Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Atul Gupta | 2211 | 99.77% | 2 | 50.00% |
Gustavo A. R. Silva | 3 | 0.14% | 1 | 25.00% |
Thomas Gleixner | 2 | 0.09% | 1 | 25.00% |
Total | 2216 | 4 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2018 Chelsio Communications, Inc. * * Written by: Atul Gupta (atul.gupta@chelsio.com) */ #include <linux/module.h> #include <linux/list.h> #include <linux/workqueue.h> #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/notifier.h> #include <linux/inetdevice.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/tls.h> #include <net/tls.h> #include "chtls.h" #include "chtls_cm.h" static void __set_tcb_field_direct(struct chtls_sock *csk, struct cpl_set_tcb_field *req, u16 word, u64 mask, u64 val, u8 cookie, int no_reply) { struct ulptx_idata *sc; INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid); req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid)); req->reply_ctrl = htons(NO_REPLY_V(no_reply) | QUEUENO_V(csk->rss_qid)); req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie)); req->mask = cpu_to_be64(mask); req->val = cpu_to_be64(val); sc = (struct ulptx_idata *)(req + 1); sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP)); sc->len = htonl(0); } static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word, u64 mask, u64 val, u8 cookie, int no_reply) { struct cpl_set_tcb_field *req; struct chtls_sock *csk; struct ulptx_idata *sc; unsigned int wrlen; wrlen = roundup(sizeof(*req) + sizeof(*sc), 16); csk = rcu_dereference_sk_user_data(sk); req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen); __set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply); set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id); } /* * Send control message to HW, message go as immediate data and packet * is freed immediately. */ static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val) { struct cpl_set_tcb_field *req; unsigned int credits_needed; struct chtls_sock *csk; struct ulptx_idata *sc; struct sk_buff *skb; unsigned int wrlen; int ret; wrlen = roundup(sizeof(*req) + sizeof(*sc), 16); skb = alloc_skb(wrlen, GFP_ATOMIC); if (!skb) return -ENOMEM; credits_needed = DIV_ROUND_UP(wrlen, 16); csk = rcu_dereference_sk_user_data(sk); __set_tcb_field(sk, skb, word, mask, val, 0, 1); skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA); csk->wr_credits -= credits_needed; csk->wr_unacked += credits_needed; enqueue_wr(csk, skb); ret = cxgb4_ofld_send(csk->egress_dev, skb); if (ret < 0) kfree_skb(skb); return ret < 0 ? ret : 0; } /* * Set one of the t_flags bits in the TCB. */ int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val) { return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos, (u64)val << bit_pos); } static int chtls_set_tcb_keyid(struct sock *sk, int keyid) { return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid); } static int chtls_set_tcb_seqno(struct sock *sk) { return chtls_set_tcb_field(sk, 28, ~0ULL, 0); } static int chtls_set_tcb_quiesce(struct sock *sk, int val) { return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S), TF_RX_QUIESCE_V(val)); } /* TLS Key bitmap processing */ int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi) { unsigned int num_key_ctx, bsize; int ksize; num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ); bsize = BITS_TO_LONGS(num_key_ctx); cdev->kmap.size = num_key_ctx; cdev->kmap.available = bsize; ksize = sizeof(*cdev->kmap.addr) * bsize; cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL); if (!cdev->kmap.addr) return -ENOMEM; cdev->kmap.start = lldi->vr->key.start; spin_lock_init(&cdev->kmap.lock); return 0; } static int get_new_keyid(struct chtls_sock *csk, u32 optname) { struct net_device *dev = csk->egress_dev; struct chtls_dev *cdev = csk->cdev; struct chtls_hws *hws; struct adapter *adap; int keyid; adap = netdev2adap(dev); hws = &csk->tlshws; spin_lock_bh(&cdev->kmap.lock); keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size); if (keyid < cdev->kmap.size) { __set_bit(keyid, cdev->kmap.addr); if (optname == TLS_RX) hws->rxkey = keyid; else hws->txkey = keyid; atomic_inc(&adap->chcr_stats.tls_key); } else { keyid = -1; } spin_unlock_bh(&cdev->kmap.lock); return keyid; } void free_tls_keyid(struct sock *sk) { struct chtls_sock *csk = rcu_dereference_sk_user_data(sk); struct net_device *dev = csk->egress_dev; struct chtls_dev *cdev = csk->cdev; struct chtls_hws *hws; struct adapter *adap; if (!cdev->kmap.addr) return; adap = netdev2adap(dev); hws = &csk->tlshws; spin_lock_bh(&cdev->kmap.lock); if (hws->rxkey >= 0) { __clear_bit(hws->rxkey, cdev->kmap.addr); atomic_dec(&adap->chcr_stats.tls_key); hws->rxkey = -1; } if (hws->txkey >= 0) { __clear_bit(hws->txkey, cdev->kmap.addr); atomic_dec(&adap->chcr_stats.tls_key); hws->txkey = -1; } spin_unlock_bh(&cdev->kmap.lock); } unsigned int keyid_to_addr(int start_addr, int keyid) { return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5; } static