Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mauro Carvalho Chehab | 7558 | 78.57% | 78 | 60.47% |
Hidetoshi Seto | 477 | 4.96% | 11 | 8.53% |
Nils Carlson | 422 | 4.39% | 1 | 0.78% |
Samuel Gabrielsson | 414 | 4.30% | 1 | 0.78% |
Vernon Mauery | 289 | 3.00% | 1 | 0.78% |
Joe Perches | 101 | 1.05% | 1 | 0.78% |
Borislav Petkov | 69 | 0.72% | 2 | 1.55% |
Keith Mannthey | 53 | 0.55% | 2 | 1.55% |
Johan Hovold | 46 | 0.48% | 1 | 0.78% |
Takashi Iwai | 43 | 0.45% | 2 | 1.55% |
Arvind Yadav | 21 | 0.22% | 2 | 1.55% |
Jean Delvare | 18 | 0.19% | 1 | 0.78% |
Tony Luck | 15 | 0.16% | 4 | 3.10% |
Sedat Dilek | 15 | 0.16% | 1 | 0.78% |
Chen Gong | 14 | 0.15% | 1 | 0.78% |
Alan Cox | 12 | 0.12% | 1 | 0.78% |
Jingoo Han | 11 | 0.11% | 2 | 1.55% |
Niklas Söderlund | 8 | 0.08% | 1 | 0.78% |
David Mackey | 5 | 0.05% | 1 | 0.78% |
Marcin Ślusarz | 5 | 0.05% | 1 | 0.78% |
Kees Cook | 5 | 0.05% | 1 | 0.78% |
David Sterba | 3 | 0.03% | 2 | 1.55% |
Randy Dunlap | 3 | 0.03% | 1 | 0.78% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.78% |
Bhumika Goyal | 2 | 0.02% | 1 | 0.78% |
Alexander Beregalov | 1 | 0.01% | 1 | 0.78% |
Qiuxu Zhuo | 1 | 0.01% | 1 | 0.78% |
Mathias Krause | 1 | 0.01% | 1 | 0.78% |
Michal Marek | 1 | 0.01% | 1 | 0.78% |
Prarit Bhargava | 1 | 0.01% | 1 | 0.78% |
Daniel J Blueman | 1 | 0.01% | 1 | 0.78% |
Colin Ian King | 1 | 0.01% | 1 | 0.78% |
Jiri Slaby | 1 | 0.01% | 1 | 0.78% |
Total | 9619 | 129 |
// SPDX-License-Identifier: GPL-2.0-only /* Intel i7 core/Nehalem Memory Controller kernel module * * This driver supports the memory controllers found on the Intel * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield * and Westmere-EP. * * Copyright (c) 2009-2010 by: * Mauro Carvalho Chehab * * Red Hat Inc. http://www.redhat.com * * Forked and adapted from the i5400_edac driver * * Based on the following public Intel datasheets: * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor * Datasheet, Volume 2: * http://download.intel.com/design/processor/datashts/320835.pdf * Intel Xeon Processor 5500 Series Datasheet Volume 2 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf * also available at: * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/dmi.h> #include <linux/edac.h> #include <linux/mmzone.h> #include <linux/smp.h> #include <asm/mce.h> #include <asm/processor.h> #include <asm/div64.h> #include "edac_module.h" /* Static vars */ static LIST_HEAD(i7core_edac_list); static DEFINE_MUTEX(i7core_edac_lock); static int probed; static int use_pci_fixup; module_param(use_pci_fixup, int, 0444); MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); /* * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core * registers start at bus 255, and are not reported by BIOS. * We currently find devices with only 2 sockets. In order to support more QPI * Quick Path Interconnect, just increment this number. */ #define MAX_SOCKET_BUSES 2 /* * Alter this version for the module when modifications are made */ #define I7CORE_REVISION " Ver: 1.0.0" #define EDAC_MOD_STR "i7core_edac" /* * Debug macros */ #define i7core_printk(level, fmt, arg...) \ edac_printk(level, "i7core", fmt, ##arg) #define i7core_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) /* * i7core Memory Controller Registers */ /* OFFSETS for Device 0 Function 0 */ #define MC_CFG_CONTROL 0x90 #define MC_CFG_UNLOCK 0x02 #define MC_CFG_LOCK 0x00 /* OFFSETS for Device 3 Function 0 */ #define MC_CONTROL 0x48 #define MC_STATUS 0x4c #define MC_MAX_DOD 0x64 /* * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf */ #define MC_TEST_ERR_RCV1 0x60 #define DIMM2_COR_ERR(r) ((r) & 0x7fff) #define MC_TEST_ERR_RCV0 0x64 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff) #define DIMM0_COR_ERR(r) ((r) & 0x7fff) /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ #define MC_SSRCONTROL 0x48 #define SSR_MODE_DISABLE 0x00 #define SSR_MODE_ENABLE 0x01 #define SSR_MODE_MASK 0x03 #define MC_SCRUB_CONTROL 0x4c #define STARTSCRUB (1 << 24) #define SCRUBINTERVAL_MASK 0xffffff #define MC_COR_ECC_CNT_0 0x80 #define MC_COR_ECC_CNT_1 0x84 #define MC_COR_ECC_CNT_2 0x88 #define MC_COR_ECC_CNT_3 0x8c #define MC_COR_ECC_CNT_4 0x90 #define MC_COR_ECC_CNT_5 0x94 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff) #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff) /* OFFSETS for Devices 4,5 and 6 Function 0 */ #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 #define THREE_DIMMS_PRESENT (1 << 24) #define SINGLE_QUAD_RANK_PRESENT (1 << 23) #define QUAD_RANK_PRESENT (1 << 22) #define REGISTERED_DIMM (1 << 15) #define MC_CHANNEL_MAPPER 0x60 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1) #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1) #define MC_CHANNEL_RANK_PRESENT 0x7c #define RANK_PRESENT_MASK 0xffff #define MC_CHANNEL_ADDR_MATCH 0xf0 #define MC_CHANNEL_ERROR_MASK 0xf8 #define MC_CHANNEL_ERROR_INJECT 0xfc #define INJECT_ADDR_PARITY 0x10 #define INJECT_ECC 0x08 #define MASK_CACHELINE 0x06 #define MASK_FULL_CACHELINE 0x06 #define MASK_MSB32_CACHELINE 0x04 #define MASK_LSB32_CACHELINE 0x02 #define NO_MASK_CACHELINE 0x00 #define REPEAT_EN 0x01 /* OFFSETS for Devices 4,5 and 6 Function 1 */ #define MC_DOD_CH_DIMM0 0x48 #define MC_DOD_CH_DIMM1 0x4c #define MC_DOD_CH_DIMM2 0x50 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10)) #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10) #define DIMM_PRESENT_MASK (1 << 9) #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9) #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7)) #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7) #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5)) #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5) #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2)) #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2) #define MC_DOD_NUMCOL_MASK 3 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK) #define MC_RANK_PRESENT 0x7c #define MC_SAG_CH_0 0x80 #define MC_SAG_CH_1 0x84 #define MC_SAG_CH_2 0x88 #define MC_SAG_CH_3 0x8c #define MC_SAG_CH_4 0x90 #define MC_SAG_CH_5 0x94 #define MC_SAG_CH_6 0x98 #define MC_SAG_CH_7 0x9c #define MC_RIR_LIMIT_CH_0 0x40 #define MC_RIR_LIMIT_CH_1 0x44 #define MC_RIR_LIMIT_CH_2 0x48 #define MC_RIR_LIMIT_CH_3 0x4C #define MC_RIR_LIMIT_CH_4 0x50 #define MC_RIR_LIMIT_CH_5 0x54 #define MC_RIR_LIMIT_CH_6 0x58 #define MC_RIR_LIMIT_CH_7 0x5C #define MC_RIR_LIMIT_MASK ((1 << 10) - 1) #define MC_RIR_WAY_CH 0x80 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7) #define MC_RIR_WAY_RANK_MASK 0x7 /* * i7core structs */ #define NUM_CHANS 3 #define MAX_DIMMS 3 /* Max DIMMS per channel */ #define MAX_MCR_FUNC 4 #define MAX_CHAN_FUNC 3 struct i7core_info { u32 mc_control; u32 mc_status; u32 max_dod; u32 ch_map; }; struct i7core_inject { int enable; u32 section; u32 type; u32 eccmask; /* Error