Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kumar Gala | 885 | 39.26% | 1 | 8.33% |
Björn Andersson | 724 | 32.12% | 4 | 33.33% |
Andy Gross | 221 | 9.80% | 3 | 25.00% |
Stanimir Varbanov | 194 | 8.61% | 1 | 8.33% |
Avaneesh Kumar Dwivedi | 145 | 6.43% | 1 | 8.33% |
Rob Clark | 83 | 3.68% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.09% | 1 | 8.33% |
Total | 2254 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include <linux/io.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/qcom_scm.h> #include <linux/arm-smccc.h> #include <linux/dma-mapping.h> #include "qcom_scm.h" #define QCOM_SCM_FNID(s, c) ((((s) & 0xFF) << 8) | ((c) & 0xFF)) #define MAX_QCOM_SCM_ARGS 10 #define MAX_QCOM_SCM_RETS 3 enum qcom_scm_arg_types { QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_RW, QCOM_SCM_BUFVAL, }; #define QCOM_SCM_ARGS_IMPL(num, a, b, c, d, e, f, g, h, i, j, ...) (\ (((a) & 0x3) << 4) | \ (((b) & 0x3) << 6) | \ (((c) & 0x3) << 8) | \ (((d) & 0x3) << 10) | \ (((e) & 0x3) << 12) | \ (((f) & 0x3) << 14) | \ (((g) & 0x3) << 16) | \ (((h) & 0x3) << 18) | \ (((i) & 0x3) << 20) | \ (((j) & 0x3) << 22) | \ ((num) & 0xf)) #define QCOM_SCM_ARGS(...) QCOM_SCM_ARGS_IMPL(__VA_ARGS__, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) /** * struct qcom_scm_desc * @arginfo: Metadata describing the arguments in args[] * @args: The array of arguments for the secure syscall * @res: The values returned by the secure syscall */ struct qcom_scm_desc { u32 arginfo; u64 args[MAX_QCOM_SCM_ARGS]; }; static u64 qcom_smccc_convention = -1; static DEFINE_MUTEX(qcom_scm_lock); #define QCOM_SCM_EBUSY_WAIT_MS 30 #define QCOM_SCM_EBUSY_MAX_RETRY 20 #define N_EXT_QCOM_SCM_ARGS 7 #define FIRST_EXT_ARG_IDX 3 #define N_REGISTER_ARGS (MAX_QCOM_SCM_ARGS - N_EXT_QCOM_SCM_ARGS + 1) /** * qcom_scm_call() - Invoke a syscall in the secure world * @dev: device * @svc_id: service identifier * @cmd_id: command identifier * @desc: Descriptor structure containing arguments and return values * * Sends a command to the SCM and waits for the command to finish processing. * This should *only* be called in pre-emptible context. */ static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, const struct qcom_scm_desc *desc, struct arm_smccc_res *res) { int arglen = desc->arginfo & 0xf; int retry_count = 0, i; u32 fn_id = QCOM_SCM_FNID(svc_id, cmd_id); u64 cmd, x5 = desc->args[FIRST_EXT_ARG_IDX]; dma_addr_t args_phys = 0; void *args_virt = NULL; size_t alloc_len; struct arm_smccc_quirk quirk = {.id = ARM_SMCCC_QUIRK_QCOM_A6}; if (unlikely(arglen > N_REGISTER_ARGS)) { alloc_len = N_EXT_QCOM_SCM_ARGS * sizeof(u64); args_virt = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL); if (!args_virt) return -ENOMEM; if (qcom_smccc_convention == ARM_SMCCC_SMC_32) { __le32 *args = args_virt; for (i = 0; i < N_EXT_QCOM_SCM_ARGS; i++) args[i] = cpu_to_le32(desc->args[i + FIRST_EXT_ARG_IDX]); } else { __le64 *args = args_virt; for (i = 0; i < N_EXT_QCOM_SCM_ARGS; i++) args[i] = cpu_to_le64(desc->args[i + FIRST_EXT_ARG_IDX]); } args_phys = dma_map_single(dev, args_virt, alloc_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, args_phys)) { kfree(args_virt); return -ENOMEM; } x5 = args_phys; } do { mutex_lock(&qcom_scm_lock); cmd = ARM_SMCCC_CALL_VAL(ARM_SMCCC_STD_CALL, qcom_smccc_convention, ARM_SMCCC_OWNER_SIP, fn_id); quirk.state.a6 = 0; do { arm_smccc_smc_quirk(cmd, desc->arginfo, desc->args[0], desc->args[1], desc->args[2], x5, quirk.state.a6, 0, res, &quirk); if (res->a0 == QCOM_SCM_INTERRUPTED) cmd = res->a0; } while (res->a0 == QCOM_SCM_INTERRUPTED); mutex_unlock(&qcom_scm_lock); if (res->a0 == QCOM_SCM_V2_EBUSY) { if (retry_count++ > QCOM_SCM_EBUSY_MAX_RETRY) break; msleep(QCOM_SCM_EBUSY_WAIT_MS); } } while (res->a0 == QCOM_SCM_V2_EBUSY); if (args_virt) { dma_unmap_single(dev, args_phys, alloc_len, DMA_TO_DEVICE); kfree(args_virt); } if (res->a0 < 0) return qcom_scm_remap_error(res->a0); return 0; } /** * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the cold boot address of the cpus. Any cpu outside the supported * range would be removed from the cpu present mask. */ int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) { return -ENOTSUPP; } /** * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus * @dev: Device pointer * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the Linux entry point for the SCM to transfer control to when coming * out of a power down. CPU power down may be executed on cpuidle or hotplug. */ int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry, const cpumask_t *cpus) { return -ENOTSUPP; } /** * qcom_scm_cpu_power_down() - Power down the cpu * @flags - Flags to flush cache * * This is an end point to power down cpu. If