void chtls_rxkey_ivauth(struct _key_ctx *kctx) { kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) | KEYCTX_TX_WR_AAD_V(1ULL) | KEYCTX_TX_WR_AADST_V(5ULL) | KEYCTX_TX_WR_CIPHER_V(14ULL) | KEYCTX_TX_WR_CIPHERST_V(0ULL) | KEYCTX_TX_WR_AUTH_V(14ULL) | KEYCTX_TX_WR_AUTHST_V(16ULL) | KEYCTX_TX_WR_AUTHIN_V(16ULL)); } static int chtls_key_info(struct chtls_sock *csk, struct _key_ctx *kctx, u32 keylen, u32 optname) { unsigned char key[AES_KEYSIZE_128]; struct tls12_crypto_info_aes_gcm_128 *gcm_ctx; unsigned char ghash_h[AEAD_H_SIZE]; struct crypto_cipher *cipher; int ck_size, key_ctx_size; int ret; gcm_ctx = (struct tls12_crypto_info_aes_gcm_128 *) &csk->tlshws.crypto_info; key_ctx_size = sizeof(struct _key_ctx) + roundup(keylen, 16) + AEAD_H_SIZE; if (keylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else { pr_err("GCM: Invalid key length %d\n", keylen); return -EINVAL; } memcpy(key, gcm_ctx->key, keylen); /* Calculate the H = CIPH(K, 0 repeated 16 times). * It will go in key context */ cipher = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(cipher)) { ret = -ENOMEM; goto out; } ret = crypto_cipher_setkey(cipher, key, keylen); if (ret) goto out1; memset(ghash_h, 0, AEAD_H_SIZE); crypto_cipher_encrypt_one(cipher, ghash_h, ghash_h); csk->tlshws.keylen = key_ctx_size; /* Copy the Key context */ if (optname == TLS_RX) { int key_ctx; key_ctx = ((key_ctx_size >> 4) << 3); kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size, CHCR_KEYCTX_MAC_KEY_SIZE_128, 0, 0, key_ctx); chtls_rxkey_ivauth(kctx); } else { kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_MAC_KEY_SIZE_128, 0, 0, key_ctx_size >> 4); } memcpy(kctx->salt, gcm_ctx->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); memcpy(kctx->key, gcm_ctx->key, keylen); memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE); /* erase key info from driver */ memset(gcm_ctx->key, 0, keylen); out1: crypto_free_cipher(cipher); out: return ret; } static void chtls_set_scmd(struct chtls_sock *csk) { struct chtls_hws *hws = &csk->tlshws; hws->scmd.seqno_numivs = SCMD_SEQ_NO_CTRL_V(3) | SCMD_PROTO_VERSION_V(0) | SCMD_ENC_DEC_CTRL_V(0) | SCMD_CIPH_AUTH_SEQ_CTRL_V(1) | SCMD_CIPH_MODE_V(2) | SCMD_AUTH_MODE_V(4) | SCMD_HMAC_CTRL_V(0) | SCMD_IV_SIZE_V(4) | SCMD_NUM_IVS_V(1); hws->scmd.ivgen_hdrlen = SCMD_IV_GEN_CTRL_V(1) | SCMD_KEY_CTX_INLINE_V(0) | SCMD_TLS_FRAG_ENABLE_V(1); } int chtls_setkey(struct chtls_sock *csk, u32 keylen, u32 optname) { struct tls_key_req *kwr; struct chtls_dev *cdev; struct _key_ctx *kctx; int wrlen, klen, len; struct sk_buff *skb; struct sock *sk; int keyid; int kaddr; int ret; cdev = csk->cdev; sk = csk->sk; klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32); wrlen = roundup(sizeof(*kwr), 16); len = klen + wrlen; /* Flush out-standing data before new key takes effect */ if (optname == TLS_TX) { lock_sock(sk); if (skb_queue_len(&csk->txq)) chtls_push_frames(csk, 0); release_sock(sk); } skb = alloc_skb(len, GFP_KERNEL); if (!skb) return -ENOMEM; keyid = get_new_keyid(csk, optname); if (keyid < 0) { ret = -ENOSPC; goto out_nokey; } kaddr = keyid_to_addr(cdev->kmap.start, keyid); kwr = (struct tls_key_req *)__skb_put_zero(skb, len); kwr->wr.op_to_compl = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F | FW_WR_ATOMIC_V(1U)); kwr->wr.flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) | FW_WR_FLOWID_V(csk->tid))); kwr->wr.protocol = 0; kwr->wr.mfs = htons(TLS_MFS); kwr->wr.reneg_to_write_rx = optname; /* ulptx command */ kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) | T5_ULP_MEMIO_ORDER_V(1) | T5_ULP_MEMIO_IMM_V(1)); kwr->req.len16 = cpu_to_be32((csk->tid << 8) | DIV_ROUND_UP(len - sizeof(kwr->wr), 16)); kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5)); kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr)); /* sub command */ kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM)); kwr->sc_imm.len = cpu_to_be32(klen); /* key info */ kctx = (struct _key_ctx *)(kwr + 1); ret = chtls_key_info(csk, kctx, keylen, optname); if (ret) goto out_notcb; set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid); csk->wr_credits -= DIV_ROUND_UP(len, 16); csk->wr_unacked += DIV_ROUND_UP(len, 16); enqueue_wr(csk, skb); cxgb4_ofld_send(csk->egress_dev, skb); chtls_set_scmd(csk); /* Clear quiesce for Rx key */ if (optname == TLS_RX) { ret = chtls_set_tcb_keyid(sk, keyid); if (ret) goto out_notcb; ret = chtls_set_tcb_field(sk, 0, TCB_ULP_RAW_V(TCB_ULP_RAW_M), TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) | TF_TLS_CONTROL_V(1) | TF_TLS_ACTIVE_V(1) | TF_TLS_ENABLE_V(1)))); if (ret) goto out_notcb; ret = chtls_set_tcb_seqno(sk); if (ret) goto out_notcb; ret = chtls_set_tcb_quiesce(sk, 0); if (ret) goto out_notcb; csk->tlshws.rxkey = keyid; } else { csk->tlshws.tx_seq_no = 0; csk->tlshws.txkey = keyid; } return ret; out_notcb: free_tls_keyid(sk); out_nokey: kfree_skb(skb); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1