address mask */ int channel, dimm, rank, bank, page, col; }; struct i7core_channel { bool is_3dimms_present; bool is_single_4rank; bool has_4rank; u32 dimms; }; struct pci_id_descr { int dev; int func; int dev_id; int optional; }; struct pci_id_table { const struct pci_id_descr *descr; int n_devs; }; struct i7core_dev { struct list_head list; u8 socket; struct pci_dev **pdev; int n_devs; struct mem_ctl_info *mci; }; struct i7core_pvt { struct device *addrmatch_dev, *chancounts_dev; struct pci_dev *pci_noncore; struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1]; struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; struct i7core_dev *i7core_dev; struct i7core_info info; struct i7core_inject inject; struct i7core_channel channel[NUM_CHANS]; int ce_count_available; /* ECC corrected errors counts per udimm */ unsigned long udimm_ce_count[MAX_DIMMS]; int udimm_last_ce_count[MAX_DIMMS]; /* ECC corrected errors counts per rdimm */ unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; bool is_registered, enable_scrub; /* DCLK Frequency used for computing scrub rate */ int dclk_freq; /* Struct to control EDAC polling */ struct edac_pci_ctl_info *i7core_pci; }; #define PCI_DESCR(device, function, device_id) \ .dev = (device), \ .func = (function), \ .dev_id = (device_id) static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { /* Memory controller */ { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) }, { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) }, /* Exists only for RDIMM */ { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 }, { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, /* Channel 0 */ { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) }, /* Channel 1 */ { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) }, /* Channel 2 */ { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) }, /* Generic Non-core registers */ /* * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) * On Xeon 55xx, however, it has a different id (8086:2c40). So, * the probing code needs to test for the other address in case of * failure of this one */ { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) }, }; static const struct pci_id_descr pci_dev_descr_lynnfield[] = { { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) }, { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) }, { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) }, { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) }, { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) }, /* * This is the PCI device has an alternate address on some * processors like Core i7 860 */ { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) }, }; static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { /* Memory controller */ { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) }, { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) }, /* Exists only for RDIMM */ { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 }, { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, /* Channel 0 */ { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) }, /* Channel 1 */ { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) }, /* Channel 2 */ { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) }, /* Generic Non-core registers */ { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) }, }; #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } static const struct pci_id_table pci_dev_table[] = { PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), {0,} /* 0 terminated list. */ }; /* * pci_device_id table for which devices we are looking for */ static const struct pci_device_id i7core_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, {0,} /* 0 terminated list. */ }; /**************************************************************************** Ancillary status routines ****************************************************************************/ /* MC_CONTROL bits */ #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch))) #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1)) /* MC_STATUS bits */ #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4)) #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch)) /* MC_MAX_DOD read functions */ static inline int numdimms(u32 dimms) { return (dimms & 0x3) + 1; } static inline int numrank(u32 rank) { static const int ranks[] = { 1, 2, 4, -EINVAL }; return ranks[rank & 0x3]; } static inline int numbank(u32 bank) { static const int banks[] = { 4, 8, 16, -EINVAL }; return banks[bank & 0x3]; } static inline int numrow(u32 row) { static const int rows[] = { 1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16, -EINVAL, -EINVAL, -EINVAL, }; return rows[row & 0x7]; } static inline int numcol(u32 col) { static const int cols[] = { 1 << 10, 1 << 11, 1 << 12, -EINVAL, }; return cols[col & 0x3]; } static struct i7core_dev *get_i7core_dev(u8 socket) { struct i7core_dev *i7core_dev; list_for_each_entry(i7core_dev, &i7core_edac_list, list) { if (i7core_dev->socket == socket) return i7core_dev; } return NULL; } static struct i7core_dev *alloc_i7core_dev(u8 socket, const struct pci_id_table *table) { struct i7core_dev *i7core_dev; i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); if (!i7core_dev) return NULL; i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev), GFP_KERNEL); if (!i7core_dev->pdev) { kfree(i7core_dev); return NULL; } i7core_dev->socket = socket; i7core_dev->n_devs = table->n_devs; list_add_tail(&i7core_dev->list, &i7core_edac_list); return i7core_dev; } static void free_i7core_dev(struct i7core_dev *i7core_dev) { list_del(&i7core_dev->list); kfree(i7core_dev->pdev); kfree(i7core_dev); } /**************************************************************************** Memory check routines ****************************************************************************/ static int get_dimm_config(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; int i, j; enum edac_type mode; enum mem_type mtype; struct dimm_info *dimm; /* Get data from the MC register, function 0 */ pdev = pvt->pci_mcr[0]; if (!pdev) return -ENODEV; /* Device 3 function 0 reads */ pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); if (ECC_ENABLED(pvt)) { edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); if (ECCx8(pvt)) mode = EDAC_S8ECD8ED; else mode = EDAC_S4ECD4ED; } else { edac_dbg(0, "ECC disabled\n"); mode = EDAC_NONE; } /* FIXME: need to handle the error codes */ edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", numdimms(pvt->info.max_dod), numrank(pvt->info.max_dod >> 2), numbank(pvt->info.max_dod >> 4), numrow(pvt->info.max_dod >> 6), numcol(pvt->info.max_dod >> 9)); for (i = 0; i < NUM_CHANS; i++) { u32 data, dimm_dod[3], value[8]; if (!pvt->pci_ch[i][0]) continue; if (!CH_ACTIVE(pvt, i)) { edac_dbg(0, "Channel %i is not active\n", i); continue; } if (CH_DISABLED(pvt, i)) { edac_dbg(0, "Channel %i is disabled\n", i); continue; } /* Devices 4-6 function 0 */ pci_read_config_dword(pvt->pci_ch[i][0], MC_CHANNEL_DIMM_INIT_PARAMS, &data); if (data & THREE_DIMMS_PRESENT) pvt->channel[i].is_3dimms_present = true; if (data & SINGLE_QUAD_RANK_PRESENT) pvt->channel[i].is_single_4rank = true; if (data & QUAD_RANK_PRESENT) pvt->channel[i].has_4rank = true; if (data & REGISTERED_DIMM) mtype = MEM_RDDR3; else mtype = MEM_DDR3; /* Devices 4-6 function 1 */ pci_read_config_dword(pvt->pci_ch[i][1], MC_DOD_CH_DIMM0, &dimm_dod[0]); pci_read_config_dword(pvt->pci_ch[i][1], MC_DOD_CH_DIMM1, &dimm_dod[1]); pci_read_config_dword(pvt->pci_ch[i][1], MC_DOD_CH_DIMM2, &dimm_dod[2]); edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", i, RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), data, pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", pvt->channel[i].has_4rank ? "HAS_4R " : "", (data & REGISTERED_DIMM) ? 