there was a pending interrupt, * the control would return from this function, otherwise, the cpu jumps to the * warm boot entry point set for this cpu upon reset. */ void __qcom_scm_cpu_power_down(u32 flags) { } int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(1); desc.args[0] = QCOM_SCM_FNID(svc_id, cmd_id) | (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) return -ERANGE; desc.args[0] = req[0].addr; desc.args[1] = req[0].val; desc.args[2] = req[1].addr; desc.args[3] = req[1].val; desc.args[4] = req[2].addr; desc.args[5] = req[2].val; desc.args[6] = req[3].addr; desc.args[7] = req[3].val; desc.args[8] = req[4].addr; desc.args[9] = req[4].val; desc.arginfo = QCOM_SCM_ARGS(10); ret = qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, &desc, &res); *resp = res.a1; return ret; } void __qcom_scm_init(void) { u64 cmd; struct arm_smccc_res res; u32 function = QCOM_SCM_FNID(QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD); /* First try a SMC64 call */ cmd = ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, ARM_SMCCC_OWNER_SIP, function); arm_smccc_smc(cmd, QCOM_SCM_ARGS(1), cmd & (~BIT(ARM_SMCCC_TYPE_SHIFT)), 0, 0, 0, 0, 0, &res); if (!res.a0 && res.a1) qcom_smccc_convention = ARM_SMCCC_SMC_64; else qcom_smccc_convention = ARM_SMCCC_SMC_32; } bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_IS_SUPPORTED_CMD, &desc, &res); return ret ? false : !!res.a1; } int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral, dma_addr_t metadata_phys) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = metadata_phys; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_INIT_IMAGE_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral, phys_addr_t addr, phys_addr_t size) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = addr; desc.args[2] = size; desc.arginfo = QCOM_SCM_ARGS(3); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MEM_SETUP_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_AUTH_AND_RESET_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_SHUTDOWN_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = reset; desc.args[1] = 0; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET, &desc, &res); return ret ? : res.a1; } int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = state; desc.args[1] = id; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE, &desc, &res); return ret ? : res.a1; } int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, size_t mem_sz, phys_addr_t src, size_t src_sz, phys_addr_t dest, size_t dest_sz) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = mem_region; desc.args[1] = mem_sz; desc.args[2] = src; desc.args[3] = src_sz; desc.args[4] = dest; desc.args[5] = dest_sz; desc.args[6] = 0; desc.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, QCOM_SCM_SVC_MP, QCOM_MEM_PROT_ASSIGN_ID, &desc, &res); return ret ? : res.a1; } int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id, u32 spare) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = device_id; desc.args[1] = spare; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, QCOM_SCM_SVC_MP, QCOM_SCM_RESTORE_SEC_CFG, &desc, &res); return ret ? : res.a1; } int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare, size_t *size) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = spare; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_MP, QCOM_SCM_IOMMU_SECURE_PTBL_SIZE, &desc, &res); if (size) *size = res.a1; return ret ? : res.a2; } int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size, u32 spare) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = addr; desc.args[1] = size; desc.args[2] = spare; desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, QCOM_SCM_VAL); ret = qcom_scm_call(dev, QCOM_SCM_SVC_MP, QCOM_SCM_IOMMU_SECURE_PTBL_INIT, &desc, &res); /* the pg table has been initialized already, ignore the error */ if (ret == -EPERM) ret = 0; return ret; } int __qcom_scm_set_dload_mode(struct device *dev, bool enable) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = QCOM_SCM_SET_DLOAD_MODE; desc.args[1] = enable ? QCOM_SCM_SET_DLOAD_MODE : 0; desc.arginfo = QCOM_SCM_ARGS(2); return qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE, &desc, &res); } int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr, unsigned int *val) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = addr; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, &desc, &res); if (ret >= 0) *val = res.a1; return ret < 0 ? ret : 0; } int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = addr; desc.args[1] = val; desc.arginfo = QCOM_SCM_ARGS(2); return qcom_scm_call(dev, QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, &desc, &res); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1