Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 5513 | 93.68% | 7 | 38.89% |
Maxime Ripard | 294 | 5.00% | 3 | 16.67% |
Dmitry Eremin-Solenikov | 56 | 0.95% | 1 | 5.56% |
Vinod Koul | 9 | 0.15% | 4 | 22.22% |
Kees Cook | 8 | 0.14% | 1 | 5.56% |
Peter Ujfalusi | 3 | 0.05% | 1 | 5.56% |
Thomas Gleixner | 2 | 0.03% | 1 | 5.56% |
Total | 5885 | 18 |
// SPDX-License-Identifier: GPL-2.0-only /* * SA11x0 DMAengine support * * Copyright (C) 2012 Russell King * Derived in part from arch/arm/mach-sa1100/dma.c, * Copyright (C) 2000, 2001 by Nicolas Pitre */ #include <linux/sched.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include "virt-dma.h" #define NR_PHY_CHAN 6 #define DMA_ALIGN 3 #define DMA_MAX_SIZE 0x1fff #define DMA_CHUNK_SIZE 0x1000 #define DMA_DDAR 0x00 #define DMA_DCSR_S 0x04 #define DMA_DCSR_C 0x08 #define DMA_DCSR_R 0x0c #define DMA_DBSA 0x10 #define DMA_DBTA 0x14 #define DMA_DBSB 0x18 #define DMA_DBTB 0x1c #define DMA_SIZE 0x20 #define DCSR_RUN (1 << 0) #define DCSR_IE (1 << 1) #define DCSR_ERROR (1 << 2) #define DCSR_DONEA (1 << 3) #define DCSR_STRTA (1 << 4) #define DCSR_DONEB (1 << 5) #define DCSR_STRTB (1 << 6) #define DCSR_BIU (1 << 7) #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */ #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */ #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */ #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */ #define DDAR_Ser0UDCTr (0x0 << 4) #define DDAR_Ser0UDCRc (0x1 << 4) #define DDAR_Ser1SDLCTr (0x2 << 4) #define DDAR_Ser1SDLCRc (0x3 << 4) #define DDAR_Ser1UARTTr (0x4 << 4) #define DDAR_Ser1UARTRc (0x5 << 4) #define DDAR_Ser2ICPTr (0x6 << 4) #define DDAR_Ser2ICPRc (0x7 << 4) #define DDAR_Ser3UARTTr (0x8 << 4) #define DDAR_Ser3UARTRc (0x9 << 4) #define DDAR_Ser4MCP0Tr (0xa << 4) #define DDAR_Ser4MCP0Rc (0xb << 4) #define DDAR_Ser4MCP1Tr (0xc << 4) #define DDAR_Ser4MCP1Rc (0xd << 4) #define DDAR_Ser4SSPTr (0xe << 4) #define DDAR_Ser4SSPRc (0xf << 4) struct sa11x0_dma_sg { u32 addr; u32 len; }; struct sa11x0_dma_desc { struct virt_dma_desc vd; u32 ddar; size_t size; unsigned period; bool cyclic; unsigned sglen; struct sa11x0_dma_sg sg[0]; }; struct sa11x0_dma_phy; struct sa11x0_dma_chan { struct virt_dma_chan vc; /* protected by c->vc.lock */ struct sa11x0_dma_phy *phy; enum dma_status status; /* protected by d->lock */ struct list_head node; u32 ddar; const char *name; }; struct sa11x0_dma_phy { void __iomem *base; struct sa11x0_dma_dev *dev; unsigned num; struct sa11x0_dma_chan *vchan; /* Protected by c->vc.lock */ unsigned sg_load; struct sa11x0_dma_desc *txd_load; unsigned sg_done; struct sa11x0_dma_desc *txd_done; u32 dbs[2]; u32 dbt[2]; u32 dcsr; }; struct sa11x0_dma_dev { struct dma_device slave; void __iomem *base; spinlock_t lock; struct tasklet_struct task; struct list_head chan_pending; struct sa11x0_dma_phy phy[NR_PHY_CHAN]; }; static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan) { return container_of(chan, struct sa11x0_dma_chan, vc.chan); } static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev) { return container_of(dmadev, struct sa11x0_dma_dev, slave); } static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c) { struct virt_dma_desc *vd = vchan_next_desc(&c->vc); return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL; } static void sa11x0_dma_free_desc(struct virt_dma_desc *vd) { kfree(container_of(vd, struct sa11x0_dma_desc, vd)); } static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd) { list_del(&txd->vd.node); p->txd_load = txd; p->sg_load = 0; dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n", p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar); } static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p, struct sa11x0_dma_chan *c) { struct sa11x0_dma_desc *txd = p->txd_load; struct sa11x0_dma_sg *sg; void __iomem *base = p->base; unsigned dbsx, dbtx; u32 dcsr; if (!txd) return; dcsr = readl_relaxed(base + DMA_DCSR_R); /* Don't try to load the next transfer if both buffers are started */ if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB)) return; if (p->sg_load == txd->sglen) { if (!txd->cyclic) { struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c); /* * We