Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Schaeckeler | 1724 | 100.00% | 1 | 100.00% |
Total | 1724 | 1 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018, 2019 Cisco Systems */ #include <linux/edac.h> #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/stop_machine.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/regmap.h> #include "edac_module.h" #define DRV_NAME "aspeed-edac" #define ASPEED_MCR_PROT 0x00 /* protection key register */ #define ASPEED_MCR_CONF 0x04 /* configuration register */ #define ASPEED_MCR_INTR_CTRL 0x50 /* interrupt control/status register */ #define ASPEED_MCR_ADDR_UNREC 0x58 /* address of first un-recoverable error */ #define ASPEED_MCR_ADDR_REC 0x5c /* address of last recoverable error */ #define ASPEED_MCR_LAST ASPEED_MCR_ADDR_REC #define ASPEED_MCR_PROT_PASSWD 0xfc600309 #define ASPEED_MCR_CONF_DRAM_TYPE BIT(4) #define ASPEED_MCR_CONF_ECC BIT(7) #define ASPEED_MCR_INTR_CTRL_CLEAR BIT(31) #define ASPEED_MCR_INTR_CTRL_CNT_REC GENMASK(23, 16) #define ASPEED_MCR_INTR_CTRL_CNT_UNREC GENMASK(15, 12) #define ASPEED_MCR_INTR_CTRL_ENABLE (BIT(0) | BIT(1)) static struct regmap *aspeed_regmap; static int regmap_reg_write(void *context, unsigned int reg, unsigned int val) { void __iomem *regs = (void __iomem *)context; /* enable write to MCR register set */ writel(ASPEED_MCR_PROT_PASSWD, regs + ASPEED_MCR_PROT); writel(val, regs + reg); /* disable write to MCR register set */ writel(~ASPEED_MCR_PROT_PASSWD, regs + ASPEED_MCR_PROT); return 0; } static int regmap_reg_read(void *context, unsigned int reg, unsigned int *val) { void __iomem *regs = (void __iomem *)context; *val = readl(regs + reg); return 0; } static bool regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case ASPEED_MCR_PROT: case ASPEED_MCR_INTR_CTRL: case ASPEED_MCR_ADDR_UNREC: case ASPEED_MCR_ADDR_REC: return true; default: return false; } } static const struct regmap_config aspeed_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = ASPEED_MCR_LAST, .reg_write = regmap_reg_write, .reg_read = regmap_reg_read, .volatile_reg = regmap_is_volatile, .fast_io = true, }; static void count_rec(struct mem_ctl_info *mci, u8 rec_cnt, u32 rec_addr) { struct csrow_info *csrow = mci->csrows[0]; u32 page, offset, syndrome; if (!rec_cnt) return; /* report first few errors (if there are) */ /* note: no addresses are recorded */ if (rec_cnt > 1) { /* page, offset and syndrome are not available */ page = 0; offset = 0; syndrome = 0; edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, rec_cnt-1, page, offset, syndrome, 0, 0, -1, "address(es) not available", ""); } /* report last error */ /* note: rec_addr is the last recoverable error addr */ page = rec_addr >> PAGE_SHIFT; offset = rec_addr & ~PAGE_MASK; /* syndrome is not available */ syndrome = 0; edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, csrow->first_page + page, offset, syndrome, 0, 0, -1, "", ""); } static void count_un_rec(struct mem_ctl_info *mci, u8 un_rec_cnt, u32 un_rec_addr) { struct csrow_info *csrow = mci->csrows[0]; u32 page, offset, syndrome; if (!un_rec_cnt) return; /* report 1. error */ /* note: un_rec_addr is the first unrecoverable error addr */ page = un_rec_addr >> PAGE_SHIFT; offset = un_rec_addr & ~PAGE_MASK; /* syndrome