'R' : 'U'); for (j = 0; j < 3; j++) { u32 banks, ranks, rows, cols; u32 size, npages; if (!DIMM_PRESENT(dimm_dod[j])) continue; dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); /* DDR3 has 8 I/O banks */ size = (rows * cols * banks * ranks) >> (20 - 3); edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", j, size, RANKOFFSET(dimm_dod[j]), banks, ranks, rows, cols); npages = MiB_TO_PAGES(size); dimm->nr_pages = npages; switch (banks) { case 4: dimm->dtype = DEV_X4; break; case 8: dimm->dtype = DEV_X8; break; case 16: dimm->dtype = DEV_X16; break; default: dimm->dtype = DEV_UNKNOWN; } snprintf(dimm->label, sizeof(dimm->label), "CPU#%uChannel#%u_DIMM#%u", pvt->i7core_dev->socket, i, j); dimm->grain = 8; dimm->edac_mode = mode; dimm->mtype = mtype; } pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); for (j = 0; j < 8; j++) edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", (value[j] >> 27) & 0x1, (value[j] >> 24) & 0x7, (value[j] & ((1 << 24) - 1))); } return 0; } /**************************************************************************** Error insertion routines ****************************************************************************/ #define to_mci(k) container_of(k, struct mem_ctl_info, dev) /* The i7core has independent error injection features per channel. However, to have a simpler code, we don't allow enabling error injection on more than one channel. Also, since a change at an inject parameter will be applied only at enable, we're disabling error injection on all write calls to the sysfs nodes that controls the error code injection. */ static int disable_inject(const struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; pvt->inject.enable = 0; if (!pvt->pci_ch[pvt->inject.channel][0]) return -ENODEV; pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], MC_CHANNEL_ERROR_INJECT, 0); return 0; } /* * i7core inject inject.section * * accept and store error injection inject.section value * bit 0 - refers to the lower 32-byte half cacheline * bit 1 - refers to the upper 32-byte half cacheline */ static ssize_t i7core_inject_section_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; unsigned long value; int rc; if (pvt->inject.enable) disable_inject(mci); rc = kstrtoul(data, 10, &value); if ((rc < 0) || (value > 3)) return -EIO; pvt->inject.section = (u32) value; return count; } static ssize_t i7core_inject_section_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; return sprintf(data, "0x%08x\n", pvt->inject.section); } /* * i7core inject.type * * accept and store error injection inject.section value * bit 0 - repeat enable - Enable error repetition * bit 1 - inject ECC error * bit 2 - inject parity error */ static ssize_t i7core_inject_type_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; unsigned long value; int rc; if (pvt->inject.enable) disable_inject(mci); rc = kstrtoul(data, 10, &value); if ((rc < 0) || (value > 7)) return -EIO; pvt->inject.type = (u32) value; return count; } static ssize_t i7core_inject_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; return sprintf(data, "0x%08x\n", pvt->inject.type); } /* * i7core_inject_inject.eccmask_store * * The type of error (UE/CE) will depend on the inject.eccmask value: * Any bits set to a 1 will flip the corresponding ECC bit * Correctable errors can be injected by flipping 1 bit or the bits within * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an * uncorrectable error to be injected. */ static ssize_t i7core_inject_eccmask_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; unsigned long value; int rc; if (pvt->inject.enable) disable_inject(mci); rc = kstrtoul(data, 10, &value); if (rc < 0) return -EIO; pvt->inject.eccmask = (u32) value; return count; } static ssize_t i7core_inject_eccmask_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; return sprintf(data, "0x%08x\n", pvt->inject.eccmask); } /* * i7core_addrmatch * * The type of error (UE/CE) will depend on the inject.eccmask value: * Any bits set to a 1 will flip the corresponding ECC bit * Correctable errors can be injected by flipping 1 bit or the bits within * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an * uncorrectable error to be injected. */ #define DECLARE_ADDR_MATCH(param, limit) \ static ssize_t i7core_inject_store_##param( \ struct device *dev, \ struct device_attribute *mattr, \ const char *data, size_t count) \ { \ struct mem_ctl_info *mci = dev_get_drvdata(dev); \ struct i7core_pvt *pvt; \ long value; \ int rc; \ \ edac_dbg(1, "\n"); \ pvt = mci->pvt_info; \ \ if (pvt->inject.enable) \ disable_inject(mci); \ \ if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ value = -1; \ else { \ rc = kstrtoul(data, 10, &value); \ if ((rc < 0) || (value >= limit)) \ return -EIO; \ } \ \ pvt->inject.param = value; \ \ return count; \ } \ \ static ssize_t i7core_inject_show_##param( \ struct device *dev, \ struct device_attribute *mattr, \ char *data) \ { \ struct mem_ctl_info *mci = dev_get_drvdata(dev); \ struct i7core_pvt *pvt; \ \ pvt = mci->pvt_info; \ edac_dbg(1, "pvt=%p\n", pvt); \ if (pvt->inject.param < 0) \ return sprintf(data, "any\n"); \ else \ return sprintf(data, "%d\n", pvt->inject.param);\ } #define ATTR_ADDR_MATCH(param) \ static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \ i7core_inject_show_##param, \ i7core_inject_store_##param) DECLARE_ADDR_MATCH(channel, 3); DECLARE_ADDR_MATCH(dimm, 3); DECLARE_ADDR_MATCH(rank, 4); DECLARE_ADDR_MATCH(bank, 32); DECLARE_ADDR_MATCH(page, 0x10000); DECLARE_ADDR_MATCH(col, 0x4000); ATTR_ADDR_MATCH(channel); ATTR_ADDR_MATCH(dimm); ATTR_ADDR_MATCH(rank); ATTR_ADDR_MATCH(bank); ATTR_ADDR_MATCH(page); ATTR_ADDR_MATCH(col); static int write_and_test(struct pci_dev *dev, const int where, const u32 val) { u32 read; int count; edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, val); for (count = 0; count < 10; count++) { if (count) msleep(100); pci_write_config_dword(dev, where, val); pci_read_config_dword(dev, where, &read); if (read == val) return 0; } i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " "write=%08x. Read=%08x\n", dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), where, val, read); return -EINVAL; } /* * This routine prepares the Memory Controller for error injection. * The error will be injected when some process tries to write to the * memory that matches the given criteria. * The criteria can be set in terms of a mask where dimm, rank, bank, page * and col can be specified. * A -1 value for any of the mask items will make the MCU to ignore * that matching criteria for error injection. * * It should be noticed that the error will only happen after a write operation * on a memory that matches the condition. if REPEAT_EN is not enabled at * inject mask, then it will produce just one error. Otherwise, it will repeat * until the injectmask would be cleaned. * * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD * is reliable enough to check if the MC is using the * three channels. However, this is not clear at the datasheet. */ static ssize_t i7core_inject_enable_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; u32 injectmask; u64 mask = 0; int rc; long enable; if (!pvt->pci_ch[pvt->inject.channel][0]) return 0; rc = kstrtoul(data, 10, &enable); if ((rc < 0)) return 0; if (enable) { pvt->inject.enable = 1; } else { disable_inject(mci); return count; } /* Sets pvt->inject.dimm mask */ if (pvt->inject.dimm < 0) mask |= 1LL << 41; else { if (pvt->channel[pvt->inject.channel].dimms > 2) mask |= (pvt->inject.dimm & 0x3LL) << 35; else mask |= (pvt->inject.dimm & 0x1LL) << 36; } /* Sets pvt->inject.rank mask */ if (pvt->inject.rank < 0) mask |= 1LL << 40; else { if (pvt->channel[pvt->inject.channel].dimms > 2) mask |= (pvt->inject.rank & 0x1LL) << 34; else mask |= (pvt->inject.rank & 0x3LL) << 34; } /* Sets pvt->inject.bank mask */ if (pvt->inject.bank < 0) mask |= 1LL << 39; else mask |= (pvt->inject.bank & 0x15LL) << 30; /* Sets pvt->inject.page mask */ if (pvt->inject.page < 0) mask |= 1LL << 38; else mask |= (pvt->inject.page & 0xffff) << 14; /* Sets pvt->inject.column mask */ if (pvt->inject.col < 0) mask |= 1LL << 37; else mask |= (pvt->inject.col & 0x3fff); /* * bit 0: REPEAT_EN * bits 1-2: MASK_HALF_CACHELINE * bit 3: INJECT_ECC * bit 4: INJECT_ADDR_PARITY */ injectmask = (pvt->inject.type & 1) | (pvt->inject.section & 0x3) << 1 | (pvt->inject.type & 0x6) << (3 - 1); /* Unlock writes to registers - this register is write only */ pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 0x2); write_and_test(pvt->pci_ch[pvt->inject.channel][0], MC_CHANNEL_ADDR_MATCH, mask); write_and_test(pvt->pci_ch[pvt->inject.channel][0], MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); write_and_test(pvt->pci_ch[pvt->inject.channel][0], MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); write_and_test(pvt->pci_ch[pvt->inject.channel][0], MC_CHANNEL_ERROR_INJECT, injectmask); /* * This is something undocumented, based on my tests * Without writing 8 to this register, errors aren't injected. Not sure * why. */ pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 8); edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", mask, pvt->inject.eccmask, injectmask); return count; } static ssize_t i7core_inject_enable_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct i7core_pvt *pvt = mci->pvt_info; u32 injectmask; if (!pvt->pci_ch[pvt->inject.channel][0]) return 0; pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], MC_CHANNEL_ERROR_INJECT, &injectmask); edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); if (injectmask & 0x0c) pvt->inject.enable = 1; return sprintf(data, "%d\n", pvt->inject.enable); } #define DECLARE_COUNTER(param) \ static ssize_t i7core_show_counter_##param( \ struct device *dev, \ struct device_attribute *mattr, \ char *data) \ { \ struct mem_ctl_info *mci = dev_get_drvdata(dev); \ struct i7core_pvt *pvt = mci->pvt_info; \ \ edac_dbg(1, "\n"); \ if (!pvt->ce_count_available || (pvt->is_registered)) \ return sprintf(data, "data unavailable\n"); \ return sprintf(data, "%lu\n", \ pvt->udimm_ce_count[param]); \ } #define ATTR_COUNTER(param) \ static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \ i7core_show_counter_##param, \ NULL) DECLARE_COUNTER(0); DECLARE_COUNTER(1); DECLARE_COUNTER(2); ATTR_COUNTER(0); ATTR_COUNTER(1); ATTR_COUNTER(2); /* * inject_addrmatch device sysfs struct */ static struct attribute *i7core_addrmatch_attrs[] = { &dev_attr_channel.attr, &dev_attr_dimm.attr, &dev_attr_rank.attr, &dev_attr_bank.attr, &dev_attr_page.attr, &dev_attr_col.attr, NULL }; static const struct attribute_group addrmatch_grp = { .attrs = i7core_addrmatch_attrs, }; static const struct attribute_group *addrmatch_groups[] = { &addrmatch_grp, NULL }; static void addrmatch_release(struct device *device) { edac_dbg(1, "Releasing device %s\n", dev_name(device)); kfree(device); } static const struct device_type addrmatch_type = { .groups = addrmatch_groups, .release = addrmatch_release, }; /* * all_channel_counts sysfs struct */ static struct attribute *i7core_udimm_counters_attrs[] = { &dev_attr_udimm0.attr, &dev_attr_udimm1.attr, &dev_attr_udimm2.attr, NULL }; static const struct attribute_group all_channel_counts_grp = { .attrs = i7core_udimm_counters_attrs, }; static const struct attribute_group *all_channel_counts_groups[] = { &all_channel_counts_grp, NULL }; static void all_channel_counts_release(struct device *device) { edac_dbg(1, "Releasing device %s\n", dev_name(device)); kfree(device); } static const struct device_type all_channel_counts_type = { .groups = all_channel_counts_groups, .release = all_channel_counts_release, }; /* * inject sysfs attributes */ static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, i7core_inject_section_show, i7core_inject_section_store); static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, i7core_inject_type_show, i7core_inject_type_store); static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, i7core_inject_eccmask_show, i7core_inject_eccmask_store); static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, i7core_inject_enable_show, i7core_inject_enable_store); static struct attribute *i7core_dev_attrs[] = { &dev_attr_inject_section.attr, &dev_attr_inject_type.attr, &dev_attr_inject_eccmask.attr, &dev_attr_inject_enable.attr, NULL }; ATTRIBUTE_GROUPS(i7core_dev); static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; int rc; pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); if (!pvt->addrmatch_dev) return -ENOMEM; pvt->addrmatch_dev->type = &addrmatch_type; pvt->addrmatch_dev->bus = mci->dev.bus; device_initialize(pvt->addrmatch_dev); pvt->addrmatch_dev->parent = &mci->dev; dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); dev_set_drvdata(pvt->addrmatch_dev, mci); edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); rc = device_add(pvt->addrmatch_dev); if (rc < 0) goto err_put_addrmatch; if (!pvt->is_registered) { pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), GFP_KERNEL); if (!pvt->chancounts_dev) { rc = -ENOMEM; goto err_del_addrmatch; } pvt->chancounts_dev->type = &all_channel_counts_type; pvt->chancounts_dev->bus = mci->dev.bus; device_initialize(pvt->chancounts_dev); pvt->chancounts_dev->parent = &mci->dev; dev_set_name(pvt->chancounts_dev, "all_channel_counts"); dev_set_drvdata(pvt->chancounts_dev, mci); edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); rc = device_add(pvt->chancounts_dev); if (rc < 0) goto err_put_chancounts; } return 0; err_put_chancounts: put_device(pvt->chancounts_dev); err_del_addrmatch: device_del(pvt->addrmatch_dev); err_put_addrmatch: put_device(pvt->addrmatch_dev); return rc; } static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; edac_dbg(1, "\n"); if (!pvt->is_registered) { device_del(pvt->chancounts_dev); put_device(pvt->chancounts_dev); } device_del(pvt->addrmatch_dev); put_device(pvt->addrmatch_dev); } /**************************************************************************** Device initialization routines: put/get, init/exit ****************************************************************************/ /* * i7core_put_all_devices 'put' all the devices that we have * reserved via 'get' */ static void i7core_put_devices(struct i7core_dev *i7core_dev) { int i; edac_dbg(0, "\n"); for (i = 0; i < i7core_dev->n_devs; i++) { struct pci_dev *pdev = i7core_dev->pdev[i]; if (!pdev) continue; edac_dbg(0, "Removing dev %02x:%02x.%d\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); pci_dev_put(pdev); } } static void i7core_put_all_devices(void) { struct i7core_dev *i7core_dev, *tmp; list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { i7core_put_devices(i7core_dev); free_i7core_dev(i7core_dev); } } static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) { struct pci_dev *pdev = NULL; int i; /* * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses * aren't announced by acpi. So, we need to use a legacy scan probing * to detect them */ while (table && table->descr) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); if (unlikely(!pdev)) { for (i = 0; i < MAX_SOCKET_BUSES; i++) pcibios_scan_specific_bus(255-i); } pci_dev_put(pdev); table++; } } static unsigned i7core_pci_lastbus(void) { int last_bus = 0, bus; struct pci_bus *b = NULL; while ((b = pci_find_next_bus(b)) != NULL) { bus = b->number; edac_dbg(0, "Found bus %d\n", bus); if (bus > last_bus) last_bus = bus; } edac_dbg(0, "Last bus %d\n", last_bus); return last_bus; } /* * i7core_get_all_devices Find and perform 'get' operation on the MCH's * device/functions we want to reference for this driver * * Need to 'get' device 16 func 1 and func 2 */ static int i7core_get_onedevice(struct pci_dev **prev, const struct pci_id_table *table, const unsigned devno, const unsigned last_bus) { struct i7core_dev *i7core_dev; const struct pci_id_descr *dev_descr = &table->descr[devno]; struct pci_dev *pdev = NULL; u8 bus = 0; u8 socket = 0; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_descr->dev_id, *prev); /* * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs * is at addr 8086:2c40, instead of 8086:2c41. So, we need * to probe for the alternate address in case of failure */ if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) { pci_dev_get(*prev); /* pci_get_device will put it */ pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); } if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev) { pci_dev_get(*prev); /* pci_get_device will put it */ pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, *prev); } if (!pdev) { if (*prev) { *prev = pdev; return 0; } if (dev_descr->optional) return 0; if (devno == 0) return -ENODEV; i7core_printk(KERN_INFO, "Device not found: dev %02x.%d PCI ID %04x:%04x\n", dev_descr->dev, dev_descr->func, PCI_VENDOR_ID_INTEL, dev_descr->dev_id); /* End of list, leave */ return -ENODEV; } bus = pdev->bus->number; socket = last_bus - bus; i7core_dev = get_i7core_dev(socket); if (!i7core_dev) { i7core_dev = alloc_i7core_dev(socket, table); if (!i7core_dev) { pci_dev_put(pdev); return -ENOMEM; } } if (i7core_dev->pdev[devno]) { i7core_printk(KERN_ERR, "Duplicated device for " "dev %02x:%02x.%d PCI ID %04x:%04x\n", bus, dev_descr->dev, dev_descr->func, PCI_VENDOR_ID_INTEL, dev_descr->dev_id); pci_dev_put(pdev); return -ENODEV; } i7core_dev->pdev[devno] = pdev; /* Sanity check */ if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || PCI_FUNC(pdev->devfn) != dev_descr->func)) { i7core_printk(KERN_ERR, "Device PCI ID %04x:%04x " "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id, bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), bus, dev_descr->dev, dev_descr->func); return -ENODEV; } /* Be sure that the device is enabled */ if (unlikely(pci_enable_device(pdev) < 0)) { i7core_printk(KERN_ERR, "Couldn't enable " "dev %02x:%02x.%d PCI ID %04x:%04x\n", bus, dev_descr->dev, dev_descr->func, PCI_VENDOR_ID_INTEL, dev_descr->dev_id); return -ENODEV; } edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", socket, bus, dev_descr->dev, dev_descr->func, PCI_VENDOR_ID_INTEL, dev_descr->dev_id); /* * As stated on drivers/pci/search.c, the reference count for * @from is always decremented if it is not %NULL. So, as we need * to get all devices up to null, we need to do a get for the device */ pci_dev_get(pdev); *prev = pdev; return 0; } static int i7core_get_all_devices(void) { int i, rc, last_bus; struct pci_dev *pdev = NULL; const struct pci_id_table *table = pci_dev_table; last_bus = i7core_pci_lastbus(); while (table && table->descr) { for (i = 0; i < table->n_devs; i++) { pdev = NULL; do { rc = i7core_get_onedevice(&pdev, table, i, last_bus); if (rc < 0) { if (i == 0) { i = table->n_devs; break; } i7core_put_all_devices(); return -ENODEV; } } while (pdev); } table++; } return 0; } static int mci_bind_devs(struct mem_ctl_info *mci, struct i7core_dev *i7core_dev) { struct i7core_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; int i, func, slot; char *family; pvt->is_registered = false; pvt->enable_scrub = false; for (i = 0; i < i7core_dev->n_devs; i++) { pdev = i7core_dev->pdev[i]; if (!pdev) continue; func = PCI_FUNC(pdev->devfn); slot = PCI_SLOT(pdev->devfn); if (slot == 3) { if (unlikely(func > MAX_MCR_FUNC)) goto error; pvt->pci_mcr[func] = pdev; } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { if (unlikely(func > MAX_CHAN_FUNC)) goto error; pvt->pci_ch[slot - 4][func] = pdev; } else if (!slot && !func) { pvt->pci_noncore = pdev; /* Detect the processor family */ switch (pdev->device) { case PCI_DEVICE_ID_INTEL_I7_NONCORE: family = "Xeon 35xx/ i7core"; pvt->enable_scrub = false; break; case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: family = "i7-800/i5-700"; pvt->enable_scrub = false; break; case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: family = "Xeon 34xx"; pvt->enable_scrub = false; break; case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: family = "Xeon 55xx"; pvt->enable_scrub = true; break; case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: family = "Xeon 56xx / i7-900"; pvt->enable_scrub = true; break; default: family = "unknown"; pvt->enable_scrub = false; } edac_dbg(0, "Detected a processor type %s\n", family); } else goto error; edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pdev, i7core_dev->socket); if (PCI_SLOT(pdev->devfn) == 3 && PCI_FUNC(pdev->devfn) == 2) pvt->is_registered = true; } return 0; error: i7core_printk(KERN_ERR, "Device %d, function %d " "is out of the expected range\n", slot, func); return -EINVAL; } /**************************************************************************** Error check routines ****************************************************************************/ static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, const int chan, const int new0, const int new1, const int new2) { struct i7core_pvt *pvt = mci->pvt_info; int add0 = 0, add1 = 0, add2 = 0; /* Updates CE counters if it is not the first time here */ if (pvt->ce_count_available) { /* Updates CE counters */ add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; if (add2 < 0) add2 += 0x7fff; pvt->rdimm_ce_count[chan][2] += add2; if (add1 < 0) add1 += 0x7fff; pvt->rdimm_ce_count[chan][1] += add1; if (add0 < 0) add0 += 0x7fff; pvt->rdimm_ce_count[chan][0] += add0; } else pvt->ce_count_available = 1; /* Store the new values */ pvt->rdimm_last_ce_count[chan][2] = new2; pvt->rdimm_last_ce_count[chan][1] = new1; pvt->rdimm_last_ce_count[chan][0] = new0; /*updated the edac core */ if (add0 != 0) edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, 0, 0, 0, chan, 0, -1, "error", ""); if (add1 != 0) edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, 0, 0, 0, chan, 1, -1, "error", ""); if (add2 != 0) edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, 0, 0, 0, chan, 2, -1, "error", ""); } static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; u32 rcv[3][2]; int i, new0, new1, new2; /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/ pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, &rcv[0][0]); pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, &rcv[0][1]); pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, &rcv[1][0]); pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, &rcv[1][1]); pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, &rcv[2][0]); pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, &rcv[2][1]); for (i = 0 ; i < 3; i++) { edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); /*if the channel has 3 dimms*/ if (pvt->channel[i].dimms > 2) { new0 = DIMM_BOT_COR_ERR(rcv[i][0]); new1 = DIMM_TOP_COR_ERR(rcv[i][0]); new2 = DIMM_BOT_COR_ERR(rcv[i][1]); } else { new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + DIMM_BOT_COR_ERR(rcv[i][0]); new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + DIMM_BOT_COR_ERR(rcv[i][1]); new2 = 0; } i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); } } /* This function is based on the device 3 function 4 registers as described on: * Intel Xeon Processor 5500 Series Datasheet Volume 2 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf * also available at: * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf */ static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; u32 rcv1, rcv0; int new0, new1, new2; if (!pvt->pci_mcr[4]) { edac_dbg(0, "MCR registers not found\n"); return; } /* Corrected test errors */ pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); /* Store the new values */ new2 = DIMM2_COR_ERR(rcv1); new1 = DIMM1_COR_ERR(rcv0); new0 = DIMM0_COR_ERR(rcv0); /* Updates CE counters if it is not the first time here */ if (pvt->ce_count_available) { /* Updates CE counters */ int add0, add1, add2; add2 = new2 - pvt->udimm_last_ce_count[2]; add1 = new1 - pvt->udimm_last_ce_count[1]; add0 = new0 - pvt->udimm_last_ce_count[0]; if (add2 < 0) add2 += 0x7fff; pvt->udimm_ce_count[2] += add2; if (add1 < 0) add1 += 0x7fff; pvt->udimm_ce_count[1] += add1; if (add0 < 0) add0 += 0x7fff; pvt->udimm_ce_count[0] += add0; if (add0 | add1 | add2) i7core_printk(KERN_ERR, "New Corrected error(s): " "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", add0, add1, add2); } else pvt->ce_count_available = 1; /* Store the new values */ pvt->udimm_last_ce_count[2] = new2; pvt->udimm_last_ce_count[1] = new1; pvt->udimm_last_ce_count[0] = new0; } /* * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 * Architectures Software Developer’s Manual Volume 3B. * Nehalem are defined as family 0x06, model 0x1a * * The MCA registers used here are the following ones: * struct mce field MCA Register * m->status MSR_IA32_MC8_STATUS * m->addr MSR_IA32_MC8_ADDR * m->misc MSR_IA32_MC8_MISC * In the case of Nehalem, the error information is masked at .status and .misc * fields */ static void i7core_mce_output_error(struct mem_ctl_info *mci, const struct mce *m) { struct i7core_pvt *pvt = mci->pvt_info; char *optype, *err; enum hw_event_mc_err_type tp_event; unsigned long error = m->status & 0x1ff0000l; bool uncorrected_error = m->mcgstatus & 1ll << 61; bool ripv = m->mcgstatus & 1; u32 optypenum = (m->status >> 4) & 0x07; u32 core_err_cnt = (m->status >> 38) & 0x7fff; u32 dimm = (m->misc >> 16) & 0x3; u32 channel = (m->misc >> 18) & 0x3; u32 syndrome = m->misc >> 32; u32 errnum = find_first_bit(&error, 32); if (uncorrected_error) { core_err_cnt = 1; if (ripv) tp_event = HW_EVENT_ERR_FATAL; else tp_event = HW_EVENT_ERR_UNCORRECTED; } else { tp_event = HW_EVENT_ERR_CORRECTED; } switch (optypenum) { case 0: optype = "generic undef request"; break; case 1: optype = "read error"; break; case 2: optype = "write error"; break; case 3: optype = "addr/cmd error"; break; case 4: optype = "scrubbing error"; break; default: optype = "reserved"; break; } switch (errnum) { case 16: err = "read ECC error"; break; case 17: err = "RAS ECC error"; break; case 18: err = "write parity error"; break; case 19: err = "redundancy loss"; break; case 20: err = "reserved"; break; case 21: err = "memory range error"; break; case 22: err = "RTID out of range"; break; case 23: err = "address parity error"; break; case 24: err = "byte enable parity error"; break; default: err = "unknown"; } /* * Call the helper to output message * FIXME: what to do if core_err_cnt > 1? Currently, it