid_assoclen(req)) { dev_err(dev, "invalid Assoclen:%u\n", req->assoclen); goto out; } memset(areq_ctx, 0, sizeof(*areq_ctx)); /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; areq_ctx->plaintext_authenticate_only = false; cc_proc_rfc4_gcm(req); areq_ctx->is_gcm4543 = true; rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; out: return rc; } static int cc_rfc4543_gcm_decrypt(struct aead_request *req) { /* Very similar to cc_aead_decrypt() above. */ struct aead_req_ctx *areq_ctx = aead_request_ctx(req); int rc; memset(areq_ctx, 0, sizeof(*areq_ctx)); //plaintext is not decryped with rfc4543 areq_ctx->plaintext_authenticate_only = true; /* No generated IV required */ areq_ctx->backup_iv = req->iv; areq_ctx->assoclen = req->assoclen; areq_ctx->backup_giv = NULL; cc_proc_rfc4_gcm(req); areq_ctx->is_gcm4543 = true; rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT); if (rc != -EINPROGRESS && rc != -EBUSY) req->iv = areq_ctx->backup_iv; return rc; } /* aead alg */ static struct cc_alg_template aead_algs[] = { { .name = "authenc(hmac(sha1),cbc(aes))", .driver_name = "authenc-hmac-sha1-cbc-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_SHA1, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(hmac(sha1),cbc(des3_ede))", .driver_name = "authenc-hmac-sha1-cbc-des3-ccree", .blocksize = DES3_EDE_BLOCK_SIZE, .template_aead = { .setkey = cc_des3_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_DES, .auth_mode = DRV_HASH_SHA1, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(hmac(sha256),cbc(aes))", .driver_name = "authenc-hmac-sha256-cbc-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_SHA256, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(hmac(sha256),cbc(des3_ede))", .driver_name = "authenc-hmac-sha256-cbc-des3-ccree", .blocksize = DES3_EDE_BLOCK_SIZE, .template_aead = { .setkey = cc_des3_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_DES, .auth_mode = DRV_HASH_SHA256, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(xcbc(aes),cbc(aes))", .driver_name = "authenc-xcbc-aes-cbc-aes-ccree", .blocksize = AES_BLOCK_SIZE, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CBC, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_XCBC_MAC, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_SHA1, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_SHA256, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))", .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_aead_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CTR, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_XCBC_MAC, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "ccm(aes)", .driver_name = "ccm-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_ccm_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CCM, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_NULL, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "rfc4309(ccm(aes))", .driver_name = "rfc4309-ccm-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_rfc4309_ccm_setkey, .setauthsize = cc_rfc4309_ccm_setauthsize, .encrypt = cc_rfc4309_ccm_encrypt, .decrypt = cc_rfc4309_ccm_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = CCM_BLOCK_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_CCM, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_NULL, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "gcm(aes)", .driver_name = "gcm-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_aead_setkey, .setauthsize = cc_gcm_setauthsize, .encrypt = cc_aead_encrypt, .decrypt = cc_aead_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = 12, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_GCTR, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_NULL, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "rfc4106(gcm(aes))", .driver_name = "rfc4106-gcm-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_rfc4106_gcm_setkey, .setauthsize = cc_rfc4106_gcm_setauthsize, .encrypt = cc_rfc4106_gcm_encrypt, .decrypt = cc_rfc4106_gcm_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = GCM_BLOCK_RFC4_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_GCTR, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_NULL, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, { .name = "rfc4543(gcm(aes))", .driver_name = "rfc4543-gcm-aes-ccree", .blocksize = 1, .template_aead = { .setkey = cc_rfc4543_gcm_setkey, .setauthsize = cc_rfc4543_gcm_setauthsize, .encrypt = cc_rfc4543_gcm_encrypt, .decrypt = cc_rfc4543_gcm_decrypt, .init = cc_aead_init, .exit = cc_aead_exit, .ivsize = GCM_BLOCK_RFC4_IV_SIZE, .maxauthsize = AES_BLOCK_SIZE, }, .cipher_mode = DRV_CIPHER_GCTR, .flow_mode = S_DIN_to_AES, .auth_mode = DRV_HASH_NULL, .min_hw_rev = CC_HW_REV_630, .std_body = CC_STD_NIST, }, }; static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl, struct device *dev) { struct cc_crypto_alg *t_alg; struct aead_alg *alg; t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); alg = &tmpl->template_aead; snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->driver_name); alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CC_CRA_PRIO; alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx); alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; alg->init = cc_aead_init; alg->exit = cc_aead_exit; t_alg->aead_alg = *alg; t_alg->cipher_mode = tmpl->cipher_mode; t_alg->flow_mode = tmpl->flow_mode; t_alg->auth_mode = tmpl->auth_mode; return t_alg; } int cc_aead_free(struct cc_drvdata *drvdata) { struct cc_crypto_alg *t_alg, *n; struct cc_aead_handle *aead_handle = (struct cc_aead_handle *)drvdata->aead_handle; if (aead_handle) { /* Remove registered algs */ list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) { crypto_unregister_aead(&t_alg->aead_alg); list_del(&t_alg->entry); kfree(t_alg); } kfree(aead_handle); drvdata->aead_handle = NULL; } return 0; } int cc_aead_alloc(struct cc_drvdata *drvdata) { struct cc_aead_handle *aead_handle; struct cc_crypto_alg *t_alg; int rc = -ENOMEM; int alg; struct device *dev = drvdata_to_dev(drvdata); aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL); if (!aead_handle) { rc = -ENOMEM; goto fail0; } INIT_LIST_HEAD(&aead_handle->aead_list); drvdata->aead_handle = aead_handle; aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata, MAX_HMAC_DIGEST_SIZE); if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) { dev_err(dev, "SRAM pool exhausted\n"); rc = -ENOMEM; goto fail1; } /* Linux crypto */ for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) { if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) || !(drvdata->std_bodies & aead_algs[alg].std_body)) continue; t_alg = cc_create_aead_alg(&aead_algs[alg], dev); if (IS_ERR(t_alg)) { rc = PTR_ERR(t_alg); dev_err(dev, "%s alg allocation failed\n", aead_algs[alg].driver_name); goto fail1; } t_alg->drvdata = drvdata; rc = crypto_register_aead(&t_alg->aead_alg); if (rc) { dev_err(dev, "%s alg registration failed\n", t_alg->aead_alg.base.cra_driver_name); goto fail2; } else { list_add_tail(&t_alg->entry, &aead_handle->aead_list); dev_dbg(dev, "Registered %s\n", t_alg->aead_alg.base.cra_driver_name); } } return 0; fail2: kfree(t_alg); fail1: cc_aead_free(drvdata); fail0: return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1