is not available */ syndrome = 0; edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, csrow->first_page + page, offset, syndrome, 0, 0, -1, "", ""); /* report further errors (if there are) */ /* note: no addresses are recorded */ if (un_rec_cnt > 1) { /* page, offset and syndrome are not available */ page = 0; offset = 0; syndrome = 0; edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, un_rec_cnt-1, page, offset, syndrome, 0, 0, -1, "address(es) not available", ""); } } static irqreturn_t mcr_isr(int irq, void *arg) { struct mem_ctl_info *mci = arg; u32 rec_addr, un_rec_addr; u32 reg50, reg5c, reg58; u8 rec_cnt, un_rec_cnt; regmap_read(aspeed_regmap, ASPEED_MCR_INTR_CTRL, ®50); dev_dbg(mci->pdev, "received edac interrupt w/ mcr register 50: 0x%x\n", reg50); /* collect data about recoverable and unrecoverable errors */ rec_cnt = (reg50 & ASPEED_MCR_INTR_CTRL_CNT_REC) >> 16; un_rec_cnt = (reg50 & ASPEED_MCR_INTR_CTRL_CNT_UNREC) >> 12; dev_dbg(mci->pdev, "%d recoverable interrupts and %d unrecoverable interrupts\n", rec_cnt, un_rec_cnt); regmap_read(aspeed_regmap, ASPEED_MCR_ADDR_UNREC, ®58); un_rec_addr = reg58; regmap_read(aspeed_regmap, ASPEED_MCR_ADDR_REC, ®5c); rec_addr = reg5c; /* clear interrupt flags and error counters: */ regmap_update_bits(aspeed_regmap, ASPEED_MCR_INTR_CTRL, ASPEED_MCR_INTR_CTRL_CLEAR, ASPEED_MCR_INTR_CTRL_CLEAR); regmap_update_bits(aspeed_regmap, ASPEED_MCR_INTR_CTRL, ASPEED_MCR_INTR_CTRL_CLEAR, 0); /* process recoverable and unrecoverable errors */ count_rec(mci, rec_cnt, rec_addr); count_un_rec(mci, un_rec_cnt, un_rec_addr); if (!rec_cnt && !un_rec_cnt) dev_dbg(mci->pdev, "received edac interrupt, but did not find any ECC counters\n"); regmap_read(aspeed_regmap, ASPEED_MCR_INTR_CTRL, ®50); dev_dbg(mci->pdev, "edac interrupt handled. mcr reg 50 is now: 0x%x\n", reg50); return IRQ_HANDLED; } static int config_irq(void *ctx, struct platform_device *pdev) { int irq; int rc; /* register interrupt handler */ irq = platform_get_irq(pdev, 0); dev_dbg(&pdev->dev, "got irq %d\n", irq); if (!irq) return -ENODEV; rc = devm_request_irq(&pdev->dev, irq, mcr_isr, IRQF_TRIGGER_HIGH, DRV_NAME, ctx); if (rc) { dev_err(&pdev->dev, "unable to request irq %d\n", irq); return rc; } /* enable interrupts */ regmap_update_bits(aspeed_regmap, ASPEED_MCR_INTR_CTRL, ASPEED_MCR_INTR_CTRL_ENABLE, ASPEED_MCR_INTR_CTRL_ENABLE); return 0; } static int init_csrows(struct mem_ctl_info *mci) { struct csrow_info *csrow = mci->csrows[0]; u32 nr_pages, dram_type; struct dimm_info *dimm; struct device_node *np; struct resource r; u32 reg04; int rc; /* retrieve info about physical memory from device tree */ np = of_find_node_by_path("/memory"); if (!np) { dev_err(mci->pdev, "dt: missing /memory node\n"); return -ENODEV; }; rc = of_address_to_resource(np, 0, &r); of_node_put(np); if (rc) { dev_err(mci->pdev, "dt: failed requesting resource for /memory node\n"); return rc; }; dev_dbg(mci->pdev, "dt: /memory node resources: first page r.start=0x%x, resource_size=0x%x, PAGE_SHIFT macro=0x%x\n", r.start, resource_size(&r), PAGE_SHIFT); csrow->first_page = r.start >> PAGE_SHIFT; nr_pages = resource_size(&r) >> PAGE_SHIFT; csrow->last_page = csrow->first_page + nr_pages - 