have reached the end of the current descriptor. * Peek at the next descriptor, and if compatible with * the current, start processing it. */ if (txn && txn->ddar == txd->ddar) { txd = txn; sa11x0_dma_start_desc(p, txn); } else { p->txd_load = NULL; return; } } else { /* Cyclic: reset back to beginning */ p->sg_load = 0; } } sg = &txd->sg[p->sg_load++]; /* Select buffer to load according to channel status */ if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) || ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) { dbsx = DMA_DBSA; dbtx = DMA_DBTA; dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN; } else { dbsx = DMA_DBSB; dbtx = DMA_DBTB; dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN; } writel_relaxed(sg->addr, base + dbsx); writel_relaxed(sg->len, base + dbtx); writel(dcsr, base + DMA_DCSR_S); dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n", p->num, dcsr, 'A' + (dbsx == DMA_DBSB), sg->addr, 'A' + (dbtx == DMA_DBTB), sg->len); } static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p, struct sa11x0_dma_chan *c) { struct sa11x0_dma_desc *txd = p->txd_done; if (++p->sg_done == txd->sglen) { if (!txd->cyclic) { vchan_cookie_complete(&txd->vd); p->sg_done = 0; p->txd_done = p->txd_load; if (!p->txd_done) tasklet_schedule(&p->dev->task); } else { if ((p->sg_done % txd->period) == 0) vchan_cyclic_callback(&txd->vd); /* Cyclic: reset back to beginning */ p->sg_done = 0; } } sa11x0_dma_start_sg(p, c); } static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id) { struct sa11x0_dma_phy *p = dev_id; struct sa11x0_dma_dev *d = p->dev; struct sa11x0_dma_chan *c; u32 dcsr; dcsr = readl_relaxed(p->base + DMA_DCSR_R); if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB))) return IRQ_NONE; /* Clear reported status bits */ writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB), p->base + DMA_DCSR_C); dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr); if (dcsr & DCSR_ERROR) { dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n", p->num, dcsr, readl_relaxed(p->base + DMA_DDAR), readl_relaxed(p->base + DMA_DBSA), readl_relaxed(p->base + DMA_DBTA), readl_relaxed(p->base + DMA_DBSB), readl_relaxed(p->base + DMA_DBTB)); } c = p->vchan; if (c) { unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); /* * Now that we're holding the lock, check that the vchan * really is associated with this pchan before touching the * hardware. This should always succeed, because we won't * change p->vchan or c->phy while the channel is actively * transferring. */ if (c->phy == p) { if (dcsr & DCSR_DONEA) sa11x0_dma_complete(p, c); if (dcsr & DCSR_DONEB) sa11x0_dma_complete(p, c); } spin_unlock_irqrestore(&c->vc.lock, flags); } return IRQ_HANDLED; } static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c) { struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c); /* If the issued list is empty, we have no further txds to process */ if (txd) { struct sa11x0_dma_phy *p = c->phy; sa11x0_dma_start_desc(p, txd); p->txd_done = txd; p->sg_done = 0; /* The channel should not have any transfers started */ WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) & (DCSR_STRTA | DCSR_STRTB)); /* Clear the run and start bits before changing DDAR */ writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C); writel_relaxed(txd->ddar, p->base + DMA_DDAR); /* Try to start both buffers */ sa11x0_dma_start_sg(p, c); sa11x0_dma_start_sg(p, c); } } static void sa11x0_dma_tasklet(unsigned long arg) { struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg; struct sa11x0_dma_phy *p; struct sa11x0_dma_chan *c; unsigned pch, pch_alloc = 0; dev_dbg(d->slave.dev, "tasklet enter\n"); list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) { spin_lock_irq(&c->vc.lock); p = c->phy; if (p && !p->txd_done) { sa11x0_dma_start_txd(c); if (!p->txd_done) { /* No current txd associated with this channel */ dev_dbg(d->slave.dev, "pchan %u: free\n", p->num); /* Mark this channel free */ c->phy = NULL; p->vchan = NULL; } } spin_unlock_irq(&c->vc.lock); } spin_lock_irq(&d->lock); for (pch = 0; pch < NR_PHY_CHAN; pch++) { p = &d->phy[pch]; if (p->vchan == NULL && !list_empty(&d->chan_pending)) { c = list_first_entry(&d->chan_pending, struct sa11x0_dma_chan, node); list_del_init(&c->node); pch_alloc |= 1 << pch; /* Mark this channel allocated */ p->vchan = c; dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc); } } spin_unlock_irq(&d->lock); for (pch = 0; pch < NR_PHY_CHAN; pch++) { if (pch_alloc & (1 << pch)) { p = &d->phy[pch]; c = p->vchan; spin_lock_irq(&c->vc.lock); c->phy = p; sa11x0_dma_start_txd(c); spin_unlock_irq(&c->vc.lock); } } dev_dbg(d->slave.dev, "tasklet exit\n"); } static void sa11x0_dma_free_chan_resources(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); unsigned long flags; spin_lock_irqsave(&d->lock, flags); list_del_init(&c->node); spin_unlock_irqrestore(&d->lock, flags); vchan_free_chan_resources(&c->vc); } static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p) { unsigned reg; u32 dcsr; dcsr = readl_relaxed(p->base + DMA_DCSR_R); if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA || (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU) reg = DMA_DBSA; else reg = DMA_DBSB; return readl_relaxed(p->base + reg); } static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_phy *p; struct virt_dma_desc *vd; unsigned long flags; enum dma_status ret; ret = dma_cookie_status(&c->vc.chan, cookie, state); if (ret == DMA_COMPLETE) return ret; if (!state) return c->status; spin_lock_irqsave(&c->vc.lock, flags); p = c->phy; /* * If the cookie is on our issue queue, then the residue is * its total size. */ vd = vchan_find_desc(&c->vc, cookie); if (vd) { state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size; } else if (!p) { state->residue = 0; } else { struct sa11x0_dma_desc *txd; size_t bytes = 0; if (p->txd_done && p->txd_done->vd.tx.cookie == cookie) txd = p->txd_done; else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie) txd = p->txd_load; else txd = NULL; ret = c->status; if (txd) { dma_addr_t addr = sa11x0_dma_pos(p); unsigned i; dev_vdbg(d->slave.dev, "tx_status: addr:%pad\n", &addr); for (i = 0; i < txd->sglen; i++) { dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n", i, txd->sg[i].addr, txd->sg[i].len); if (addr >= txd->sg[i].addr && addr < txd->sg[i].addr + txd->sg[i].len) { unsigned len; len = txd->sg[i].len - (addr - txd->sg[i].addr); dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n", i, len); bytes += len; i++; break; } } for (; i < txd->sglen; i++) { dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n", i, txd->sg[i].addr, txd->sg[i].len); bytes += txd->sg[i].len; } } state->residue = bytes; } spin_unlock_irqrestore(&c->vc.lock, flags); dev_vdbg(d->slave.dev, "tx_status: bytes 0x%x\n", state->residue); return ret; } /* * Move pending txds to the issued list, and re-init pending list. * If not already pending, add this channel to the list of pending * channels and trigger the tasklet to run. */ static void sa11x0_dma_issue_pending(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (vchan_issue_pending(&c->vc)) { if (!c->phy) { spin_lock(&d->lock); if (list_empty(&c->node)) { list_add_tail(&c->node, &d->chan_pending); tasklet_schedule(&d->task); dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc); } spin_unlock(&d->lock); } } else dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc); spin_unlock_irqrestore(&c->vc.lock, flags); } static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_desc *txd; struct scatterlist *sgent; unsigned i, j = sglen; size_t size = 0; /* SA11x0 channels can only operate in their native direction */ if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) { dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n", &c->vc, c->ddar, dir); return NULL; } /* Do not allow zero-sized txds */ if (sglen == 0) return NULL; for_each_sg(sg, sgent, sglen, i) { dma_addr_t addr = sg_dma_address(sgent); unsigned int len = sg_dma_len(sgent); if (len > DMA_MAX_SIZE) j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1; if (addr & DMA_ALIGN) { dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %pad\n", &c->vc, &addr); return NULL; } } txd = kzalloc(struct_size(txd, sg, j), GFP_ATOMIC); if (!txd) { dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc); return NULL; } j = 0; for_each_sg(sg, sgent, sglen, i) { dma_addr_t addr = sg_dma_address(sgent); unsigned len = sg_dma_len(sgent); size += len; do { unsigned tlen = len; /* * Check whether the transfer will fit. If not, try * to split the transfer up such that we end up with * equal chunks - but make sure that we preserve the * alignment. This avoids small segments. */ if (tlen > DMA_MAX_SIZE) { unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN); tlen = (tlen / mult) & ~DMA_ALIGN; } txd->sg[j].addr = addr; txd->sg[j].len = tlen; addr += tlen; len -= tlen; j++; } while (len); } txd->ddar = c->ddar; txd->size = size; txd->sglen = j; dev_dbg(chan->device->dev, "vchan %p: txd %p: size %zu nr %u\n", &c->vc, &txd->vd, txd->size, txd->sglen); return vchan_tx_prep(&c->vc, &txd->vd, flags); } static struct dma_async_tx_descriptor *sa11x0_dma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period, enum dma_transfer_direction dir, unsigned long flags) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_desc *txd; unsigned i, j, k, sglen, sgperiod; /* SA11x0 channels can only operate in their native direction */ if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) { dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n", &c->vc, c->ddar, dir); return NULL; } sgperiod = DIV_ROUND_UP(period, DMA_MAX_SIZE & ~DMA_ALIGN); sglen = size * sgperiod / period; /* Do not allow zero-sized txds */ if (sglen == 0) return NULL; txd = kzalloc(struct_size(txd, sg, sglen), GFP_ATOMIC); if (!txd) { dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc); return NULL; } for (i = k = 0; i < size / period; i++) { size_t tlen, len = period; for (j = 0; j < sgperiod; j++, k++) { tlen = len; if (tlen > DMA_MAX_SIZE) { unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN); tlen = (tlen / mult) & ~DMA_ALIGN; } txd->sg[k].addr = addr; txd->sg[k].len = tlen; addr += tlen; len -= tlen; } WARN_ON(len != 0); } WARN_ON(k != sglen); txd->ddar = c->ddar; txd->size = size; txd->sglen = sglen; txd->cyclic = 1; txd->period = sgperiod; return vchan_tx_prep(&c->vc, &txd->vd, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } static int sa11x0_dma_device_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW); dma_addr_t addr; enum dma_slave_buswidth width; u32 maxburst; if (ddar & DDAR_RW) { addr = cfg->src_addr; width = cfg->src_addr_width; maxburst = cfg->src_maxburst; } else { addr = cfg->dst_addr; width = cfg->dst_addr_width; maxburst = cfg->dst_maxburst; } if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE && width != DMA_SLAVE_BUSWIDTH_2_BYTES) || (maxburst != 4 && maxburst != 8)) return -EINVAL; if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) ddar |= DDAR_DW; if (maxburst == 8) ddar |= DDAR_BS; dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %pad width %u burst %u\n", &c->vc, &addr, width, maxburst); c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6; return 0; } static int sa11x0_dma_device_pause(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_phy *p; unsigned long flags; dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc); spin_lock_irqsave(&c->vc.lock, flags); if (c->status == DMA_IN_PROGRESS) { c->status = DMA_PAUSED; p = c->phy; if (p) { writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C); } else { spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); } } spin_unlock_irqrestore(&c->vc.lock, flags); return 0; } static int sa11x0_dma_device_resume(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_phy *p; unsigned long flags; dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc); spin_lock_irqsave(&c->vc.lock, flags); if (c->status == DMA_PAUSED) { c->status = DMA_IN_PROGRESS; p = c->phy; if (p) { writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S); } else if (!list_empty(&c->vc.desc_issued)) { spin_lock(&d->lock); list_add_tail(&c->node, &d->chan_pending); spin_unlock(&d->lock); } } spin_unlock_irqrestore(&c->vc.lock, flags); return 0; } static int sa11x0_dma_device_terminate_all(struct dma_chan *chan) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device); struct sa11x0_dma_phy *p; LIST_HEAD(head); unsigned long flags; dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc); /* Clear the tx descriptor lists */ spin_lock_irqsave(&c->vc.lock, flags); vchan_get_all_descriptors(&c->vc, &head); p = c->phy; if (p) { dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num); /* vchan is assigned to a pchan - stop the channel */ writel(DCSR_RUN | DCSR_IE | DCSR_STRTA | DCSR_DONEA | DCSR_STRTB | DCSR_DONEB, p->base + DMA_DCSR_C); if (p->txd_load) { if (p->txd_load != p->txd_done) list_add_tail(&p->txd_load->vd.node, &head); p->txd_load = NULL; } if (p->txd_done) { list_add_tail(&p->txd_done->vd.node, &head); p->txd_done = NULL; } c->phy = NULL; spin_lock(&d->lock); p->vchan = NULL; spin_unlock(&d->lock); tasklet_schedule(&d->task); } spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } struct sa11x0_dma_channel_desc { u32 ddar; const char *name; }; #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 } static const struct sa11x0_dma_channel_desc chan_desc[] = { CD(Ser0UDCTr, 0), CD(Ser0UDCRc, DDAR_RW), CD(Ser1SDLCTr, 0), CD(Ser1SDLCRc, DDAR_RW), CD(Ser1UARTTr, 0), CD(Ser1UARTRc, DDAR_RW), CD(Ser2ICPTr, 0), CD(Ser2ICPRc, DDAR_RW), CD(Ser3UARTTr, 0), CD(Ser3UARTRc, DDAR_RW), CD(Ser4MCP0Tr, 0), CD(Ser4MCP0Rc, DDAR_RW), CD(Ser4MCP1Tr, 0), CD(Ser4MCP1Rc, DDAR_RW), CD(Ser4SSPTr, 0), CD(Ser4SSPRc, DDAR_RW), }; static const struct dma_slave_map sa11x0_dma_map[] = { { "sa11x0-ir", "tx", "Ser2ICPTr" }, { "sa11x0-ir", "rx", "Ser2ICPRc" }, { "sa11x0-ssp", "tx", "Ser4SSPTr" }, { "sa11x0-ssp", "rx", "Ser4SSPRc" }, }; static bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param) { struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan); const char *p = param; return !strcmp(c->name, p); } static int sa11x0_dma_init_dmadev(struct dma_device *dmadev, struct device *dev) { unsigned i; INIT_LIST_HEAD(&dmadev->channels); dmadev->dev = dev; dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources; dmadev->device_config = sa11x0_dma_device_config; dmadev->device_pause = sa11x0_dma_device_pause; dmadev->device_resume = sa11x0_dma_device_resume; dmadev->device_terminate_all = sa11x0_dma_device_terminate_all; dmadev->device_tx_status = sa11x0_dma_tx_status; dmadev->device_issue_pending = sa11x0_dma_issue_pending; for (i = 0; i < ARRAY_SIZE(chan_desc); i++) { struct sa11x0_dma_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) { dev_err(dev, "no memory for channel %u\n", i); return -ENOMEM; } c->status = DMA_IN_PROGRESS; c->ddar = chan_desc[i].ddar; c->name = chan_desc[i].name; INIT_LIST_HEAD(&c->node); c->vc.desc_free = sa11x0_dma_free_desc; vchan_init(&c->vc, dmadev); } return dma_async_device_register(dmadev); } static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr, void *data) { int irq = platform_get_irq(pdev, nr); if (irq <= 0) return -ENXIO; return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data); } static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr, void *data) { int irq = platform_get_irq(pdev, nr); if (irq > 0) free_irq(irq, data); } static void sa11x0_dma_free_channels(struct dma_device *dmadev) { struct sa11x0_dma_chan *c, *cn; list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) { list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); kfree(c); } } static int sa11x0_dma_probe(struct platform_device *pdev) { struct sa11x0_dma_dev *d; struct resource *res; unsigned i; int ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENXIO; d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) { ret = -ENOMEM; goto err_alloc; } spin_lock_init(&d->lock); INIT_LIST_HEAD(&d->chan_pending); d->slave.filter.fn = sa11x0_dma_filter_fn; d->slave.filter.mapcnt = ARRAY_SIZE(sa11x0_dma_map); d->slave.filter.map = sa11x0_dma_map; d->base = ioremap(res->start, resource_size(res)); if (!d->base) { ret = -ENOMEM; goto err_ioremap; } tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d); for (i = 0; i < NR_PHY_CHAN; i++) { struct sa11x0_dma_phy *p = &d->phy[i]; p->dev = d; p->num = i; p->base = d->base + i * DMA_SIZE; writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR | DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB, p->base + DMA_DCSR_C); writel_relaxed(0, p->base + DMA_DDAR); ret = sa11x0_dma_request_irq(pdev, i, p); if (ret) { while (i) { i--; sa11x0_dma_free_irq(pdev, i, &d->phy[i]); } goto err_irq; } } dma_cap_set(DMA_SLAVE, d->slave.cap_mask); dma_cap_set(DMA_CYCLIC, d->slave.cap_mask); d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg; d->slave.device_prep_dma_cyclic = sa11x0_dma_prep_dma_cyclic; d->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); d->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; d->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES); d->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES); ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev); if (ret) { dev_warn(d->slave.dev, "failed to register slave async device: %d\n", ret); goto err_slave_reg; } platform_set_drvdata(pdev, d); return 0; err_slave_reg: sa11x0_dma_free_channels(&d->slave); for (i = 0; i < NR_PHY_CHAN; i++) sa11x0_dma_free_irq(pdev, i, &d->phy[i]); err_irq: tasklet_kill(&d->task); iounmap(d->base); err_ioremap: kfree(d); err_alloc: return ret; } static int sa11x0_dma_remove(struct platform_device *pdev) { struct sa11x0_dma_dev *d = platform_get_drvdata(pdev); unsigned pch; dma_async_device_unregister(&d->slave); sa11x0_dma_free_channels(&d->slave); for (pch = 0; pch < NR_PHY_CHAN; pch++) sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]); tasklet_kill(&d->task); iounmap(d->base); kfree(d); return 0; } static int sa11x0_dma_suspend(struct device *dev) { struct sa11x0_dma_dev *d = dev_get_drvdata(dev); unsigned pch; for (pch = 0; pch < NR_PHY_CHAN; pch++) { struct sa11x0_dma_phy *p = &d->phy[pch]; u32 dcsr, saved_dcsr; dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R); if (dcsr & DCSR_RUN) { writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C); dcsr = readl_relaxed(p->base + DMA_DCSR_R); } saved_dcsr &= DCSR_RUN | DCSR_IE; if (dcsr & DCSR_BIU) { p->dbs[0] = readl_relaxed(p->base + DMA_DBSB); p->dbt[0] = readl_relaxed(p->base + DMA_DBTB); p->dbs[1] = readl_relaxed(p->base + DMA_DBSA); p->dbt[1] = readl_relaxed(p->base + DMA_DBTA); saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) | (dcsr & DCSR_STRTB ? DCSR_STRTA : 0); } else { p->dbs[0] = readl_relaxed(p->base + DMA_DBSA); p->dbt[0] = readl_relaxed(p->base + DMA_DBTA); p->dbs[1] = readl_relaxed(p->base + DMA_DBSB); p->dbt[1] = readl_relaxed(p->base + DMA_DBTB); saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB); } p->dcsr = saved_dcsr; writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C); } return 0; } static int sa11x0_dma_resume(struct device *dev) { struct sa11x0_dma_dev *d = dev_get_drvdata(dev); unsigned pch; for (pch = 0; pch < NR_PHY_CHAN; pch++) { struct sa11x0_dma_phy *p = &d->phy[pch]; struct sa11x0_dma_desc *txd = NULL; u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R); WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN)); if (p->txd_done) txd = p->txd_done; else if (p->txd_load) txd = p->txd_load; if (!txd) continue; writel_relaxed(txd->ddar, p->base + DMA_DDAR); writel_relaxed(p->dbs[0], p->base + DMA_DBSA); writel_relaxed(p->dbt[0], p->base + DMA_DBTA); writel_relaxed(p->dbs[1], p->base + DMA_DBSB); writel_relaxed(p->dbt[1], p->base + DMA_DBTB); writel_relaxed(p->dcsr, p->base + DMA_DCSR_S); } return 0; } static const struct dev_pm_ops sa11x0_dma_pm_ops = { .suspend_noirq = sa11x0_dma_suspend, .resume_noirq = sa11x0_dma_resume, .freeze_noirq = sa11x0_dma_suspend, .thaw_noirq = sa11x0_dma_resume, .poweroff_noirq = sa11x0_dma_suspend, .restore_noirq = sa11x0_dma_resume, }; static struct platform_driver sa11x0_dma_driver = { .driver = { .name = "sa11x0-dma", .pm = &sa11x0_dma_pm_ops, }, .probe = sa11x0_dma_probe, .remove = sa11x0_dma_remove, }; static int __init sa11x0_dma_init(void) { return platform_driver_register(&sa11x0_dma_driver); } subsys_initcall(sa11x0_dma_init); static void __exit sa11x0_dma_exit(void) { platform_driver_unregister(&sa11x0_dma_driver); } module_exit(sa11x0_dma_exit); MODULE_AUTHOR("Russell King"); MODULE_DESCRIPTION("SA-11x0 DMA driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:sa11x0-dma");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1