generates * only one event */ if (uncorrected_error || !pvt->is_registered) edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, syndrome, channel, dimm, -1, err, optype); } /* * i7core_check_error Retrieve and process errors reported by the * hardware. Called by the Core module. */ static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m) { struct i7core_pvt *pvt = mci->pvt_info; i7core_mce_output_error(mci, m); /* * Now, let's increment CE error counts */ if (!pvt->is_registered) i7core_udimm_check_mc_ecc_err(mci); else i7core_rdimm_check_mc_ecc_err(mci); } /* * Check that logging is enabled and that this is the right type * of error for us to handle. */ static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) { struct mce *mce = (struct mce *)data; struct i7core_dev *i7_dev; struct mem_ctl_info *mci; i7_dev = get_i7core_dev(mce->socketid); if (!i7_dev) return NOTIFY_DONE; mci = i7_dev->mci; /* * Just let mcelog handle it if the error is * outside the memory controller */ if (((mce->status & 0xffff) >> 7) != 1) return NOTIFY_DONE; /* Bank 8 registers are the only ones that we know how to handle */ if (mce->bank != 8) return NOTIFY_DONE; i7core_check_error(mci, mce); /* Advise mcelog that the errors were handled */ return NOTIFY_STOP; } static struct notifier_block i7_mce_dec = { .notifier_call = i7core_mce_check_error, .priority = MCE_PRIO_EDAC, }; struct memdev_dmi_entry { u8 type; u8 length; u16 handle; u16 phys_mem_array_handle; u16 mem_err_info_handle; u16 total_width; u16 data_width; u16 size; u8 form; u8 device_set; u8 device_locator; u8 bank_locator; u8 memory_type; u16 type_detail; u16 speed; u8 manufacturer; u8 serial_number; u8 asset_tag; u8 part_number; u8 attributes; u32 extended_size; u16 conf_mem_clk_speed; } __attribute__((__packed__)); /* * Decode the DRAM Clock Frequency, be paranoid, make sure that all * memory devices show the same speed, and if they don't then consider * all speeds to be invalid. */ static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) { int *dclk_freq = _dclk_freq; u16 dmi_mem_clk_speed; if (*dclk_freq == -1) return; if (dh->type == DMI_ENTRY_MEM_DEVICE) { struct memdev_dmi_entry *memdev_dmi_entry = (struct memdev_dmi_entry *)dh; unsigned long conf_mem_clk_speed_offset = (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - (unsigned long)&memdev_dmi_entry->type; unsigned long speed_offset = (unsigned long)&memdev_dmi_entry->speed - (unsigned long)&memdev_dmi_entry->type; /* Check that a DIMM is present */ if (memdev_dmi_entry->size == 0) return; /* * Pick the configured speed if it's available, otherwise * pick the DIMM speed, or we don't have a speed. */ if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { dmi_mem_clk_speed = memdev_dmi_entry->conf_mem_clk_speed; } else if (memdev_dmi_entry->length > speed_offset) { dmi_mem_clk_speed = memdev_dmi_entry->speed; } else { *dclk_freq = -1; return; } if (*dclk_freq == 0) { /* First pass, speed was 0 */ if (dmi_mem_clk_speed > 0) { /* Set speed if a valid speed is read */ *dclk_freq = dmi_mem_clk_speed; } else { /* Otherwise we don't have a valid speed */ *dclk_freq = -1; } } else if (*dclk_freq > 0 && *dclk_freq != dmi_mem_clk_speed) { /* * If we have a speed, check that all DIMMS are the same * speed, otherwise set the speed as invalid. */ *dclk_freq = -1; } } } /* * The default DCLK frequency is used as a fallback if we * fail to find anything reliable in the DMI. The value * is taken straight from the datasheet. */ #define DEFAULT_DCLK_FREQ 800 static int get_dclk_freq(void) { int dclk_freq = 0; dmi_walk(decode_dclk, (void *)&dclk_freq); if (dclk_freq < 1) return DEFAULT_DCLK_FREQ; return dclk_freq; } /* * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate * to hardware according to SCRUBINTERVAL formula * found in datasheet. */ static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) { struct i7core_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; u32 dw_scrub; u32 dw_ssr; /* Get data from the MC register, function 2 */ pdev = pvt->pci_mcr[2]; if (!pdev) return -ENODEV; pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); if (new_bw == 0) { /* Prepare to disable petrol scrub */ dw_scrub &= ~STARTSCRUB; /* Stop the patrol scrub engine */ write_and_test(pdev, MC_SCRUB_CONTROL, dw_scrub & ~SCRUBINTERVAL_MASK); /* Get current status of scrub rate and set bit to disable */ pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); dw_ssr &= ~SSR_MODE_MASK; dw_ssr |= SSR_MODE_DISABLE; } else { const int cache_line_size = 64; const u32 freq_dclk_mhz = pvt->dclk_freq; unsigned long long scrub_interval; /* * Translate the desired scrub rate to a register value and * program the corresponding register value. */ scrub_interval = (unsigned long long)freq_dclk_mhz * cache_line_size * 1000000; do_div(scrub_interval, new_bw); if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) return -EINVAL; dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; /* Start the patrol scrub engine */ pci_write_config_dword(pdev, MC_SCRUB_CONTROL, STARTSCRUB | dw_scrub); /* Get current status of scrub rate and set bit to enable */ pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); dw_ssr &= ~SSR_MODE_MASK; dw_ssr |= SSR_MODE_ENABLE; } /* Disable or enable scrubbing */ pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); return new_bw; } /* * get_sdram_scrub_rate This routine convert current scrub rate value * into byte/sec bandwidth according to * SCRUBINTERVAL formula found in datasheet. */ static int get_sdram_scrub_rate(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; const u32 cache_line_size = 64; const u32 freq_dclk_mhz = pvt->dclk_freq; unsigned long long scrub_rate; u32 scrubval; /* Get data from the MC register, function 2 */ pdev = pvt->pci_mcr[2]; if (!pdev) return -ENODEV; /* Get current scrub control data */ pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); /* Mask highest 8-bits to 0 */ scrubval &= SCRUBINTERVAL_MASK; if (!scrubval) return 0; /* Calculate scrub rate value into byte/sec bandwidth */ scrub_rate = (unsigned long long)freq_dclk_mhz * 1000000 * cache_line_size; do_div(scrub_rate, scrubval); return (int)scrub_rate; } static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; u32 pci_lock; /* Unlock writes to pci registers */ pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); pci_lock &= ~0x3; pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, pci_lock | MC_CFG_UNLOCK); mci->set_sdram_scrub_rate = set_sdram_scrub_rate; mci->get_sdram_scrub_rate = get_sdram_scrub_rate; } static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) { struct i7core_pvt *pvt = mci->pvt_info; u32 pci_lock; /* Lock writes to pci registers */ pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); pci_lock &= ~0x3; pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, pci_lock | MC_CFG_LOCK); } static void i7core_pci_ctl_create(struct i7core_pvt *pvt) { pvt->i7core_pci = edac_pci_create_generic_ctl( &pvt->i7core_dev->pdev[0]->dev, EDAC_MOD_STR); if (unlikely(!pvt->i7core_pci)) i7core_printk(KERN_WARNING, "Unable to setup PCI error report via EDAC\n"); } static void i7core_pci_ctl_release(struct i7core_pvt *pvt) { if (likely(pvt->i7core_pci)) edac_pci_release_generic_ctl(pvt->i7core_pci); else i7core_printk(KERN_ERR, "Couldn't find mem_ctl_info for socket %d\n", pvt->i7core_dev->socket); pvt->i7core_pci = NULL; } static void i7core_unregister_mci(struct i7core_dev *i7core_dev) { struct mem_ctl_info *mci = i7core_dev->mci; struct i7core_pvt *pvt; if (unlikely(!mci || !mci->pvt_info)) { edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); return; } pvt = mci->pvt_info; edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); /* Disable scrubrate setting */ if (pvt->enable_scrub) disable_sdram_scrub_setting(mci); /* Disable EDAC polling */ i7core_pci_ctl_release(pvt); /* Remove MC sysfs nodes */ i7core_delete_sysfs_devices(mci); edac_mc_del_mc(mci->pdev); edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); kfree(mci->ctl_name); edac_mc_free(mci); i7core_dev->mci = NULL; } static int i7core_register_mci(struct i7core_dev *i7core_dev) { struct mem_ctl_info *mci; struct i7core_pvt *pvt; int rc; struct edac_mc_layer layers[2]; /* allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_CHANNEL; layers[0].size = NUM_CHANS; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_SLOT; layers[1].size = MAX_DIMMS; layers[1].is_virt_csrow = true; mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (unlikely(!mci)) return -ENOMEM; edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); pvt = mci->pvt_info; memset(pvt, 0, sizeof(*pvt)); /* Associates i7core_dev and mci for future usage */ pvt->i7core_dev = i7core_dev; i7core_dev->mci = mci; /* * FIXME: how to handle RDDR3 at MCI level? It is possible to have * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different * memory channels */ mci->mtype_cap = MEM_FLAG_DDR3; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = "i7core_edac.c"; mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket); if (!mci->ctl_name) { rc = -ENOMEM; goto fail1; } mci->dev_name = pci_name(i7core_dev->pdev[0]); mci->ctl_page_to_phys = NULL; /* Store pci devices at mci for faster access */ rc = mci_bind_devs(mci, i7core_dev); if (unlikely(rc < 0)) goto fail0; /* Get dimm basic config */ get_dimm_config(mci); /* record ptr to the generic device */ mci->pdev = &i7core_dev->pdev[0]->dev; /* Enable scrubrate setting */ if (pvt->enable_scrub) enable_sdram_scrub_setting(mci); /* add this new MC control structure to EDAC's list of MCs */ if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); /* FIXME: perhaps some code should go here that disables error * reporting if we just enabled it */ rc = -EINVAL; goto fail0; } if (i7core_create_sysfs_devices(mci)) { edac_dbg(0, "MC: failed to create sysfs nodes\n"); edac_mc_del_mc(mci->pdev); rc = -EINVAL; goto fail0; } /* Default error mask is any memory */ pvt->inject.channel = 0; pvt->inject.dimm = -1; pvt->inject.rank = -1; pvt->inject.bank = -1; pvt->inject.page = -1; pvt->inject.col = -1; /* allocating generic PCI control info */ i7core_pci_ctl_create(pvt); /* DCLK for scrub rate setting */ pvt->dclk_freq = get_dclk_freq(); return 0; fail0: kfree(mci->ctl_name); fail1: edac_mc_free(mci); i7core_dev->mci = NULL; return rc; } /* * i7core_probe Probe for ONE instance of device to see if it is * present. * return: * 0 for FOUND a device * < 0 for error code */ static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int rc, count = 0; struct i7core_dev *i7core_dev; /* get the pci devices we want to reserve for our use */ mutex_lock(&i7core_edac_lock); /* * All memory controllers are allocated at the first pass. */ if (unlikely(probed >= 1)) { mutex_unlock(&i7core_edac_lock); return -ENODEV; } probed++; rc = i7core_get_all_devices(); if (unlikely(rc < 0)) goto fail0; list_for_each_entry(i7core_dev, &i7core_edac_list, list) { count++; rc = i7core_register_mci(i7core_dev); if (unlikely(rc < 0)) goto fail1; } /* * Nehalem-EX uses a different memory controller. However, as the * memory controller is not visible on some Nehalem/Nehalem-EP, we * need to indirectly probe via a X58 PCI device. The same devices * are found on (some) Nehalem-EX. So, on those machines, the * probe routine needs to return -ENODEV, as the actual Memory * Controller registers won't be detected. */ if (!count) { rc = -ENODEV; goto fail1; } i7core_printk(KERN_INFO, "Driver loaded, %d memory controller(s) found.\n", count); mutex_unlock(&i7core_edac_lock); return 0; fail1: list_for_each_entry(i7core_dev, &i7core_edac_list, list) i7core_unregister_mci(i7core_dev); i7core_put_all_devices(); fail0: mutex_unlock(&i7core_edac_lock); return rc; } /* * i7core_remove destructor for one instance of device * */ static void i7core_remove(struct pci_dev *pdev) { struct i7core_dev *i7core_dev; edac_dbg(0, "\n"); /* * we have a trouble here: pdev value for removal will be wrong, since * it will point to the X58 register used to detect that the machine * is a Nehalem or upper design. However, due to the way several PCI * devices are grouped together to provide MC functionality, we need * to use a different method for releasing the devices */ mutex_lock(&i7core_edac_lock); if (unlikely(!probed)) { mutex_unlock(&i7core_edac_lock); return; } list_for_each_entry(i7core_dev, &i7core_edac_list, list) i7core_unregister_mci(i7core_dev); /* Release PCI resources */ i7core_put_all_devices(); probed--; mutex_unlock(&i7core_edac_lock); } MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); /* * i7core_driver pci_driver structure for this module * */ static struct pci_driver i7core_driver = { .name = "i7core_edac", .probe = i7core_probe, .remove = i7core_remove, .id_table = i7core_pci_tbl, }; /* * i7core_init Module entry function * Try to initialize this module for its devices */ static int __init i7core_init(void) { int pci_rc; edac_dbg(2, "\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); if (use_pci_fixup) i7core_xeon_pci_fixup(pci_dev_table); pci_rc = pci_register_driver(&i7core_driver); if (pci_rc >= 0) { mce_register_decode_chain(&i7_mce_dec); return 0; } i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", pci_rc); return pci_rc; } /* * i7core_exit() Module exit function * Unregister the driver */ static void __exit i7core_exit(void) { edac_dbg(2, "\n"); pci_unregister_driver(&i7core_driver); mce_unregister_decode_chain(&i7_mce_dec); } module_init(i7core_init); module_exit(i7core_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " I7CORE_REVISION); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1