1; regmap_read(aspeed_regmap, ASPEED_MCR_CONF, ®04); dram_type = (reg04 & ASPEED_MCR_CONF_DRAM_TYPE) ? MEM_DDR4 : MEM_DDR3; dimm = csrow->channels[0]->dimm; dimm->mtype = dram_type; dimm->edac_mode = EDAC_SECDED; dimm->nr_pages = nr_pages / csrow->nr_channels; dev_dbg(mci->pdev, "initialized dimm with first_page=0x%lx and nr_pages=0x%x\n", csrow->first_page, nr_pages); return 0; } static int aspeed_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct edac_mc_layer layers[2]; struct mem_ctl_info *mci; struct device_node *np; struct resource *res; void __iomem *regs; u32 reg04; int rc; /* setup regmap */ np = dev->of_node; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENOENT; regs = devm_ioremap_resource(dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); aspeed_regmap = devm_regmap_init(dev, NULL, (__force void *)regs, &aspeed_regmap_config); if (IS_ERR(aspeed_regmap)) return PTR_ERR(aspeed_regmap); /* bail out if ECC mode is not configured */ regmap_read(aspeed_regmap, ASPEED_MCR_CONF, ®04); if (!(reg04 & ASPEED_MCR_CONF_ECC)) { dev_err(&pdev->dev, "ECC mode is not configured in u-boot\n"); return -EPERM; } edac_op_state = EDAC_OPSTATE_INT; /* allocate & init EDAC MC data structure */ layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = 1; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = 1; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); if (!mci) return -ENOMEM; mci->pdev = &pdev->dev; mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR4; mci->edac_ctl_cap = EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->scrub_cap = SCRUB_FLAG_HW_SRC; mci->scrub_mode = SCRUB_HW_SRC; mci->mod_name = DRV_NAME; mci->ctl_name = "MIC"; mci->dev_name = dev_name(&pdev->dev); rc = init_csrows(mci); if (rc) { dev_err(&pdev->dev, "failed to init csrows\n"); goto probe_exit02; } platform_set_drvdata(pdev, mci); /* register with edac core */ rc = edac_mc_add_mc(mci); if (rc) { dev_err(&pdev->dev, "failed to register with EDAC core\n"); goto probe_exit02; } /* register interrupt handler and enable interrupts */ rc = config_irq(mci, pdev); if (rc) { dev_err(&pdev->dev, "failed setting up irq\n"); goto probe_exit01; } return 0; probe_exit01: edac_mc_del_mc(&pdev->dev); probe_exit02: edac_mc_free(mci); return rc; } static int aspeed_remove(struct platform_device *pdev) { struct mem_ctl_info *mci; /* disable interrupts */ regmap_update_bits(aspeed_regmap, ASPEED_MCR_INTR_CTRL, ASPEED_MCR_INTR_CTRL_ENABLE, 0); /* free resources */ mci = edac_mc_del_mc(&pdev->dev); if (mci) edac_mc_free(mci); return 0; } static const struct of_device_id aspeed_of_match[] = { { .compatible = "aspeed,ast2500-sdram-edac" }, {}, }; static struct platform_driver aspeed_driver = { .driver = { .name = DRV_NAME, .of_match_table = aspeed_of_match }, .probe = aspeed_probe, .remove = aspeed_remove }; static int __init aspeed_init(void) { return platform_driver_register(&aspeed_driver); } static void __exit aspeed_exit(void) { platform_driver_unregister(&aspeed_driver); } module_init(aspeed_init); module_exit(aspeed_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Stefan Schaeckeler <sschaeck@cisco.com>"); MODULE_DESCRIPTION("Aspeed AST2500 EDAC driver"); MODULE_VERSION("1.0");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1